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Abstract: Targeting EGFR alterations, particularly the L858R (Exon 21) mutation and Exon 19 deletion
(del19), has significantly improved the survival of lung cancer patients. From now on, the issue
is to shorten the time to treatment. Here, we challenge two well-known rapid strategies for EGFR
testing: the cartridge-based platform Idylla™ (Biocartis) and a digital droplet PCR (ddPCR) approach
(ID_Solution). To thoroughly investigate each testing performance, we selected a highly comprehen-
sive cohort of 39 unique del19 (in comparison, the cbioportal contains 40 unique del19), and 9 samples
bearing unique polymorphisms in exon 19. Additional L858R (N = 24), L861Q (N = 1), del19 (N = 63),
and WT samples (N = 34) were used to determine clear technical and biological cutoffs. A total of
122 DNA samples extracted from formaldehyde-fixed samples was used as input. No false positive
results were reported for either of the technologies, as long as careful droplet selection (ddPCR) was
ensured for two polymorphisms. ddPCR demonstrated higher sensitivity in detecting unique del19
(92.3%, 36/39) compared to Idylla (67.7%, 21/31). However, considering the prevalence of del19
and L858R in the lung cancer population, the adjusted theranostic values were similar (96.51% and
95.26%, respectively). ddPCR performs better for small specimens and low tumoral content, but in
other situations, Idylla is an alternative (especially if a molecular platform is absent).

Keywords: epidermal growth factor receptor; diagnosis; Idylla; ddPCR; method validation; lung
cancer; NSCLC; LUAD

1. Introduction

Lung cancer is the main cause of cancer-related deaths worldwide [1]. Non-small cell
lung cancer (NSCLC) constitutes the major histological subtype, accounting for 85% of cases
and encompassing lung adenocarcinoma (LUAD, 60%), squamous cell carcinoma (30%),
and large cell carcinoma (10%) [2]. The incidence of NSCLC has been rising since the 2000s,
as well as the proportion of never-smoker patients, whose tumors are frequently mutated
for EGFR [3,4]. The development of tissue sequencing methods has improved the molecular
characterization and therapeutic management of NSCLC patients through personalized
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treatment [5]. Indeed, epidermal growth factor receptor (EGFR) gene alterations are present
in 11 to 30% of NSCLC cases and result in constitutive activation of the receptor [6,7].
Approximately 85% of EGFR mutations occur either in exon 19, involving a deletion of 15
to 18 nucleotides (del19), or in exon 21, leading to the substitution of lysine at position 858
with arginine (L858R) or glutamine at position 861 (L861Q) [8]. These alterations cause
conformational changes in the EGFR’s ATP binding site, leading to abnormal activation
of downstream signaling pathways responsible for oncogenic addiction in tumor cells.
Tyrosine kinase inhibitors (TKIs), ATP competitive molecules targeting these pathological
conformations, have been developed. In metastatic stages, first-generation TKIs (erlotinib or
gefitinib) have significantly improved patient response and survival compared to standard
approaches using chemotherapy [9,10]. Third-generation TKIs, such as osimertinib, also
target the acquired resistance mutation EGFR T790M and have demonstrated a higher
efficacy [11,12]. Recently, the ADAURA trial showed that using osimertinib in adjuvant
settings, after surgery and adjuvant chemotherapy, improves overall survival compared to
a placebo approach [13]. Thus, the identification of EGFR-activating mutations on tumors
is crucial in clinical routine for initiating EGFR-TKI therapy. Next-generation sequencing
(NGS) is commonly used to test the EGFR mutational status on tumor samples, but it is
expensive and requires time and trained staff for both experimental procedures and result
interpretation. The delay in obtaining NGS results is another important limitation, as some
patients experience rapid tumor progression. Hence, a recent study involving a cohort of
96 patients revealed that 6% of patients died before obtaining NGS results, even though
they could have benefited from EGFR-TKIs [14]. Therefore, for such cases, the challenge is
the rapid detection of EGFR-activating mutations [15].

Various rapid approaches, such as qPCR with conventional platforms (Therascreen,
Qiagen, Cobas), the cartridge-based fully automated system Idylla, and absolute quan-
tification using droplet digital PCR (ddPCR), can accelerate the genotyping of EGFR. The
Idylla cartridge, composed of microfluidics and preloaded reagents, accepts either formalin-
fixed-paraffin-embedded tissue (FFPE) ribbon, extracted DNA, or biological fluids (such
as fine-needle aspiration liquid [16]), and carries out deparaffinization, DNA extraction,
and PCR amplification [15,17] to detect EGFR mutations in a quick timeframe (purely
technical time of 3 h versus 6.5 days for NGS) [18]. Moreover, the hands-on time can
be drastically reduced to 5 min, and results can be obtained within one day, when FFPE
sections or aspiration liquids are used directly [16], compared to other techniques (NGS,
4 h) [19]. A recent large-scale (221 patients) prospective bi-center study demonstrated a
time-to-genotyping result of 1.9 days for the Idylla system versus 14.2 days for the NGS
workflow (which encompasses DNA extraction) in real-life practice [20]. More importantly,
TKI treatment was initiated in 7.7 +/− 1.2 working days for Idylla versus 20.3 +/− 6.7
for NGS [20]. Droplet digital PCR (ddPCR) is an alternative rapid method using small
amounts of DNA with a higher sensitivity. This absolute quantification method partitions
fragmented DNA molecules into individual oil droplets, allowing individual PCR reactions
and droplet counting. Therefore, ddPCR droplet count closely reflects the composition
of the nucleic acid mixture and allows the detection of infinitesimal quantities of mu-
tated DNA. Hence, its sensitivity ranges from around 0.001% to 0.01%, while Idylla barely
reaches 0.2 to 1% [21–23], even if these results, obtained in the situation of native DNA
in sufficient quantity, are expected to differ with FFPE-extracted material producing high
background noise. In addition, the turnaround time of PCR-based methods is less than one
day longer than that of Idylla (real-life delay of 5.6 days versus 4.9 days in a large study on
780 colorectal cancer) [24].

Importantly, the establishment of sensitivity, linearity, limit of detection (LOD), or limit
of blank (LoB) has mostly been carried out using control DNA of high quality and quantity,
for both Idylla and ddPCR studies. In real-life situations, DNA is frequently extracted from
small parts of FFPE biopsies, resulting in poor DNA quality and quantity. In addition,
ddPCR and Idylla technologies have mainly been compared in the situation of hotspot
mutation detection (such as KRAS or BRAF alterations), based on allelic discrimination
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(competition between hydrolyzable probes complementary to either the mutated or the
unmutated sequence). However, a huge variety of exon 19 deletions/insertions exist
(40 described in the TCGA, Table S1), and drop-off probes have to be combined in the
same reaction to cover the maximal number of alterations. This situation is expected to
increase the risk of false negative (FN) results due to probe design and false positive (FP)
results due to polymorphisms. In addition, no exhaustive study of del19 subtypes has been
conducted yet.

We thus took advantage of a tumor sample collection comprising over 10,000 speci-
mens to select 39 unique deletions of the exon 19 and fully address the question of sensitivity
for del19 testing. Additionally, we challenged the specificity of both approaches by an-
alyzing nine different SNPs in exon 19. We chose to compare the performance of the
Idylla platform system with the ID-EGFR(b) SENSI-50-v3 kit (ID_Solution) for the ddPCR
technique, as both methods assess the EGFR theranostic alterations (del19 and L858R). The
present findings allow us to propose clear cutoff values for the clinical testing of actionable
EGFR alterations (L858R and del19) in real-life samples. Finally, we took into account
each mutation frequency among lung cancer patients to produce the adjusted theranostic
sensitivity of each test.

2. Results
2.1. Sample Inclusion

Since L858R and L861 point mutations are detected by a single probe, testing one sam-
ple of each is sufficient to validate the probe design. However DNA quality/quantity and
tumor content deeply impact sensitivity and specificity. We thus selected 24 samples with
L858R representative of different qualities (tumor content, sample size, fixative history. . .),
and one sample with L861Q. Due to the presence of several variants, the detection of del19
by drop-off approaches is much more challenging than point mutation detection. Hence,
we identified 40 unique del19 among the 534 samples positive for del19 from 22 studies
of The Cancer Genome Atlas Program (TCGA) on NSCLC (Table S1). We interrogated
our routine biological database, containing 625 samples bearing a del19, and identified
39 unique del19 with available material. Interestingly, 20 of these were not described in
the TCGA database (corresponding to rare variants). These 39 deletions are representative
of 95.1% of the del19 in the TCGA database alone, and of 93.4% of the joint cohort (local
plus TCGA, N = 1159; Table S1). Additional samples of various tumor cell content were
included to reach 63 specimens with del19. Last, to fully challenge the specificity, we
selected 10 samples with single nucleotide polymorphisms (SNP) in exon 19, in addition to
24 wild-type (WT) samples. In sum, 122 samples were included in this study, encompassing
a highly comprehensive spectrum of del19 and SNP.

A major confounding factor in comparative studies is the biological heterogeneity of
the samples, particularly in the case of FFPE samples. Different sections can be extracted at
different time points, and DNA degradation increases with longer storage time in FFPE.
Additionally, different extraction methods may be employed. Comparing FFPE ribbons
to extracted DNA from other sections of the same sample is unsatisfactory. To overcome
these biases, DNA was extracted from the same sections and partitioned between the
two techniques at a fixed ratio of one per five, corresponding to 10 ng for ddPCR and
50 ng for Idylla, as commonly recommended by the manufacturer’s instructions and
reference publication [25].

2.2. Limit of Blank (LoB), Positive Threshold, and Technical Validation Criteria

Considering ddPCR, we evaluated the background noise and quantified the FP
droplets using 34 WT FFPE-extracted DNA samples. The highest percentage of mutated
droplets (MDs) detected was 0.3% in both HEX (del19, L858R detection) and FAM (L861Q
detection) channels (Figure 1). Applying the rule of three times the noise, we established
the LoB at 1% of MDs. Based on our experience with ddPCR on FFPE samples, poor-quality
DNA can produce up to three positive MDs even with a total positive droplet (TPD) count
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below 400, which would exceed the 1% cutoff. Therefore, we defined a sample as positive
if it had at least five MDs and a variant allele frequency (VAF) above the LoB of 1%. Addi-
tionally, the minimal count of TPDs (which contains amplifiable material) recommended by
the manufacturer for technical validation is 200 (approximately equivalent to 100 cells). We
proposed to lower this threshold only for mutated samples. Among our samples identified
as mutated by NGS, twelve (n◦12, 22, 25, 28, 30, 31, 32, 47, 51, 57, 58, 63) demonstrated
less than 200 TPDs (ranging between 62 and 194), with VAF ranging from 20.2% to 76.9%
(with MDs > 4; see Table S2). Consequently, the technical validation threshold was set
at 200 TPDs for WT samples and 50 TPDs for mutated samples (Table 1). Notably, due
to our technical criteria, the limit of cellularity (LOC) is de facto set at 2% (1% of VAF)
for analyses with more than 400 TPDs, and it increases up to 16% for experiments with
50 TPDs (equivalent to 4 MDs for 50 TPDs). Thus, samples with infiltrated tumor cells and
low material quantity should be interpreted with caution, as outlined below.
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Figure 1. Limit of Blank (LoB) for ddPCR analysis. The variant allelic fraction (VAF) and the number
of mutated droplets were determined using 34 wild-type (including polymorphisms) samples after
performing ddPCR analyses. Boxplots representing mediane and quartiles (75%, 25%) are show,
outliers are depicted by circles The L861Q mutation is detected in the FAM channel and L858R
mutations or exon 19 deletions are detected in the HEX channel.

Table 1. Costs, Technical and biological cutoffs for clinical testing of FFPE samples.

ddPCR Idylla
Technical validation threshold ≥200 TPDs * Cqref ≤ 26
Limit of blank (LoB) 1% VAF ** and ≥5 MDs na
Limit of detection (LOD) 0.31 ng 5 ng
Limit of quantification (LOQ) 1.25 ng 25 ng

Limit of cellularity (LOC) 2%
(twice the LoB)

10%
(∆Cq unrelated to cellularity)

Recommended DNA input 10 ng
(up to 1 ng for high TC)

50 ng
(up to 10 ng for high TC)

Recommended TC input 10% 30%
L858R del19 L858R del19

Specificity (Spe) 100% 100% *** 100% 100%
Sensitivity (Se) 100% 92.3% 100% 67.7%
Adjusted sensitivity 100% 92.58% 100% 89.91%
Theranostic sensitivity 96.51% 95.26%
Total cost for 1 to 10 analysis €251 €150–€114

TC: tumor content; TPDs: total positive droplets; MDs: mutated droplets; VAF: variant allele frequency; * Up
to 50 in case of mutated sample; ** up to 8% in case of 50 TPDs; *** caution for p.747 and p.742 positions;
na: not available.
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Idylla does not provide specific criteria for considering a sample as mutated, such
as the detection of a Cq value for the mutated allele (Cqmt) or a threshold for the ∆Cq
(difference between the Cq values of the reference gene (Cqref) and the Cqmt). In these
conditions, it is not possible to analyze the limit of blank (LoB) or background noise. In
our experience, the highest value of ∆Cq in a mutated sample was 13.3, and the highest
Cqmut was 35. We tested and classified 62 known EGFR-mutated samples based on their
detected Cqref values. Interestingly, the three samples (n◦67, 51, and 63) with the highest
Cqref values (30.1, 27.6, and 27.3, respectively) were identified as WT by the Idylla software
(Version 4.3.0.380), despite being positive according to NGS analysis (Table S2). The TPDs
and the VAF determined by ddPCR were 4, 136, 84, and 75%, 61%, 20%, respectively.
Surprisingly, sample 67 showed only four positive droplets in ddPCR due to a limited
number of “amplifiable” DNA molecules, and it was not expected to reach a Cq value
enabling technical validation. Sample 51, which had the correct genotype according to
ddPCR with sufficient DNA quality and tumor cellularity, was likely not detectable by
Idylla and was considered a technical FN. Sample 63 (Cqref = 27.3), in which the mutation
was detected by Idylla in another sample with higher cellularity and DNA content, was
classified as an FN due to low DNA quantity (FNq), similar to sample 67. As samples with
Cqref values below 26 consistently demonstrated correct genotyping, we propose setting
the maximum value of Cqref to 26, provided that the tumor content is sufficient.

2.3. Material Limitations and Method Validation
2.3.1. DNA Quantity—Limit of Detection (LOD) and Limit of Quantification (LOQ)

The effect of decreasing DNA quantities (10 to 0.3 ng) of an L858R mutated sample
(n◦81) with low cellularity (estimated at approximately 20% based on histopathological
observation) was assessed by ddPCR. A linear correlation was observed between the TPD
count and the DNA quantity (Figure 2A), and the L858R mutation was detected in all
conditions, with a VAF of around 10% (as expected) when at least 1.25 ng of DNA was
present. However, when lower DNA quantities (0.63 ng and 0.31 ng) were loaded, the TPD
count was below 200, and the precision of the VAF decreased (4.8% and 7.9% of VAF). Based
on these results, we propose an LOD of 0.31 ng and an LOQ of 1.25 ng. In real-life samples,
the recommended DNA quantity for ddPCR assay (ID_Solution) is 10 ng, and among the
10 samples with detectable del19 alteration and lower amounts of DNA (ranging from
3.15 to 9.6 ng), 9 were correctly genotyped by ddPCR (Figure 2B). The remaining sample,
even though it exhibited three MDs (out of four TPDs), was classified as “not interpretable”
according to our diagnostic thresholds (low TPD count).

For Idylla testing, only two samples with del19 (n◦28 and 67) were analyzed using less
than 50 ng of DNA (22.89 ng and 40 ng, respectively; Figure 2B). The first sample returned
a positive result, while the second sample, with a Cqref value of 30.1, was classified as a
FNq (as discussed above). To further investigate the limits of quantification, we loaded
decreasing amounts of DNA (50 to 5 ng) from sample 81 (similarly to the ddPCR setup) and
observed—as expected—a logarithmic correlation between the Cqref and the DNA quantity
(Figure 2A). The mutation was still detected with 5 ng of DNA (Figure 2A), despite a Cqref
slightly above 26. The LOD was thus set at 5 ng. The ∆Cq parameter exhibited decreased
precision below 25 ng, leading us to set the LOQ at 25 ng.

In conclusion, both methods are quantitative when using the dilution range of the
same DNA sample. However, ddPCR is more than tenfold more sensitive, with an LOD
of 0.31 ng compared to 5 ng for Idylla. In real-life samples, we recommend a minimum
loading of 25 ng for Idylla and 1.25 ng for ddPCR, provided that there is sufficient cellularity
(above 20%).

2.3.2. Sample Tumor Content—Limit of Cellularity (LOC)

The estimation of tumor cellularity, evaluated by a pathologist, is an essential input
parameter that determines the technical choice and, ultimately, the interpretation of the
result. To avoid FN due to insufficient cellularity (FNc), it is necessary to determine the
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LOC. In order to do so, we selected 46 samples that were identified as mutated by both
Idylla and ddPCR and technically validated (≥200 TPD or Cqref ≤ 26). These samples were
classified based on histopathological estimated cellularity (<10%, 10–30%, 30–50%, and
50–80%). The ∆Cq determined by Idylla and the VAF determined by ddPCR were analyzed
(Figure 3A). As expected, the VAF increases with cellularity, which is in agreement with the
absolute quantification capacity of ddPCR. Thus, the LOC corresponds to twice the LoB set
at 1%.
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Figure 2. Limit of detection (LOD) and limit of quantification (LOQ). (A) Serial DNA dilutions
were made from the same DNA extract of an FFPE sample with 20% tumor content, bearing an L858R
alteration. These dilutions were analyzed using Idylla (ranging from 50 ng to 5 ng) and ddPCR
(ranging from 10 ng to 0.31 ng). Correlations were established between the DNA quantity and Cqref
or TPD, two parameters related to amplifiable DNA molecules. The raw data are shown on the right
(VAF: variant allelic fraction in percentage, TPD: total positive droplet count, Tum. Cont.: tumor
content in percentage, na: not available). (B) Analysis of tumoral samples with low DNA input and
del19 alteration. Thirteen samples below 10 ng were analyzed using ddPCR, while two samples
below 50 ng were analyzed using Idylla. Gradient of red in box represents samples with values
exceeding the established thresholds. Samples extracted after laser microdissection (µD) have a content
of tumoral cells > 50%. ni: not interpretable, FNq: false negative due to low DNA quantity. Samples
from the same patient are indicated in bold.

However, no correlation was observed for the Idylla technology. Even when con-
sidering the VAF determined by ddPCR rather than the estimated tumor content as the
gold standard (Figure S1). It is important to note that the reported Cqmut values are not
“real” but extrapolated from recalculated amplification curves, meaning that Cq values
can be unrelated to material cellularity and mutation allelic frequency. In this scenario, a
mathematical determination of the LOC cannot be made for Idylla testing. Therefore, we
tested another approach and focused on the cellularity of the 13 samples returned as FN
by Idylla (Figure 3B). For samples with histologically estimated tumor content below 30%,
three returned as negatives (samples 74, 18, and 4) with ddPCR-estimated VAFs of 0.3%,
4.4%, and 1%, respectively. These results were considered as FNc, and we thus propose a
cutoff of 5% (VAF), corresponding to the 10% cellularity recommended by Biocartis. The
LOC was thus set at 10%. As a consequence, samples with higher cellularity (above 30%)
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and Cqref ≥ 26 were considered as technical FN (not detectable by the technology). Indeed,
in these cases (sample numbers: 3, 8, 51, 56, 63, 67, 70, 71), the VAF estimated by ddPCR
ranged from 20% to 61%, indicating a cellularity over 40%.
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on the left). While a positive correlation is observed between VAF and tumor content determined
by ddPCR, no such correlation is visible for ∆Cq and tumor content detected by Idylla (right
panels). Distribution of samples is represented by point and the boxplot (median and standard
deviation). (B) False negative results were analyzed and classified as FNc (due to low cellularity),
FNq (due to low quantity), or FN due to technical failure to detect the mutations (FN). (Gradient
of red box represents samples with value exceeding our thresholds, VAF: variant allelic fraction in
percentage, TPD: total positive droplet count, Tum. Cont.: tumor content in percentage, µD: samples
which underwent laser microdissection to specifically select tumor cells).

In conclusion, we established an LOC of 2% and 10% for ddPCR and Idylla, respec-
tively, but without absolute confidence regarding Idylla. For routine use, we recommend a
minimum percentage of tumor cells established by a pathologist at 10% for ddPCR and
30% for Idylla (mandatory in the case of no detected mutation).

2.3.3. DNA Quality (Robustness)

Although we demonstrated the quantitativeness of both methods by using serial
dilutions of the same DNA (Figure 3A), we failed to establish any correlation between
the quantity of DNA loaded in each experiment and the Cqref obtained by Idylla or the
TPD count obtained in ddPCR, when using real-life samples (Figure S1). The quality of
DNA is an important parameter, particularly when working with FFPE samples. DNA
fragmentation caused by oxidative damage induced by fixatives during storage hinders
DNA amplification and affects quantification. To determine if the number of “amplifiable”
DNA molecules is equivalent in both techniques, we plotted the TPD count observed after
ddPCR analysis against the Cqref obtained with Idylla and found an excellent correlation
(R2 = 0.86; Figure S2). This indicates that the robustness of both technologies can be
considered equivalent.

2.4. Specificity

We analyzed 24 samples without variants in exon 19 and 21 of EGFR (Figure 4). As
expected, no mutations were detected by either technique. To evaluate the risk of FP
results, we examined 10 samples with 9 different SNPs located in exon 19 of the EGFR
(G729R, E734K, P741S, V742I, L747S, L747P, R748T, A755P, and D761Y). The Idylla assay
did not detect these SNPs, while ddPCR identified a signal for samples 41, 42, and 68
(corresponding to L747P, L747S, and V742I, respectively; Table S2). Interestingly, the
fluorescence signal for V742I was identified between the WT and L861Q channels, whereas
the signals for L747P/S appeared between the WT and the del19 /L858R channels. Based
on these distinct patterns, these SNPs could be identified and distinguished from the
classical activating mutations del19/L858R or L861Q. In conclusion, both assays showed
no FP results (N = 34) and achieved a specificity of 100%. However, the interpretation
and selection of positive droplets after ddPCR with the ID_Solution kit require vigilance
regarding the p.L747 and p.V742 positions.

2.5. Sensitivity and Adjusted Sensitivity—Spectra of del19 Detection

Hotspot mutations such as L858R and L861Q (N = 25) were identified with 100%
sensitivity by both methods, provided that DNA quality/quantity and cellularity thresholds
were respected. However, determining the sensitivity of del19 detection is touchier. We
used 39 FFPE samples, each containing different deletions identified by NGS or Sanger
sequencing (Figure 5). Sufficient material was available for both Idylla and ddPCR analyses
in 31 samples, while 8 additional samples were exclusively analyzed by ddPCR (requiring
only 1 to 10 ng).
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Figure 4. Specificity determination. Thirty-four samples, determined to be wild type (N = 24) or
bearing a polymorphism (SNP; N = 10) by NGS, were assessed using both testing strategies. Three
variants at positions p.747 and p.742 produced a signal in ddPCR, but they can be distinguished from
real mutated signals (see Figure S3). WT: wild type, SNP: Single nucleotide polymorphism, VAF:
variant allelic fraction in percentage, TPD: total positive droplet count, Tum. Cont.: tumor content in
percentage, µD: microdissected sample, FP: false positive. Gradient of red cases represents samples
with data exceeding the established thresholds for Idylla (Cqref > 26 and DNA < 50 ng) and ddPCR
(TPDs < 200, DNA < 5 ng, or VAF < 50%.

Regarding Idylla, 21 out of 31 (67.7%) del19 samples were correctly genotyped. Among
the 10 misdetected del19 samples (samples 3, 4, 7, 8, 17, 51, 56, 67, 70, 71), two had Cqref
values > 26 (samples 51, 67) and were classified as FNq. One sample was classified as
FNc (sample 4), and the remaining seven mutations (validated by NGS), were not listed in
the TCGA database and were considered as technical FN, as they were not predicted to
be covered by the Idylla PCR platform (c.2217_2234dup, c.2232_2248delinsTAAAATTC,
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c.2235_2241delinsAATTCCC, c.2236_2248delinsCTTC, c.2239_2260delinsCAAC, c.2248_
2276delinsCCGAA, c.2252_2276delinsA; Figure S4). Interestingly, among the 25 unde-
scribed del19 included in this study, Idylla was able to detect four unknown mutations de-
spite no specific probes (sample 14—c.2235_2253delinsAACC; sample 16—c.2236_2248delins-
CAAC; sample 27—c.2237_2251delinsTTG; sample 47—c.2239_2250delinsCCG).
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Figure 5. Sensitivity of del19 detection. Thirty-nine samples with a unique del19 alteration were
assessed using both techniques. The detection results “YES”, “NO”, “FN” (false negative), “na” (not
available), and ni (not informative) are summarized for each tested alteration, with those predicted to
be detected highlighted in green. The frequency of each alteration among all del19 detected in patients
from our cohort and the TCGA was calculated (VAF: variant allelic fraction in percentage, TPD: total
positive droplets, Tum. Cont.: tumor content in percentage, µD: microdissected samples, Adj. Freq:
adjusted frequency). Red cases represent samples with data exceeding the established thresholds for
Idylla (Cqref > 26 and DNA < 50 ng) and ddPCR (TPD < 200, DNA < 5 ng, or VAF < 50%). Adjusted
frequencies are highlighted following a color gradient (low frequencies in green and high frequencies
in red).
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In the case of ddPCR, 92.3% (36 out of 39) of the del19 samples were detected. Consid-
ering the three misdetected samples (3, 70, 71), all had sufficient TPDs and cellularity over
30% and were considered as technical FN. These samples were also misdetected by Idylla.
Sample 70 harbored a novel deletion/insertion, while samples 3 and 71 exhibited known
del19 deletions. When considering the common samples analyzed by both techniques,
the sensitivity of ddPCR was 90.3% (28 out of 31), compared to 67.7% for Idylla. Among
the identified deletions, 19 were not predicted to be detectable by the ID_Solution kit
(Figure S4), while the 20 predicted deletions were accurately retrieved. As VAF is a contin-
uous variable available for negative and positive samples (whereas ∆Cq was not available
for negative sample), the ROC curve was calculated with an AUC of 0.97 (Figure S5).

Given the significantly different prevalence of each del19 in lung cancer, it was crucial
to consider the adjusted sensitivity (Ad-Se) within the entire lung cancer population. Firstly,
we calculated the incidence of each deletion in the combined dataset (local + TCGA; Table
S1). The 39 (ddPCR) and 31 (Idylla) unique del19 analyzed represented 93.4% and 91.5%,
respectively, of all the del19 in the combined database. By cumulating the frequencies
of the detected deletions, we reported an Ad-Se of 92.58% for ddPCR and 89.91% for
Idylla for the detection of del19. Now, regarding the overall theranostic sensitivity, the
incidences of L858R/L861Q alterations and del19 in our cohort were found to be 7% and
6.2%, respectively. Considering a sensitivity of 100% for L858R/L861Q and 92.58% and
89.91% for del19, the adjusted theranostic values are 96.51% and 95.26% for ddPCR and
Idylla, respectively.

In summary, ddPCR demonstrated a broader range of del19 detection compared to the
Idylla assay (92.3% versus 67.7% sensitivity for unique del19). However, when considering
the entire NSCLC population, both the Ad-Se and, more importantly, the theranostic
sensitivity were equivalent.

3. Discussion

Precision medicine has become a standard practice, particularly in the case of lung
cancer. Due to the rapid progression of these tumors [14], the current challenge is to acceler-
ate molecular testing for patients with metastatic disease to rapidly initiate the appropriate
therapy. In this study, we compared the performance of the two most commonly used
rapid testing strategies: ddPCR and Idylla. The technical performances of ddPCR clearly
surpass those of Idylla: reliable quantification, lower DNA input requirement (1 ng versus
10 ng), lower LOC (2% versus 10%), lower LOD (0.31 ng compared to at least 10 ng), and a
much wider range of del19 detection (92.3% versus 67.7%). However, the Ad-Se and thera-
nostic values are equivalent to those of the Idylla platform (assuming sufficient cellularity
and DNA quantity). Idylla also benefits from the CE-IVD label and is implementable in
pathology departments by technicians without molecular biology training, requires less
technical handling, and is one day faster than ddPCR when using FFPE ribbons or sections
instead of extracted DNA. Nevertheless, Idylla is a low-throughput, non-quantitative, and
expensive technology [26], using much more biological material compared to ddPCR.

One of our objectives was to propose a reliable routine diagnostic algorithm based on
fixed thresholds and to highlight the technical limitations of these techniques. We chose
to compare the same material extracted from the same FFPE sections to ensure conclusive
comparisons. The first parameter to ensure is the analysis of a sufficient number of DNA
molecules to account for tumor heterogeneity and stromal cell contamination, especially in
cases with low tumor content. In the case of Idylla, we propose a Cqref threshold of 26 to
avoid the risk of FNq. Khalifa et al. reported 13 FN in a cohort of 65 pre-extracted DNA
samples from NSCLC, all with Cqref above 23. In particular, low DNA input (5 ng) resulted
in FN with Cqref above 26 [25]. The authors recommend reducing the threshold to 23, as
do Grant et al. [27], who also used pre-extracted DNA from FFPE. We suggest cautiously
validating WT results between Cqref 23 and 26 and considering results with Cq above 26 as
non-interpretable. For ddPCR, a threshold of 200 TPDs is recommended, corresponding
to 100 cells analyzed (assuming diploid cells). Based on our results, we propose lowering
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this threshold to 50 in the case of mutated samples. Considering a LoB of 0.9% and a
background noise of up to four MDs, we set the following combination: VAF > 1% and
MD > 4 as the positive cutoff. Other publications have reported similar LoBs of 0.4% [28]
and absolute counts of FP droplets ranging from 3 to 5 [29–31].

Regarding DNA quantity, based on the dilution range of a real-life sample with low
cellularity, we set the LOD at 5 ng and the LOQ at 25 ng for Idylla testing. De Luca et al.
achieved excellent sensitivity using 10 ng of pre-extracted DNA (N = 32), although they
manually recalculated the ∆Cq value provided by the Idylla platform [32]. Grant et al.
demonstrated that analytical sensitivity remains stable from 100% to 98.46% but drops to
90.77% when DNA input decreases from 250 ng to 50 ng and 20 ng [27]. Khalifa et al. also
reported a sensitivity drop from 88.6% to 47.4% when using more or less than 50 ng [25].
Based on these findings, we recommend using 50 ng as input and not interpreting results
with less than 10 ng (assuming tumor content is above 30%). Moving on to ddPCR, we
report an LOD of 0.32 ng and an LOQ of 1 ng. Previous studies have established an LOD
of 0.1 ng and an LOQ of 0.33 ng using DNA of good quality (cell line extract) [33]. When
using FFPE-extracted controls, the use of 15 ng is recommended to detect mutations at
a VAF of 1% [29]. Overall, we recommend an input range of 1 to 10 ng for ddPCR, but
without any strict restrictions as long as technical cutoffs (TPD and VAF) are validated.

Additionally, the more DNA molecules are analyzed, the lower the tumor content can
be. Therefore, thresholds should be set in relation to the LOC. While we demonstrated
a clear correlation between histologically determined cellularity and VAF determined by
ddPCR, we failed to establish any correlation with the ∆Cq determined by Idylla, which is
supposed to reflect tumor content. The LOC was de facto set at 2% for ddPCR as it aligned
with the LoB of 1% (three times the background noise of 0.3%). This cutoff was confirmed
using real-life samples with low cellularity. In line with this, Williamson et al. investigated
VAF from 10% to 0.01% using 250 to 15.6 ng of DNA for each tested VAF and found that the
LOC increases from 0.01% to 1% when using 250 ng or 15.6 ng as input [29]. This confirms
our cutoff of 1% for loading 10 ng of DNA.

Furthermore, we determined an LOC for Idylla by analyzing the tumor content in
FN results. Based on this analysis, we established a cutoff of at least 10% tumor content,
as recommended by Idylla and Bocciarelli et al. [34]. Other publications focused on FFPE
sections have reported lower detection thresholds, ranging between 1% and 5% VAF [35–37],
but with Cqref values ranging from 20 to 23 [36]. Notably, larger multicenter studies have
set input criteria of 10% [38], 20% [25], and even 30% [39] tumor content for Idylla. This
variation may reflect differences in tumor content determination among pathologists, which
becomes particularly relevant in cases of low cellularity and when studies are conducted
prospectively across multiple centers. For routine use, we recommend input criteria of
30% tumor content for Idylla and 10% tumor content for ddPCR. Results should not be
validated below 10% tumor content for Idylla and 2% tumor content for ddPCR, and WT
results between these values should be interpreted cautiously. In a large-scale prospective
study, the inclusion criteria based on cellularity (20%) and quantity (50 ng) resulted in the
immediate invalidation of 16.3% of samples, with 11 out of 29 cytology samples being
ineligible [25]. Other studies on cytological specimens reported positive detection but
with high DNA content (Cqref > 23) and highlighted the importance of manual analysis
of Cq curves [36,40]. Therefore, it is expected that a significant portion of tests conducted
on samples with limited tumor material (such as biopsies or cytological specimens) will
yield non-informative results with Idylla. More specifically, negative results should be
interpreted with caution in this context.

In addition to cytologically determined tumor content, another crucial input criterion
that can vary is DNA quantification. While we observed a linear correlation between DNA
input and Cqref or TPD on a dilution range from the same FFPE-extracted DNA, indicating
the quantitative potential of both technologies, the DNA quantity did not correlate with
the actual number of amplifiable DNA molecules (TPD and Cqref). This is likely due
to variations in fresh sample preparation, fixation, and subsequent DNA fragmentation.
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Khalifa et al. observed a tendency for an inverse correlation (R2 not provided) between
DNA concentration and Cqref using the Idylla system, possibly because they had a much
larger range of concentrations (N = 577) [25]. Most interestingly, we report a clear correlation
(R2 = 0.86) between Cqref and TPD, demonstrating that both parameters reflect the actual
content of “amplifiable” DNA molecules.

Regarding the lack of informativeness of the ∆Cq parameter, we also failed to observe
any correlation between the VAF determined by ddPCR and ∆Cq, similar to what has been
reported for the EGFR T790M mutation [41]. However, another laboratory investigating
KRAS testing from ctDNA analysis reported a correlation [42]. The quality of DNA used as
input may be a factor in this discrepancy, as FFPE-extracted DNA is of poor quality, and the
recalculation method used by the Idylla system may amplify variations due to degraded
DNA. Precise quantification of VAF is not mandatory in the context of EGFR mutant lung
adenocarcinoma, as these mutations are commonly driver mutations and not subclonal.
However, it may be important for other applications, such as monitoring patient response
to therapy using ctDNA [42].

Now, considering specificity, most studies conducted on FFPE or pre-extracted DNA
in NSCLC, have reported no FP results for Idylla. Most interestingly, to our knowledge,
this is the first study to investigate the impact of SNPs on exon 19. We believe this is a
significant consideration for diagnosis, especially when using drop-off probes, as SNP
presence can destabilize hybridization and potentially lead to FP results. We investigated
nine unique SNPs in exon 19 and demonstrated no FP for Idylla, while ddPCR detected
two positions (p.L747 and p.V742). Although the generated droplets can be differentiated
from the pathogenic ones, caution is necessary to avoid misinterpretation. If careful droplet
selection is ensured, both techniques achieve 100% specificity.

No L858R mutations were misdetected, with both testing methods achieving 100%
sensitivity for this point mutation detection. Most studies on point mutation detection in
NSCLC primarily focus on the resistance mutation T790M. Lee et al. reported 5 out of 19 FN
(with cellularity below 5%) and a sensitivity of 74% for Idylla, while ddPCR achieved 100%
sensitivity [41]. Other publications have also reported a similar poor sensitivity for T790M
detection, with five and nine missed patients in different studies [15,43]. Furthermore,
when screening 39 unique del19 mutations, we found herein 10 FN, 7 of them attributed to
probe design issues, resulting in a technical sensitivity of 67.7% for Idylla. In a prospective
bi-center study, 13 out of 54 (non-unique) del19 mutations were misdetected, resulting in
an overall analytical sensitivity of 75.9%, which is consistent with the present findings [25].
In real-life scenarios, after normalizing for the incidence of each del19, we report herein an
Ad-Se of 89.91%. The discrepancy between theoretical and real-life values is due to FNq,
FNc, and LOQ, without considering design failures. In comparison, ddPCR testing design
performs much better, with 92.3 (36/39) unique del19 mutations detected, resulting in a
92.58% Ad-Se. We also identified 4 and 15 new mutations not predicted to be detected
by Idylla and ddPCR, respectively (Figure S4). However, considering the frequency of
theranostic mutations in NSCLC, the adjusted theranostic values of the assays are very
similar, with 96.51% and 95.26% for ddPCR and Idylla testing, respectively.

Lastly, in terms of cost, a previous study has identified a cutoff of 110 samples per
year favoring ddPCR over Idylla and other rapid techniques such as BEAMing and COBAS
z48026 [26]. This corresponds to two samples per week, indicating that Idylla is suitable
for urgent situations, but not for routine EGFR testing. In our assessment, we found that
the cost of Idylla was approximately twice that of ddPCR when starting from extracted
DNA (see Table 1 and material and method section). On the other hand, ddPCR can
accommodate low quantities of DNA and even lower cellularity compared to NGS, making
it well-suited for routine conditions for biopsy or cytology samples. Still, both techniques
should be followed by a more comprehensive NGS analysis to detect rare or novel mutation
variants associated with the risk of FN, as well as other targetable alterations in different
genes. Additionally, the mechanisms of resistance observed in patients are complex and
heterogeneous, necessitating large-scale genomic investigations [44].
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4. Materials and Methods
4.1. Samples

Human biological samples were obtained from the Tissus-Tumorothèque Est Biobank
(CRB-HCL Hospices Civils de Lyon BB-0033-00046), authorized by the French Ministry
of Research. The protocol was approved by the Ethics Committee of the HCL (June
2019, identification number: 2018-A00680-55) and the French data protection commission
(CNIL, authorization 919361). Molecular results are issued from routine clinical testing of
10,380 NSCLC tissues between 2011 and 2018. We included 63 samples among the 625 with
del19, corresponding to 39 unique deletions; 24 samples with L858R, and one sample with
L861Q. Additionally, 34 wild-type samples were included as controls. From 2009 to March
2016, mutation status was determined by Sanger sequencing of exons 18-19-20 and 21,
and after March 2016 by next-generation sequencing (NGS) with a custom amplicon panel
(BED of 22 kb, covering EGFR exons 2-7-9-18-19-20 and 21) on Ion Personal Genome Ma-
chine (PGM Ion Torrent, ThermoFisher Scientific, Waltham, MA, USA). The bioinformatic
analysis was carried out on ionreporter. The diagnoses of NSCLC were established by a
pathologist according to the World Health Organization Classification of 2015. Histological
tissue samples were fixed in 10% neutral buffered formalin (4% formaldehyde) following
standard guidelines for immunohistochemical testing. The sample cellularity was blindly
determined on hematoxylin and eosin-stained sections by two expert pathologists before
DNA extraction.

4.2. DNA Extraction and Mutation Analysis

Serial sections were used for DNA extraction. The Maxwell® RSC RNA FFPE Kit
(AS1440, Promega, Charbonnières-les-Bains, France) was used (without DNAse) to obtain
total nucleic acid (TNA). The FFPE samples were deparaffinized and scraped or microdis-
sected with a laser (Leica DM6000B, Leica, Solms, Germany) to specifically select areas
enriched in tumor cells (2 tubes containing about 500,000 µm2 of tumor cells each). Consid-
ering microdissection, tumor content is expected to be superior to 50%. DNA extraction
tubes with scrapped or microdissected samples were prepared following the manufac-
turer’s instructions and were incubated with Proteinase K overnight at 56 ◦C. Subsequently,
the extracted DNA was quantified using the QuantiFluor(R) ONE dsDNA System (E4871;
Promega) according to the manufacturer’s instructions. A quantity of 10 nanograms and
50 nanograms were used for ddPCR and Idylla assays, respectively. In cases of insufficient
material, the DNA was split while maintaining the same proportions (1 part to 5 for ddPCR
and Idylla, respectively) to ensure comparable assay conditions.

To run Idylla assays, 50 ng of extracted DNA was directly loaded into the Idylla EGFR
Mutation test (A0060) cartridge. Quantitative PCRs were run on the Idylla platform, output
data were provided by the Idylla embedded software (version 4.3.0.380); the quantification
cycle value of a reference gene Cqref and when mutated, the ∆Cq value (Cq of the mutated
amplicon Cqmut gene minus Cqref), the technical validation, and the genotype. No manual
analysis was undertaken.

The detection of EGFR hotspot mutations (del19, L858R, L861Q) by digital PCR was
performed using the multiplex digital PCR kit EGFR-50Sensi-V3 (ID-Solutions), following
the manufacturer’s instructions. Probes with HEX reporter fluorophore were used to
amplify del19 and L858R, and while the L861Q mutation could be detected in the FAM
channel, the intermediate channel was dedicated to wild-type allele. Selection of droplets
for genotype assessment was undertaken by overlaying all the results of one experiment
(>10 samples), containing at least one positive control, so that selection can be considered
as blinded (even if the genotype was known). Digital droplets were generated using the
QX200 AutoDG Droplet Digital PCR System (Biorad). PCR amplifications were run in a
standard thermal cycler, and the fluorescent positive and negative droplets were counted
using the QX200 Droplet Reader and analyzed with the Quantasoft Analysis Pro software
(version v1.0.596, Biorad, Marnes-la-Coquette, France). All the experiments were carried
out on the Biogenet Est platform LBMMS CBE (HCL).
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4.3. In Silico Analysis

Data from the TCGA database were extracted through the cBioportal portal. Pa-
tients with NSCLC or LUAD were selected from the 22 available studies (luad_broad,
luad_cptac_2020, luad_msk_npjpo_2021, luad_mskcc_2015, luad_mskcc_2020, luad_
mskimpact_2021, luad_oncosg_2020, luad_tcga, luad_tcga_pan_can_atlas_2018, luad_tcga_
pub, luad_tsp, lung_msk_2017, lusc_cptac_2021, lusc_tcga, lusc_tcga_pan_can_atlas_2018,
lusc_tcga_pub, nsclc_mskcc_2015, nsclc_mskcc_2018, nsclc_pd1_msk_2018, nsclc_tcga_
broad_2016, nsclc_tracerx_2017, nsclc_unito_2016). Among these data, samples with in-
frame del19 mutations were selected, and duplicate samples were removed to obtain the
total panel of described del19 mutations in the TCGA database (N = 534, encompass-
ing 40 unique del19). Finally, the frequency of each deletion fi was calculated as follows:
fi = ni/N, where ni is the number of samples bearing the unique (i) del19 among the
database, and N is the total number of samples bearing a del19 in the database. Calcula-
tions were made for the TCGA dataset (N = 534) and for the common dataset encompassing
our local database (N = 1159). The adjusted sensitivity (Ad-Se) was calculated by adding the
frequency (∑fi) of each unique del19 detected among the compiled dataset (or among the
TCGA cohort alone). The global theranostic sensitivity was calculated as follows: Th.Se. =
Ad-Sedel19 × Prevdel19 + SeL858R × PrevL858R + SeL861Q × PrevL861Q)/(Prevdel19 + PrevL858R
+ PrevL861Q), where Prev stands for prevalence in the lung cancer population.

4.4. Graphs and Statistics

Graphs and charts were carried out using Excel 2016 Microsoft Office™ and R 4.1.0
(R Core Team, 2021), R: A language and environment for statistical computing, the ROC
curve was obtained using the ROCR package. The sensitivity was calculated as follows:
Se = P/TP, representing the number of samples detected as mutated (P) among the true
positive samples (determined by NGS/Sanger). The specificity was calculated as follows:
Spe = N/TN, meaning the number of samples detected as unmutated among the true
negative samples (determined by NGS/Sanger).

4.5. Cost and Hands-On Time

A cost analysis was conducted for both single-patient and multi-patient scenarios,
considering the expenses associated with hands-on time and reagent kit costs. Notably, this
calculation excludes the costs of consumable materials not included in the kit, equipment
procurement, and maintenance. The hourly rate for technical labor was set at EUR 41/h,
while biological interpretation was valued at EUR 97/h, following French regulations. For
the Idylla system, the estimated technical time required was 10 min, encompassing DNA
deposition and cartridge preparation, as well as the initiation of the analysis on the Idylla
instrument. Biological interpretation took an additional 15 min for visualization and curve
validation. The cartridge cost EUR 220. For ddPCR, the total cost was determined based
on 1.4 h of hands-on technical work, which included PCR mix preparation and droplet
generation (45 min), droplet reading (20 min), and droplet selection for genotyping using
Quantasoft Analysis Pro software (20 min). Additionally, 20 min of pathologist time was
considered, and reagent costs ranged from EUR 60 to EUR 24 for 1 to 10 simultaneous
analyses (regardless of the number of samples, both negative and positive controls were
required for each run). Importantly, the ddPCR experiment allowed for the management of
several samples within 5 h of hands-on time, whereas the Idylla device could process only
one sample in 3 h.

5. Conclusions

In conclusion, both technologies are valuable in urgent or pre-screening scenarios,
serving as a preliminary step before undergoing a full NGS screening. We propose herein a
diagnostic algorithm to ensure secure testing. Provided that the proposed thresholds are
applied, both technologies offer comparable theranostic value. Idylla technology should be
restricted to pathology departments without access to molecular platform facilities, while
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ddPCR, which can accommodate low quantities and cellularity, presents a more reliable
and flexible alternative for rapid testing.
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