Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Idylla platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1125 KiB  
Article
Evaluation of an IDH1/2 Mutation FastTrack Assay for Patients with Cholangiocarcinoma
by Melanie Winter, Silvana Ebner, Nina Scheuber, Falko Schulze, Maximilian N. Kinzler, Dirk Walter and Peter J. Wild
Cancers 2025, 17(5), 820; https://doi.org/10.3390/cancers17050820 - 27 Feb 2025
Viewed by 974
Abstract
Background: Cholangiocarcinoma, a malignancy originating from the bile ducts, poses significant treatment challenges due to its typically late diagnosis and limited therapeutic options. However, recent advances in molecular genetics enable more personalized treatment approaches. A notable breakthrough in this context is the identification [...] Read more.
Background: Cholangiocarcinoma, a malignancy originating from the bile ducts, poses significant treatment challenges due to its typically late diagnosis and limited therapeutic options. However, recent advances in molecular genetics enable more personalized treatment approaches. A notable breakthrough in this context is the identification of isocitrate dehydrogenase (IDH) mutations, particularly IDH1 and IDH2, which occur in a subset of cholangiocarcinoma patients. Those with IDH1/2 mutations may benefit from targeted therapies. For instance, Ivosidenib, an IDH1 inhibitor, has shown efficacy in clinical trials, offering a new therapeutic option for patients with IDH1-mutant cholangiocarcinoma. Developing and implementing standardized protocols for testing and reporting mutation status are crucial for consistency and accuracy in clinical practice. Both the Idylla™ IDH1-2 Mutation Assay Kit as a FastTrack method and Next-Generation Sequencing (NGS) panels play critical roles in molecular characterization of cholangiocarcinoma. Methods: Under this aspect, a set of cholangiocarcinomas was tested using the Idylla™ platform regarding the respective recommended guidelines and standards of DIN EN ISO:17020 and DIN EN ISO:15198. Results: Overall, 25 clinically diagnosed intrahepatic cholangiocarcinomas or Adeno-CUPs were analyzed. IDH1/2 mutations were identified in 68% (17/25) of cases using both methods, with high concordance between NGS and Idylla™ results. Discrepancies were observed in two samples, where Idylla™ detected no mutations, but NGS reported IDH1 and IDH2 mutations, respectively. Conclusions: IdyllaTM offers a rapid, user-friendly, and specific method for detecting IDH1/2 mutations, ideal for immediate clinical needs. NGS, while more time-consuming and costly, provides comprehensive genetic profiles valuable for personalized medicine and research. The choice between these methods should be guided by the clinical context, resource availability, and individual patient needs. For routine diagnostics, we recommend an algorithmic approach starting with the FastTrack method followed by NGS for wildtype cases. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Germany)
Show Figures

Figure 1

16 pages, 1939 KiB  
Review
Innovative COVID-19 Point-of-Care Diagnostics Suitable for Tuberculosis Diagnosis: A Scoping Review
by Lydia M. L. Holtgrewe, Sonal Jain, Ralitza Dekova, Tobias Broger, Chris Isaacs, Grant Theron, Payam Nahid, Adithya Cattamanchi, Claudia M. Denkinger and Seda Yerlikaya
J. Clin. Med. 2024, 13(19), 5894; https://doi.org/10.3390/jcm13195894 - 2 Oct 2024
Cited by 3 | Viewed by 2813
Abstract
Rapid and accurate point-of-care (POC) tuberculosis (TB) diagnostics are crucial to bridge the TB diagnostic gap. Leveraging recent advancements in COVID-19 diagnostics, we explored adapting commercially available POC SARS-CoV-2 tests for TB diagnosis in line with the World Health Organization (WHO) target product [...] Read more.
Rapid and accurate point-of-care (POC) tuberculosis (TB) diagnostics are crucial to bridge the TB diagnostic gap. Leveraging recent advancements in COVID-19 diagnostics, we explored adapting commercially available POC SARS-CoV-2 tests for TB diagnosis in line with the World Health Organization (WHO) target product profiles (TPPs). A scoping review was conducted following PRISMA-ScR guidelines to systematically map POC antigen and molecular SARS-CoV-2 diagnostic tests potentially meeting the TPPs for TB diagnostic tests for peripheral settings. Data were gathered from PubMed/MEDLINE, bioRxiv, medRxiv, publicly accessible in vitro diagnostic test databases, and developer websites up to 23 November 2022. Data on developer attributes, operational characteristics, pricing, clinical performance, and regulatory status were charted using standardized data extraction forms and evaluated with a standardized scorecard. A narrative synthesis of the data is presented. Our search yielded 2003 reports, with 408 meeting eligibility criteria. Among these, we identified 66 commercialized devices: 22 near-POC antigen tests, 1 POC molecular test, 31 near-POC molecular tests, and 12 low-complexity molecular tests potentially adaptable for TB. The highest-scoring SARS-CoV-2 diagnostic tests were the near-POC antigen platform LumiraDx (Roche, Basel, Switzerland), the POC molecular test Lucira Check-It (Pfizer, New York, NY, USA), the near-POC molecular test Visby (Visby, San Jose, CA, USA), and the low-complexity molecular platform Idylla (Biocartis, Lausanne, Switzerland). We highlight a diverse landscape of commercially available diagnostic tests suitable for potential adaptation to peripheral TB testing. This work aims to bolster global TB initiatives by fostering stakeholder collaboration, leveraging SARS-CoV-2 diagnostic technologies for TB, and uncovering new commercial avenues to tackle longstanding challenges in TB diagnosis. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

18 pages, 2296 KiB  
Article
Comparison and Validation of Rapid Molecular Testing Methods for Theranostic Epidermal Growth Factor Receptor Alterations in Lung Cancer: Idylla versus Digital Droplet PCR
by Camille Léonce, Clémence Guerriau, Lara Chalabreysse, Michaël Duruisseaux, Sébastien Couraud, Marie Brevet, Pierre-Paul Bringuier and Delphine Aude Poncet
Int. J. Mol. Sci. 2023, 24(21), 15684; https://doi.org/10.3390/ijms242115684 - 27 Oct 2023
Cited by 2 | Viewed by 1774
Abstract
Targeting EGFR alterations, particularly the L858R (Exon 21) mutation and Exon 19 deletion (del19), has significantly improved the survival of lung cancer patients. From now on, the issue is to shorten the time to treatment. Here, we challenge two well-known rapid strategies for [...] Read more.
Targeting EGFR alterations, particularly the L858R (Exon 21) mutation and Exon 19 deletion (del19), has significantly improved the survival of lung cancer patients. From now on, the issue is to shorten the time to treatment. Here, we challenge two well-known rapid strategies for EGFR testing: the cartridge-based platform Idylla™ (Biocartis) and a digital droplet PCR (ddPCR) approach (ID_Solution). To thoroughly investigate each testing performance, we selected a highly comprehensive cohort of 39 unique del19 (in comparison, the cbioportal contains 40 unique del19), and 9 samples bearing unique polymorphisms in exon 19. Additional L858R (N = 24), L861Q (N = 1), del19 (N = 63), and WT samples (N = 34) were used to determine clear technical and biological cutoffs. A total of 122 DNA samples extracted from formaldehyde-fixed samples was used as input. No false positive results were reported for either of the technologies, as long as careful droplet selection (ddPCR) was ensured for two polymorphisms. ddPCR demonstrated higher sensitivity in detecting unique del19 (92.3%, 36/39) compared to Idylla (67.7%, 21/31). However, considering the prevalence of del19 and L858R in the lung cancer population, the adjusted theranostic values were similar (96.51% and 95.26%, respectively). ddPCR performs better for small specimens and low tumoral content, but in other situations, Idylla is an alternative (especially if a molecular platform is absent). Full article
Show Figures

Figure 1

10 pages, 1115 KiB  
Article
Efficient Lung Cancer Molecular Diagnostics by Combining Next Generation Sequencing with Reflex Idylla Genefusion Assay Testing
by Dingani Nkosi, Giby V. George, Huijie Liu, Meghan Buldo, Moises J. Velez and Zoltán N. Oltvai
Genes 2023, 14(8), 1551; https://doi.org/10.3390/genes14081551 - 28 Jul 2023
Cited by 3 | Viewed by 2175
Abstract
Molecular diagnostics for lung cancer is a well-established standard of care, but how to use the available diagnostic tools for optimal and cost-effective patient care remains unresolved. Here, we show that DNA-only, small gene next-generation sequencing (sNGS) panels (<50 genes) combined with ultra-rapid [...] Read more.
Molecular diagnostics for lung cancer is a well-established standard of care, but how to use the available diagnostic tools for optimal and cost-effective patient care remains unresolved. Here, we show that DNA-only, small gene next-generation sequencing (sNGS) panels (<50 genes) combined with ultra-rapid reflex testing for common fusion transcripts using the Idylla Genefusion assay provide a cost-effective and sufficiently comprehensive testing modality for the majority of lung cancer cases. We also demonstrate the need for additional reflex testing capability on larger DNA and fusion panels for a small subset of lung cancers bearing rare single-nucleotide variants, indels and fusion transcripts and secondary, post-treatment resistance mutations. A similar testing workflow could be adopted for other solid tumor types for which extensive gene/fusion variant profiles are available both in the treatment-naïve and post-therapy settings. Full article
(This article belongs to the Special Issue Next Generation Sequencing in Clinical Diagnostics)
Show Figures

Figure 1

14 pages, 482 KiB  
Article
Epidermal Growth Factor Receptor T790M Mutation Testing in Non-Small Cell Lung Cancer: An International Collaborative Study to Assess Molecular EGFR T790M Testing in Liquid Biopsy
by Martin Filipits, Verena Kainz, Viktor Sebek, Herwig Zach and on behalf of the Liquid Biopsy Collaborative Study Group
Cancers 2023, 15(13), 3528; https://doi.org/10.3390/cancers15133528 - 7 Jul 2023
Cited by 5 | Viewed by 2385
Abstract
Background: The detection of the EGFR T790M (T790M) mutation in non-small cell lung cancer (NSCLC) patients who progressed under treatment with first- or second-generation EGFR-tyrosine kinase inhibitors (TKIs) is important to offer a subsequent therapy with a third-generation EGFR-TKI. Liquid biopsy is a [...] Read more.
Background: The detection of the EGFR T790M (T790M) mutation in non-small cell lung cancer (NSCLC) patients who progressed under treatment with first- or second-generation EGFR-tyrosine kinase inhibitors (TKIs) is important to offer a subsequent therapy with a third-generation EGFR-TKI. Liquid biopsy is a powerful tool to determine the T790M mutation status. Several liquid biopsy platforms with varying degrees of accuracy are available to test for T790M mutations, and sensitivities may differ among these methods. Methods: As no standard exists for the testing of T790M mutation in liquid biopsy, we performed a collaborative study to describe and compare the sensitivity of different in-house liquid biopsy platforms for the detection of the T790M mutation, EGFR exon 19 deletion (del19) and EGFR L858R mutation (L858R) across multiple participating laboratories in seven Central and Eastern European countries. Results: Of the 25 invited laboratories across Central and Eastern Europe, 21 centers participated and received 10 plasma samples spiked with cell-line DNA containing the T790M, del19, or L858R mutation in different concentrations. In-house PCR-based and NGS-based methods were used accordingly, and results were reported as in routine clinical practice. Two laboratories, which used the AmoyDx® EGFR 29 Mutations Detection Kit (AmoyDx) with Cobas® cfDNA Sample Preparation Kit and QX200 Droplet Digital PCR (ddPCR) with the QIAamp Circulating Nucleic Acid Kit identified all ten samples correctly. Cobas® EGFR Mutation Test v2 (Cobas), the NGS methods, and the IdyllaTM detection method used in this study performed within the known sensitivity range of each detection method. Conclusions: If a negative result was obtained from methods with lower sensitivity (e.g., Cobas), repeated liquid biopsy testing and/or tissue biopsy analysis should be performed whenever possible, to identify T790M-positive patients to allow them to receive the optimal second-line treatment with a third-generation EGFR TKI. Full article
Show Figures

Figure 1

12 pages, 1298 KiB  
Article
Performance of Ultra-Rapid Idylla™ EGFR Mutation Test in Non-Small-Cell Lung Cancer and Its Potential at Clinical Molecular Screening
by Kenichi Suda, Kazuko Sakai, Tatsuo Ohira, Takaaki Chikugo, Takao Satou, Jun Matsubayashi, Toshitaka Nagao, Norihiko Ikeda, Yasuhiro Tsutani, Tetsuya Mitsudomi and Kazuto Nishio
Cancers 2023, 15(9), 2648; https://doi.org/10.3390/cancers15092648 - 7 May 2023
Cited by 3 | Viewed by 3158
Abstract
Background: The Idylla™ EGFR Mutation Test is an ultra-rapid single-gene test that detects epidermal growth factor receptor (EGFR) mutations using formalin-fixed paraffin-embedded specimens. Here, we compared the performance of the Idylla EGFR Mutation Test with the Cobas® EGFR Mutation Test [...] Read more.
Background: The Idylla™ EGFR Mutation Test is an ultra-rapid single-gene test that detects epidermal growth factor receptor (EGFR) mutations using formalin-fixed paraffin-embedded specimens. Here, we compared the performance of the Idylla EGFR Mutation Test with the Cobas® EGFR Mutation Test v2. Methods: Surgically resected NSCLC specimens obtained at two Japanese institutions (N = 170) were examined. The Idylla EGFR Mutation Test and the Cobas EGFR Mutation Test v2 were performed independently and the results were compared. For discordant cases, the Ion AmpliSeq Colon and Lung Cancer Research Panel V2 was performed. Results: After the exclusion of five inadequate/invalid samples, 165 cases were evaluated. EGFR mutation analysis revealed 52 were positive and 107 were negative for EGFR mutation in both assays (overall concordance rate: 96.4%). Analyses of the six discordant cases revealed that the Idylla EGFR Mutation Test was correct in four and the Cobas EGFR Mutation Test v2 was correct in two. In a trial calculation, the combination of the Idylla EGFR Mutation Test followed by a multi-gene panel test will reduce molecular screening expenses if applied to a cohort with EGFR mutation frequency >17.9%. Conclusions: We demonstrated the accuracy and potential clinical utility of the Idylla EGFR Mutation Test as a molecular screening platform in terms of turnaround time and molecular testing cost if applied to a cohort with a high EGFR mutation incidence (>17.9%). Full article
Show Figures

Figure 1

13 pages, 1313 KiB  
Article
Robust Performance of the Novel Research-Use-Only Idylla GeneFusion Assay Using a Diverse Set of Pathological Samples with a Proposed 1-Day Workflow for Advanced NSCLC Evaluation
by Alvaro Leone, Lucia Anna Muscarella, Paolo Graziano, Andrea Tornese, Lucia Rosalba Grillo, Angela Di Lorenzo, Monica Bronzini, Stefania Scarpino, Angelo Sparaneo and Giulio Rossi
Cancers 2023, 15(1), 292; https://doi.org/10.3390/cancers15010292 - 31 Dec 2022
Cited by 7 | Viewed by 2768
Abstract
A range of different techniques are available for predictive biomarker testing for non-small-cell lung cancer (NSCLC) clinical management. International guidelines suggest next-generation sequencing (NGS) as the preferred procedure, but other reverse transcriptase-polymerase chain reaction (RT-PCR)-based methods are rapidly evolving. In this study, we [...] Read more.
A range of different techniques are available for predictive biomarker testing for non-small-cell lung cancer (NSCLC) clinical management. International guidelines suggest next-generation sequencing (NGS) as the preferred procedure, but other reverse transcriptase-polymerase chain reaction (RT-PCR)-based methods are rapidly evolving. In this study, we evaluated the reliability and accuracy of the IdyllaTM GeneFusion assay, a rapid and fully automated platform able to simultaneously detect ALK, ROS1, RET and NTRK1/2/3 and MET ex14 skipping mutations and compared its performance with routine reference methods. The cohort included thirty-seven NSCLCs plus two parotid gland carcinomas, previously characterized for the above alterations through either IHC, FISH, RT-PCR or NGS. In 36 of 39 cases, the Idylla GeneFusion assay and the reference methods were concordant (overall agreement: 92.3%). Tumor sections stored at room temperature for up to 60 days and 17 cases older than 2 years were successfully characterized. Our results suggest that the Idylla GeneFusion assay is a reliable tool to define gene fusion status and may be a valuable stand-alone diagnostic test when time efficiency is needed or NGS is not feasible. Full article
Show Figures

Figure 1

12 pages, 1933 KiB  
Article
Improving Time-to-Treatment for Advanced Non-Small Cell Lung Cancer Patients through Faster Single Gene EGFR Testing Using the Idylla™ EGFR Testing Platform
by Norbert Banyi, Deepu Alex, Curtis Hughesman, Kelly McNeil, Diana N. Ionescu, Carmen Ma, Stephen Yip and Barbara Melosky
Curr. Oncol. 2022, 29(10), 7900-7911; https://doi.org/10.3390/curroncol29100624 - 18 Oct 2022
Cited by 7 | Viewed by 3326
Abstract
Introduction: Patients with advanced-stage non-small cell lung cancer (NSCLC) may benefit from a short time-to-treatment (TTT). Predictive biomarker testing is performed prior to treatment, as recommended by various international expert consensus bodies. Genetic testing is more time-intensive than immunohistochemistry (IHC) and commonly contributes [...] Read more.
Introduction: Patients with advanced-stage non-small cell lung cancer (NSCLC) may benefit from a short time-to-treatment (TTT). Predictive biomarker testing is performed prior to treatment, as recommended by various international expert consensus bodies. Genetic testing is more time-intensive than immunohistochemistry (IHC) and commonly contributes to prolonged TTT. For epidermal growth factor receptor-positive patients (EGFR+), further genetic testing may not be required due to the mutual exclusivity of actionable mutations. Methods: The trial cohort (N = 238) received both BC Cancer NGS panel (Oncopanel) and Idylla EGFR testing. Data were also collected for a control cohort (N = 220) that received Oncopanel testing. For each patient, the time that the lab received the sample, the time taken to report the NGS and Idylla tests, the time of first treatment, and the final treatment regimen were recorded. Results: A concordance frequency of 98.7% (232/235) was observed between the Idylla and NGS panel. The lab turnaround time (TAT) was faster for the Idylla test by an average of 12.4 days (N = 235, p < 0.01). Overall, the average TTT in the trial cohort (N = 114) was 10.1 days faster (p < 0.05) than the control (N = 114), leading to a 25% reduction in TTT. For patients treated based on EGFR positivity, the mean TTT was 16.8 days faster (p < 0.05) in the trial cohort (N = 33) than the control cohort (N = 28), leading to a 48% reduction in TTT. Conclusion: Using the Idylla EGFR test as part of the molecular testing repertoire in advanced-stage NSCLC patients could significantly reduce TTT. Full article
Show Figures

Figure 1

11 pages, 1687 KiB  
Article
Use of the Biocartis Idylla™ Platform for the Detection of Epidermal Growth Factor Receptor, BRAF and KRAS Proto-Oncogene Mutations in Liquid-Based Cytology Specimens from Patients with Non-Small Cell Lung Carcinoma and Pancreatic Adenocarcinoma
by Leonie Wheeldon, Mary Jones, Ben Probyn, Dushyant Shetty and James Garvican
J. Mol. Pathol. 2022, 3(2), 104-114; https://doi.org/10.3390/jmp3020010 - 14 May 2022
Cited by 3 | Viewed by 4754
Abstract
The study aimed to demonstrate rapid and effective molecular testing on liquid-based cytology (LBC) samples for EGFR, KRAS and BRAF mutations using the Biocartis Idylla™. Rapid on-site evaluation (ROSE) LBC samples for patients with non-small cell lung carcinoma (NSCLC) or pancreatic ductal [...] Read more.
The study aimed to demonstrate rapid and effective molecular testing on liquid-based cytology (LBC) samples for EGFR, KRAS and BRAF mutations using the Biocartis Idylla™. Rapid on-site evaluation (ROSE) LBC samples for patients with non-small cell lung carcinoma (NSCLC) or pancreatic ductal adenocarcinoma (PDAC) were tested for EGFR, KRAS and BRAF mutations based on the relevance to tumour subtype. The quantification values (Cq values) and mutation detection status were compared between LBC samples and routine formalin-fixed paraffin-embedded (FFPE) clot samples. ROSE LBC samples (n = 54) showed a higher yield of well-preserved tumour and wild type (WT) DNA, demonstrated by lower quantification cycles, no false positives or false negatives, and a higher sensitivity for low allele frequency mutations when compared with FFPE clot samples. The Biocartis Idylla™ provides highly sensitive, reliable and rapid testing for LBC samples for the detection of EFGR and KRAS mutations. BRAF mutations were not detected in the participant cohort; however, all LBC WT BRAF results correlated with the results from the FFPE clot samples. Access to rapid molecular testing using LBC samples can detect the most frequent driver mutations closer to the time of diagnosis, enabling the selection of the most effective first-line targeted therapy sooner, reducing delays or side effects from suboptimal treatments, patient anxiety and costs to healthcare systems, whilst improving patient outcomes. Full article
(This article belongs to the Collection Feature Papers in Journal of Molecular Pathology)
Show Figures

Figure 1

11 pages, 1681 KiB  
Article
Utility of Select Gene Mutation Detection in Tumors by the Idylla Rapid Multiplex PCR Platform in Comparison to Next-Generation Sequencing
by Dingani Nkosi, Vektra L. Casler, Chauncey R. Syposs and Zoltán N. Oltvai
Genes 2022, 13(5), 799; https://doi.org/10.3390/genes13050799 - 29 Apr 2022
Cited by 7 | Viewed by 2885
Abstract
Testing of tumors by next generation sequencing (NGS) is impacted by relatively long turnaround times and a need for highly trained personnel. Recently, Idylla oncology assays were introduced to test for BRAF, EGFR, KRAS, and NRAS common hotspot mutations that [...] Read more.
Testing of tumors by next generation sequencing (NGS) is impacted by relatively long turnaround times and a need for highly trained personnel. Recently, Idylla oncology assays were introduced to test for BRAF, EGFR, KRAS, and NRAS common hotspot mutations that do not require specialized trained personnel. Moreover, the interpretation of results is fully automated, with rapid turnaround time. Though Idylla testing and NGS have been shown to have high concordance in identifying EGFR, BRAF, KRAS, and NRAS hotspot mutations, there is limited experience on optimal ways the Idylla system can be used in routine practice. We retrospectively evaluated all cases with EGFR, BRAF, KRAS, or NRAS mutations identified in clinical specimens sequenced on two different NGS panels at the University of Rochester Medical Center (URMC) molecular diagnostics laboratory between July 2020 and July 2021 and assessed if these mutations would be detected by the Idylla cartridges if used. We found that the Idylla system could accurately identify Tier 1 or 2 actionable genomic alterations in select associated disease pathologies if used. Yet, in a minority of cases, we would have been unable to detect NGS-identified pathogenic mutations due to their absence on the Idylla panels. We derived algorithmic practice guidelines for the use of the Idylla cartridges. Overall, Idylla molecular testing could be implemented either as a first-line standalone diagnostic tool in select indications or for orthogonal confirmation of uncertain results. Full article
(This article belongs to the Special Issue Next Generation Sequencing in Clinical Diagnostics)
Show Figures

Figure 1

16 pages, 1477 KiB  
Article
Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting
by Umberto Malapelle, Paola Parente, Francesco Pepe, Caterina De Luca, Pasquale Pisapia, Roberta Sgariglia, Mariantonia Nacchio, Gianluca Gragnano, Gianluca Russo, Floriana Conticelli, Claudio Bellevicine, Elena Vigliar, Antonino Iaccarino, Claudia Covelli, Mariangela Balistreri, Celeste Clemente, Giovanni Perrone, Angela Danza, Fabio Scaramuzzi, Matteo Fassan, Giancarlo Troncone and Paolo Grazianoadd Show full author list remove Hide full author list
Cells 2021, 10(8), 1878; https://doi.org/10.3390/cells10081878 - 24 Jul 2021
Cited by 38 | Viewed by 5540
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly [...] Read more.
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors. Full article
(This article belongs to the Collection Feature Papers in ‘Cellular Immunology’)
Show Figures

Figure 1

14 pages, 629 KiB  
Article
Impact of Pre-Analytical Factors on MSI Test Accuracy in Mucinous Colorectal Adenocarcinoma: A Multi-Assay Concordance Study
by Umberto Malapelle, Paola Parente, Francesco Pepe, Caterina De Luca, Pellegrino Cerino, Claudia Covelli, Mariangela Balestrieri, Gianluca Russo, Antonio Bonfitto, Pasquale Pisapia, Fabiola Fiordelisi, Maria D’Armiento, Dario Bruzzese, Fotios Loupakis, Filippo Pietrantonio, Maria Triassi, Matteo Fassan, Giancarlo Troncone and Paolo Graziano
Cells 2020, 9(9), 2019; https://doi.org/10.3390/cells9092019 - 2 Sep 2020
Cited by 39 | Viewed by 5241
Abstract
Immunohistochemistry (IHC) and polymerase chain reaction (PCR) and fragment separation by capillary electrophoresis represent the current clinical laboratory standard for the evaluation of microsatellite instability (MSI) status. The importance of reporting MSI status in colorectal cancer is based on its potential for guiding [...] Read more.
Immunohistochemistry (IHC) and polymerase chain reaction (PCR) and fragment separation by capillary electrophoresis represent the current clinical laboratory standard for the evaluation of microsatellite instability (MSI) status. The importance of reporting MSI status in colorectal cancer is based on its potential for guiding treatment and as a prognostic indicator. It is also used to identify patients for Lynch syndrome testing. Our aim was to evaluate pre-analytical factors, such as age of formalin-fixed and paraffin-embedded (FFPE) block, neoplastic cell percentage, mucinous component, and DNA integrity, that may influence the accuracy of MSI testing and assess the concordance between three different MSI evaluation approaches. We selected the mucinous colorectal cancer (CRC) histotype for this study as it may possibly represent an intrinsic diagnostic issue due to its low tumor cellularity. Seventy-five cases of mucinous CRC and corresponding normal colon tissue samples were retrospectively selected. MMR proteins were evaluated by IHC. After DNA quality and quantity evaluation, the Idylla™ and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Seventy-three (97.3%) cases were successfully analyzed by the three methodologies. Overall, the Idylla™ platform showed a concordance rate with IHC of 98.0% for microsatellite stable (MSS)/proficient MMR (pMMR) cases and 81.8% for MSI/deficient MMR (dMMR) cases. The TapeStation 4200 system showed a concordance rate with IHC of 96.0% for MSS/pMMR cases and 45.4% for MSI/dMMR cases. The concordance rates of the TapeStation 4200 system with respect to the Idylla™ platform were 98.1% for MSS profile and 57.8% for MSI profile. Discordant cases were analyzed using the Titano MSI kit. Considering pre-analytical factors, no significant variation in concordance rate among IHC analyses and molecular systems was observed by considering the presence of an acellular mucus cut-off >50% of the tumor area, FFPE year preparation, and DNA concentration. Conversely, the Idylla™ platform showed a significant variation in concordance rate with the IHC approach by considering a neoplastic cell percentage >50% (p-value = 0.002), and the TapeStation 4200 system showed a significant variation in concordance rate with the IHC approach by considering a DNA integrity number (DIN) ≥4 as cut-off (p-value = 0.009). Our data pinpoint a central role of the pre-analytical phase in the diagnostic outcome of MSI testing in CRC. Full article
Show Figures

Figure 1

12 pages, 632 KiB  
Article
Clinical Practice Use of Liquid Biopsy to Identify RAS/BRAF Mutations in Patients with Metastatic Colorectal Cancer (mCRC): A Single Institution Experience
by Pietro Paolo Vitiello, Vincenzo De Falco, Emilio Francesco Giunta, Davide Ciardiello, Claudia Cardone, Pasquale Vitale, Nicoletta Zanaletti, Carola Borrelli, Luca Poliero, Marinella Terminiello, Gianluca Arrichiello, Vincenza Caputo, Vincenzo Famiglietti, Valentina Mattera Iacono, Francesca Marrone, Alessandra Di Liello, Giulia Martini, Stefania Napolitano, Michele Caraglia, Angela Lombardi, Renato Franco, Ferdinando De Vita, Floriana Morgillo, Teresa Troiani, Fortunato Ciardiello and Erika Martinelliadd Show full author list remove Hide full author list
Cancers 2019, 11(10), 1504; https://doi.org/10.3390/cancers11101504 - 8 Oct 2019
Cited by 44 | Viewed by 4678
Abstract
Tumor heterogeneity represents a possible cause of error in detecting predictive genetic alterations on tumor tissue and can be overcome by testing alterations in circulating tumor DNA (ctDNA) using liquid biopsy. We assessed 72 consecutive patients with a diagnosis of metastatic colorectal cancer [...] Read more.
Tumor heterogeneity represents a possible cause of error in detecting predictive genetic alterations on tumor tissue and can be overcome by testing alterations in circulating tumor DNA (ctDNA) using liquid biopsy. We assessed 72 consecutive patients with a diagnosis of metastatic colorectal cancer (mCRC) using Idylla™ Biocartis, a fully automated platform that evaluates the most frequent mutations of KRAS, NRAS and BRAF genes. We correlated the results of liquid biopsy and standard tissue-based next generation sequencing (NGS) analyses to patient clinical features. The overall agreement was 81.94%. Concordance was 85.71% and 96.15% in treatment-naïve patients and in the patient subgroup with liver metastases, respectively. In liver metastases positive, treatment-naïve patients, sensitivity, specificity and positive predictive value (PPV) were 92.31%, 100% and 100%, respectively. Circulating mutational fraction (CMF) was significantly higher in patients with liver metastases and high carcinoembryonic antigen (CEA) levels. In a subgroup of patients pre-treated with anti-Epidermal Growth Factor Receptor (EGFR) agents, emerging KRAS mutations were evidenced in 33% of cases. Testing RAS/BRAF mutations on plasma using the Idylla™ Biocartis platform is feasible and reliable in mCRC patients in clinical practice. Full article
Show Figures

Figure 1

Back to TopTop