Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = IPRS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1763 KB  
Article
Nucleophilic Addition of Stabilized Phosphorus Ylides to Closo-Decaborate Nitrilium Salts: A Synthetic Route to Boron Cluster-Functionalized Iminoacyl Phosphoranes and Their Application in Potentiometric Sensing
by Vera V. Voinova, Eugeniy S. Turyshev, Sergey S. Novikov, Nikita A. Selivanov, Alexander Yu. Bykov, Ilya N. Klyukin, Andrey P. Zhdanov, Mikhail S. Grigoriev, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Molecules 2026, 31(2), 231; https://doi.org/10.3390/molecules31020231 - 9 Jan 2026
Viewed by 11
Abstract
This work explores a novel and efficient synthetic approach to a new class of boron cluster derivatives via the nucleophilic addition of stabilized phosphorus ylides, Ph3P=CHR2 (R2 = COOEt, CN), to a series of nitrilium salts of the closo [...] Read more.
This work explores a novel and efficient synthetic approach to a new class of boron cluster derivatives via the nucleophilic addition of stabilized phosphorus ylides, Ph3P=CHR2 (R2 = COOEt, CN), to a series of nitrilium salts of the closo-decaborate anion, [2-B10H9NCR1] (R1 = Me, Et, nPr, iPr, Ph). The reaction proceeds regio- and stereospecifically, affording a diverse range of iminoacyl phosphorane derivatives, [2-B10H9NH=C(R1)C(PPh3)R2], in high isolated yields (up to 95%). The obtained compounds (10 examples) were isolated as tetrabutylammonium or tetraphenylphosphonium salts and thoroughly characterized by multinuclear NMR (11B, 1H, 13C, 31P), high-resolution mass spectrometry, and single-crystal X-ray diffraction. The reaction feasibility was found to be strongly influenced by the steric hindrance of the R1 group. Furthermore, the practical utility of these novel hybrids was demonstrated by employing the [2-B10H9NH=C(CH3)C(COOC2H5)=PPh3] anion as a highly effective membrane-active component in ion-selective electrodes. The developed tetraphenylphosphonium (TPP+) sensor exhibited a near-Nernstian response, a low detection limit of 3 × 10−8 M, and excellent selectivity over a range of common inorganic and organic cations, showcasing the potential of closo-borate-based ionophores in analytical chemistry. Full article
Show Figures

Figure 1

27 pages, 3362 KB  
Review
Resonant Convergence: An Integrative Model for Electromagnetic Interactions in Biological Systems
by Alessandro Greco
Int. J. Mol. Sci. 2026, 27(1), 423; https://doi.org/10.3390/ijms27010423 - 31 Dec 2025
Viewed by 276
Abstract
Over the past 50 years, scientific interest in electromagnetic field-biology interactions has flourished. Important experimental observations and mathematical hypotheses remain central to academic debate. Adey and Blackman found that specific electromagnetic frequencies affect calcium transport in cells. To explain this phenomenon, Liboff introduced [...] Read more.
Over the past 50 years, scientific interest in electromagnetic field-biology interactions has flourished. Important experimental observations and mathematical hypotheses remain central to academic debate. Adey and Blackman found that specific electromagnetic frequencies affect calcium transport in cells. To explain this phenomenon, Liboff introduced ion cyclotron resonance-like (ICR-like) theory, proposing a specific mechanism for ion modulation. Preparata and Del Giudice introduced quantum electrodynamics (QED), offering controversial quantum-level explanations that complement classical models. Lucia and NASA contributed further with thermomagnetic resonance and experimental observations. Together, these hypotheses have partially clarified how weak electromagnetic fields interact with cells and suggest possible parallel endogenous mechanisms. The aim of this narrative review is to provide a clear and logical framework for understanding biological events, both those that arise naturally within biology and those that can be initiated externally through the application of electromagnetic fields. As electromagnetism constitutes one of the four fundamental forces, this interaction warrants rigorous scientific scrutiny. Full article
(This article belongs to the Special Issue Electromagnetic Field Interactions with Biomolecules)
Show Figures

Figure 1

9 pages, 1603 KB  
Case Report
Coexistence of Alport Syndrome and Fabry Disease in a Female with R112H Variant: Early Progression of Fabry Nephropathy
by Amedeo Grimaldi, Alessandra Auletta, Francesca Ciurli, Valeria Aiello, Gisella Vischini, Benedetta Fabbrizio, Francesca Becherucci, Gianandrea Pasquinelli, Gaetano La Manna, Irene Capelli and Renzo Mignani
Int. J. Mol. Sci. 2026, 27(1), 269; https://doi.org/10.3390/ijms27010269 - 26 Dec 2025
Viewed by 155
Abstract
Fabry disease (FD) is an X-linked lysosomal disorder caused by GLA mutations, typically associated with glycosphingolipid accumulation and a wide phenotypic spectrum. The p.R112H variant is generally linked to a non-classic predominantly renal phenotype with mild biochemical abnormalities and slow progression. We report [...] Read more.
Fabry disease (FD) is an X-linked lysosomal disorder caused by GLA mutations, typically associated with glycosphingolipid accumulation and a wide phenotypic spectrum. The p.R112H variant is generally linked to a non-classic predominantly renal phenotype with mild biochemical abnormalities and slow progression. We report the case of a young woman carrying the R112H mutation who exhibited early-onset kidney involvement and unusually rapid progression to end-stage renal disease. Clinical history, serial evaluations, and kidney biopsy findings initially supported a diagnosis of Fabry nephropathy; however, re-evaluation of the native kidney biopsy revealed marked remodeling and multilamellation of the glomerular basement membrane, suggesting Alport-like lesions. Subsequent genetic testing confirmed a heterozygous pathogenic COL4A4 variant (G912R), indicating coexistence of Fabry disease and autosomal dominant Alport syndrome. This dual genetic condition likely accounted for the accelerated decline in kidney function, in contrast with the typically mild phenotype associated with R112H. Our literature review indicates that coexistence of these two inherited nephropathies has not previously been confirmed either histologically or genetically. This case underscores the importance of integrating genetic and ultrastructural assessment in patients with atypical or rapidly progressive renal disease Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

21 pages, 20406 KB  
Article
Genome-Wide Identification and Expression Analysis of the SUC Gene Family in Peanut (Arachis hypogaea L.) Reveals Its Role in Seed Sucrose Accumulation
by Zongqin Feng, Qinqin He, Yixiong Zheng, Yu Zhang, Xiaolin Chen, Jiping Liu and Xinmin Huang
Curr. Issues Mol. Biol. 2026, 48(1), 29; https://doi.org/10.3390/cimb48010029 - 25 Dec 2025
Viewed by 250
Abstract
Sucrose is a key quality trait in peanuts, yet high-sucrose varieties are scarce. Although sucrose transporters (SUT/SUC) play crucial roles in sucrose transport and accumulation during seed development, systematic analyses in peanuts are limited. This study conducted a genome-wide analysis of the SUC [...] Read more.
Sucrose is a key quality trait in peanuts, yet high-sucrose varieties are scarce. Although sucrose transporters (SUT/SUC) play crucial roles in sucrose transport and accumulation during seed development, systematic analyses in peanuts are limited. This study conducted a genome-wide analysis of the SUC gene family in cultivated peanut (Arachis hypogaea L.). Sixteen AhSUC genes were identified and characterized for genomic distribution, phylogeny, and expression across tissues and developmental stages. The genes are unevenly distributed across the genome with clustered chromosomal localization. All AhSUC proteins contain the conserved sucrose/proton co-transporter domain (IPR005989), exhibit the typical 12 transmembrane α-helical structure of the major facilitator superfamily, are hydrophobic, and predicted to localize to the membrane. Promoter analysis revealed cis-regulatory elements associated with growth, development, light, hormone, and stress responses. Expression profiling showed tissue-specific patterns, with eight AhSUC genes being highly expressed in cotyledons and embryos. Comparative analysis between high-sugar and conventional varieties showed higher expression of AhSUC2, AhSUC9, and AhSUC11 in the high-sugar variety, correlating with increased sucrose accumulation. Functional validation using a sucrose transport-deficient yeast mutant confirmed the sucrose transport activity of these genes. These findings provide insight into sucrose accumulation mechanisms and offer genetic targets for breeding high-sugar peanut varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 5167 KB  
Article
Comprehensive Multimodal and Multiscale Analysis of Alzheimer’s Disease in 5xFAD Mice: Optical Spectroscopies, TEM, Neuropathological, and Behavioral Investigations
by Dhruvil Solanki, Ishmael Apachigawo, Sazzad Khan, Santanu Maity, Fatemah Alharthi, Samia Nasim, Fnu Sweety, Mohammad Alizadeh Poshtiri, Jianfeng Xiao, Mohammad Moshahid Khan and Prabhakar Pradhan
Int. J. Mol. Sci. 2026, 27(1), 198; https://doi.org/10.3390/ijms27010198 - 24 Dec 2025
Viewed by 283
Abstract
Alzheimer’s disease (AD) is considered one of the leading causes of death in the United States, and there is no effective cure for it. Understanding the neuropathological mechanisms underlying AD is essential for identifying early, reliable biomarkers and developing effective therapies. In this [...] Read more.
Alzheimer’s disease (AD) is considered one of the leading causes of death in the United States, and there is no effective cure for it. Understanding the neuropathological mechanisms underlying AD is essential for identifying early, reliable biomarkers and developing effective therapies. In this paper, we report on a comprehensive multimodal study of AD pathology using the 5xFAD mouse model. We employed light-scattering techniques, Partial Wave Spectroscopy (PWS) and Inverse Participation Ratio (IPR), to detect nanoscale structural alterations in brain tissues, nuclear components, and mitochondria. To support the light-scattering experiments, behavior, and histopathological studies were conducted. These analyses revealed significant increases in structural heterogeneity and mass density fluctuations in the brains of 5xFAD mice compared with Non-transgenic controls. Behavioral assessment performed using the Novel Object Recognition test demonstrated memory impairment in 5xFAD mice, reflected by a reduced recognition index. Histopathological analysis further revealed increased amyloid beta plaques and microglia activation in the hippocampus and cortex of 5xFAD mice compared with Non-transgenic controls. An increase in structural disorder within brain tissues can be attributed to higher mass density fluctuations, likely arising from macromolecular rearrangement driven by amyloid beta aggregation and neuroinflammatory responses as the disease progresses. Our findings suggest that PWS and IPR-derived metrics provide sensitive biophysical indicators of early cellular and subcellular disruption, offering potential as quantitative biomarkers for the detection of AD. Full article
(This article belongs to the Special Issue Advanced Research in Nanophotonics and Biophotonics)
Show Figures

Figure 1

19 pages, 5147 KB  
Article
Triple-Passive Harmonic Suppression Method for Delta-Connected Rectifier to Reduce the Harmonic Content on the Grid Side
by Shuang Rong, Xueting Lei, Fangang Meng, Bowen Gu, Zexin Mu, Jiapeng Cui, Kailai Ye, Shengren Yong, Pengju Zhang and Jianan Guan
Appl. Sci. 2025, 15(24), 13282; https://doi.org/10.3390/app152413282 - 18 Dec 2025
Viewed by 192
Abstract
With the development of distributed energy sources such as photovoltaic and wind power, power grids have imposed increasingly higher requirements on power quality. As common nonlinear loads in power grids, multi-pulse rectifiers (MPRs) inject significant harmonics into the grid side. To reduce harmonic [...] Read more.
With the development of distributed energy sources such as photovoltaic and wind power, power grids have imposed increasingly higher requirements on power quality. As common nonlinear loads in power grids, multi-pulse rectifiers (MPRs) inject significant harmonics into the grid side. To reduce harmonic pollution at the source, this paper proposes a novel triple-passive harmonic suppression method to reduce the input current harmonics of MPRs. The proposed 48-pulse rectifier comprises a main circuit based on delta-connected auto-transformer (DCT) and a triple-passive harmonic suppression circuit (TPHSC). The TPHSC consists of two interphase reactors (IPRs) and eight diodes. Based on Kirchhoff’s Current Law (KCL), the output currents of the main circuit are calculated, and the operating modes of the TPHSC are analyzed. From the main circuit’s output currents and the DCT topology, the rectifier’s input currents are derived, and the optimal turns ratio of the IPRs for minimizing the input current total harmonic distortion (THD) is determined. The total capacity of the IPRs accounts for only 2.3% of the output load power. Experimental results show that the measured input current THD is close to the theoretical value of 3.8%. Overall, the proposed rectifier offers a cost-effective solution with stronger harmonic suppression capability, making it suitable for applications requiring low grid harmonic pollution. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

8 pages, 1182 KB  
Short Note
Trichloro[2,5-bis[N-(4-isopropylphenyl)-P,P-diisopropylphosphorimidoyl-κN]pyrrole-κN]zirconium(IV)·Benzene
by Thamara V. Salazar-Barrientos, Christopher P. Forfar and Paul G. Hayes
Molbank 2025, 2025(4), M2090; https://doi.org/10.3390/M2090 - 14 Nov 2025
Viewed by 414
Abstract
A new zirconium trichloride complex, supported by a monoanionic, pyrrole-based bisphosphinimine NNN-pincer ligand, [LZrCl3] (L = 2,5-[iPr2P=N(4-iPrC6H4)]2NH(C6H2) (1), is reported. Comparison with [...] Read more.
A new zirconium trichloride complex, supported by a monoanionic, pyrrole-based bisphosphinimine NNN-pincer ligand, [LZrCl3] (L = 2,5-[iPr2P=N(4-iPrC6H4)]2NH(C6H2) (1), is reported. Comparison with a related iminopincer complex reveals significant differences in bond lengths and angles between the atoms around the metal centre, largely due to the more electron donating phosphinimine (R3P=NR (R = alkyl, aryl)) functionality. The P=N bonds in complex (1•benzene) are longer than in the proteo ligand HL (L = 2,5-[Ph2P=N(4-iPrC6H4)]2NH(C6H2)), which is consistent with phosphinimine coordination to a metal. This is the only reported zirconium complex with this specific ligand scaffold; no analogous complexes have been reported for other group 4 metals. This structure expands the library of Zr pincer complexes that bear tridentate ligand frameworks and sets the stage for the preparation of related complexes. Full article
Show Figures

Graphical abstract

19 pages, 1896 KB  
Review
Beyond Pathogenesis: The Nematode Immune Network as the Arbiter of a Host–Virus Truce
by Emma Xi, Tan Meng and Hanqiao Chen
Viruses 2025, 17(11), 1485; https://doi.org/10.3390/v17111485 - 8 Nov 2025
Viewed by 678
Abstract
The phylum Nematoda is host to a vast and diverse virosphere, yet severe viral diseases are rarely observed. This paradox between pervasive infection and limited pathology suggests the existence of a highly effective host–virus “truce”. In this review, we argue that this truce [...] Read more.
The phylum Nematoda is host to a vast and diverse virosphere, yet severe viral diseases are rarely observed. This paradox between pervasive infection and limited pathology suggests the existence of a highly effective host–virus “truce”. In this review, we argue that this truce is not a result of viral attenuation but is actively arbitrated by a multi-tiered host immune network, whose primary characteristic is not destructive power but exquisite cost–benefit management. We deconstruct this network into two functional tiers. The first, the “effector layer”, comprises a diverse arsenal of antiviral pathways, including RNA interference (RNAi), the Intracellular Pathogen Response (IPR), and other direct-acting mechanisms. The second, the “regulatory layer”, acts as a command hub, integrating internal physiological states—such as metabolism and aging—with external threat signals to orchestrate a proportional defense, thereby mitigating the high fitness costs of immunity. Understanding this intricate network is critical, as it not only explains the dynamics of infection within nematodes but also has profound implications for a broader medical landscape, particularly through the “Trojan Horse” effect, where nematode-borne viruses might elicit immune responses in their final vertebrate hosts. Together, these insights provide a unified framework for studying nematode–virus interactions and for comparing antiviral strategies across metazoans. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

11 pages, 4431 KB  
Brief Report
A Note on Computational Characterization of Dy@C82: Dopant for Solar Cells
by Zdeněk Slanina, Filip Uhlík, Takeshi Akasaka, Xing Lu and Ludwik Adamowicz
Micro 2025, 5(4), 49; https://doi.org/10.3390/micro5040049 - 31 Oct 2025
Viewed by 475
Abstract
Dy@C82 is one of the metallofullerenes studied as dopants for improvements of stability and performance of solar cells. Calculations should help in formulating rules for selections of fullerene endohedrals for such new applications in photovoltaics. Structure, energetics, and relative equilibrium populations of [...] Read more.
Dy@C82 is one of the metallofullerenes studied as dopants for improvements of stability and performance of solar cells. Calculations should help in formulating rules for selections of fullerene endohedrals for such new applications in photovoltaics. Structure, energetics, and relative equilibrium populations of two potential-energy-lowest IPR (isolated pentagon rule) isomers of Dy@C82 under high synthetic temperatures are calculated using the Gibbs energy based on molecular characteristics at the B3LYP/6-31G*∼SDD level. Dy@C2v(9)-C82 and Dy@Cs(6)-C82 are calculated as 58 and 42%, respectively, of their equilibrium mixture at a synthetic temperature of 1000 K, in agreement with observations. The Dy@C2v(9)-C82 species is found as lower in the potential energy by 1.77 kcal/mol compared to the Dy@Cs(6)-C82 isomer. Full article
Show Figures

Figure 1

16 pages, 2190 KB  
Article
Functional Analysis of the Pathogenesis-Related Protein 1 (CaPR1) Gene in the Pepper Response to Chilli veinal mottle virus (ChiVMV) Infection
by Chunzi Huang, Zengjing Zhao, Xing Wu, Hu Zhao, Meng Wang, Zhi He, Zongjun Li, Lihao Wang, Yafei Tang, Risheng Wang, Longfei He and Mingxia Gong
Viruses 2025, 17(11), 1456; https://doi.org/10.3390/v17111456 - 31 Oct 2025
Cited by 1 | Viewed by 691
Abstract
Chilli veinal mottle virus (ChiVMV) causes severe yield losses in pepper across Asia. It is very urgent to study the host plant resistance to control this viral disease. As a type of defense response gene, pathogenesis-related protein 1 (PR1) is a well-established defense [...] Read more.
Chilli veinal mottle virus (ChiVMV) causes severe yield losses in pepper across Asia. It is very urgent to study the host plant resistance to control this viral disease. As a type of defense response gene, pathogenesis-related protein 1 (PR1) is a well-established defense marker against fungal/bacterial pathogens, and its role in virus resistance remains unclear. Here, we cloned CaPR1 from the ChiVMV-highly resistant pepper variety ‘Perennial’. The 477 bp ORF encodes a 17.65 kDa basic protein containing a conserved CAP-PR1 domain. The subcellular localization of CaPR1 revealed that it was located in the plasma membrane, endoplasmic reticulum (ER), and nucleus. RT-qPCR revealed leaf-predominant expression, with earlier and stronger induction in the highly resistant than the highly susceptible variety after ChiVMV inoculation (6.4-fold at 2 days post-inoculation). The overexpression of CaPR1 in tobacco significantly increased resistance, reducing disease index by 25% and viral coat protein accumulation. Our findings identified CaPR1 as a positive regulator of ChiVMV resistance, providing a molecular target for pepper breeding. In addition, exogenous SA treatment increased the resistance of the highly susceptible cultivar ‘Guijiao 12’ to ChiVMV, and 0.25 mM had a greater effect. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Figure 1

25 pages, 350 KB  
Article
Political Factors Affecting Corporate Sustainability Decisions: The Impact of Tariffs and Corruption on Adoption of UN Global Compact Principles
by Elizabeth M. Moore, Antonio García, Sheila M. Puffer and David Wesley
Sustainability 2025, 17(21), 9553; https://doi.org/10.3390/su17219553 - 27 Oct 2025
Viewed by 755
Abstract
The global construction industry faces significant environmental and social sustainability challenges that hinder its alignment with the United Nations Sustainable Development Goals (SDGs). This study investigates the impact of country-level corruption and trade tariffs, and the moderating role of Intellectual Property Rights (IPR) [...] Read more.
The global construction industry faces significant environmental and social sustainability challenges that hinder its alignment with the United Nations Sustainable Development Goals (SDGs). This study investigates the impact of country-level corruption and trade tariffs, and the moderating role of Intellectual Property Rights (IPR) protection, on construction firm SDG engagement. A quantitative analysis was conducted using an original dataset of 195 observations of construction firms across 31 countries collected from 2003 to 2022, with SDG engagement scores derived from public sources and country and institutional data from the World Bank and the Heritage Foundation. Ordinal logistic regression tested the direct and moderated effects of corruption, tariffs, and IPR on SDG engagement, controlling for other variables. The findings reveal that higher perceived home-country corruption and higher home-country tariffs are significantly and negatively associated with company SDG engagement scores. Stronger home-country IPR protection was found to weaken the negative impact of corruption and enhance the positive effects of lower tariffs on SDG engagement. Finally, the results highlight that institutional environments have a critical role in shaping firms’ sustainability actions, suggesting that effective governance, an open trade perspective, and intellectual property protection are key enablers of corporate SDG alignment. These findings contribute to the literature by providing evidence of how institutional quality can foster responsible business strategies in the construction industry and offer practical insights for policymakers seeking to reduce barriers to sustainable development. Full article
(This article belongs to the Special Issue Strategic Enterprise Management and Sustainable Economic Development)
13 pages, 3020 KB  
Article
Cytokinins Are Age- and Injury-Responsive Molecules That Regulate Skeletal Myogenesis
by Farnoush Kabiri, Zeynab Azimychetabi, Dev Seneviratne, Lorna N. Phan, Hannah M. Kavanagh, Hannah C. Smith, R. J. Neil Emery, Craig R. Brunetti, Janet Yee and Stephanie W. Tobin
Int. J. Mol. Sci. 2025, 26(20), 10136; https://doi.org/10.3390/ijms262010136 - 18 Oct 2025
Viewed by 606
Abstract
Myogenesis is a tightly regulated process essential for embryonic development, postnatal growth, and muscle regeneration. We recently identified that cytokinins (CTKs), a class of adenine-derived signaling molecules originally characterized in plants, are present in cultured skeletal muscle cells. The most abundant type of [...] Read more.
Myogenesis is a tightly regulated process essential for embryonic development, postnatal growth, and muscle regeneration. We recently identified that cytokinins (CTKs), a class of adenine-derived signaling molecules originally characterized in plants, are present in cultured skeletal muscle cells. The most abundant type of cytokinins detected within cultured muscle cells was isopentenyladenine (iP) in its nucleotide, riboside, and free base derivatives. The purpose of this study was to determine whether CTKs are also present in regenerating muscle tissue in vivo and to characterize the effects of iP and its riboside form, isopentenyladenosine (iPR), on muscle cell proliferation and differentiation. These effects were observed relative to adenine and adenosine, and to a second class of cytokinins with a large aromatic side chain, kinetin (the free base), and kinetin riboside. Cardiotoxin was used to induce muscle injury and repair processes in the gastrocnemius of 3- and 12-month-old mice. Samples were collected 3- and 7 days post-injury for ultra high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-(ESI+)-HRMS/MS). Four CTKs (N6-benzyladenine (BA), dihydrozeatin-9-N-glucoside (DZ9G), isopentenyladenosine (iPR), and 2-methylthio-isopentenyladenosine (2-MeSiPR) were detected. 2-MeSiPR levels were significantly influenced by aging, as this CTK was increased in response to injury only in the younger mice. Treatment of C2C12 myoblasts with 10 µM of isopentenyladenosine (iPR) or kinetin riboside reduced cell proliferation, whereas iP (the free base) increased proliferation in a biphasic response. During differentiation, both iPR and kinetin riboside impaired myotube formation, while the free-base forms of iP and kinetin had no effect. Our data establishes that CTKs are present within muscle tissue and highly responsive to injury and aging. Furthermore, the biological activities of CTKs in muscle cells are influenced by structural modifications, including riboside conjugation and side chain composition. Understanding these differences provides insight into the distinct roles of CTKs in muscle cell metabolism and differentiation, offering potential implications for the use of exogenous CTKs in muscle biology and regenerative medicine. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 4202 KB  
Article
A Novel Intake Inflow Performance Relationship for Optimizing Pump Setting Depth in Low-Permeability Oil Wells
by Qionglin Shi, Junjian Li, Lei Wang, Bin Liu, Jin Shu, Yabo Li and Guoqing Han
Processes 2025, 13(10), 3316; https://doi.org/10.3390/pr13103316 - 16 Oct 2025
Viewed by 450
Abstract
The optimization of pump setting depth in low-permeability oil wells remains a persistent challenge, as conventional inflow performance relationship (IPR) curves fail to capture the coupled effects of downhole pump intake depth and reservoir productivity. To address this limitation, this study proposes a [...] Read more.
The optimization of pump setting depth in low-permeability oil wells remains a persistent challenge, as conventional inflow performance relationship (IPR) curves fail to capture the coupled effects of downhole pump intake depth and reservoir productivity. To address this limitation, this study proposes a novel Low-Permeability Intake Inflow Performance Relationship (LIIPR) framework. The method establishes a theoretical link between pump depth and production by integrating low-permeability reservoir inflow models with multiphase wellbore flow calculations. On this basis, a series of derivative concepts and analytical tools are introduced, including (i) a three-zone classification of inflow curves to distinguish effective, inefficient, and abnormal production regimes; (ii) a multi-pump-depth analysis to determine the feasible range and optimal boundaries of pump setting depth; and (iii) a three-dimensional deep-pumping limit map that couples inflow and outflow dynamics through nodal analysis, providing a comprehensive criterion for system optimization. The proposed LIIPR methodology enables accurate identification of optimal pump depth and intake pressure conditions, overcoming the ambiguity of traditional IPR-based approaches. Unlike previous IPR- or EIPR-based methods, LIIPR introduces for the first time a unified inflow–outflow coupling framework that quantitatively links pump intake depth with well productivity. This integration represents a novel theoretical and computational advance for deep-pumping optimization in low-permeability reservoirs. Applications for field cases in Shengli Oilfield confirm the theoretical findings and demonstrate the practical potential of the method for guiding efficient deep pumping operations in low-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 11765 KB  
Article
Clonal Selection for Citrus Production: Evaluation of ‘Pera’ Sweet Orange Selections for Fresh Fruit and Juice Processing Markets
by Deived Uilian de Carvalho, Maria Aparecida da Cruz-Bejatto, Ronan Carlos Colombo, Inês Fumiko Ubukata Yada, Rui Pereira Leite and Zuleide Hissano Tazima
Horticulturae 2025, 11(10), 1183; https://doi.org/10.3390/horticulturae11101183 - 2 Oct 2025
Viewed by 872
Abstract
‘Pera’ sweet orange is a key variety for the Brazilian citrus industry, but orchards rely on a limited number of clonal selections, which restricts adaptability and productivity across diverse environments. This study assessed the agronomic performance of 13 ‘Pera’ selections grafted on Rangpur [...] Read more.
‘Pera’ sweet orange is a key variety for the Brazilian citrus industry, but orchards rely on a limited number of clonal selections, which restricts adaptability and productivity across diverse environments. This study assessed the agronomic performance of 13 ‘Pera’ selections grafted on Rangpur lime, cultivated under rainfed conditions in subtropical Brazil. From 2002 to 2010, trees were assessed for vegetative growth, cumulative yield, alternate bearing, and fruit quality. Market-specific performance indices were calculated to determine suitability for fresh fruit or juice processing. Substantial genotypic variation was observed across traits, particularly during early orchard stage. Selections such as ‘Morretes’, ‘Seleção 11’, ‘Seleção 27’, ‘Seleção 37’, and ‘IPR 153’ demonstrated high cumulative yield, stable productivity, and favorable canopy traits, supporting their use in both conventional and high-density systems. ‘IPR 153’ combined compact growth with high yield efficiency and excellent fruit quality, while ‘Morretes’ had the highest juice content and broad market adaptability. In contrast, ‘IPR 159’ showed low vigor and yield under rainfed conditions. The results emphasize the value of regionally targeted clonal selection to improve orchard performance and market alignment. The identification of dual-purpose genotypes offers a pathway to diversify citrus production and improve profitability under subtropical growing conditions. Full article
Show Figures

Figure 1

19 pages, 850 KB  
Systematic Review
The Role of the Interproximal Enamel Reduction in Orthodontics: A Systematic Review
by Francesca Gazzani, Letizia Lugli, Francesca Chiara De Razza, Giuseppina Laganà, Chiara Pavoni, Paola Cozza and Roberta Lione
Appl. Sci. 2025, 15(19), 10645; https://doi.org/10.3390/app151910645 - 1 Oct 2025
Cited by 1 | Viewed by 2383
Abstract
Background: The aim of this systematic review was to critically evaluate the clinical indications, the techniques, and the effects of interproximal enamel reduction (IPR). Methods: A systematic review of the existing literature was carried out following the PRISMA guidelines in the [...] Read more.
Background: The aim of this systematic review was to critically evaluate the clinical indications, the techniques, and the effects of interproximal enamel reduction (IPR). Methods: A systematic review of the existing literature was carried out following the PRISMA guidelines in the following databases: PubMed-Medline, Scopus, Embase, Web of Science, and Cochrane. The search was conducted according to the established inclusion and exclusion criteria until March 2025. Results: A total of 420 articles were identified. Only 23 were selected for the analysis. The efficiency and validity of IPR as a non-extraction protocol adopted in several orthodontic cases was reported in all selected studies. No negative effects in terms of enamel demineralization, residual irregularities, caries incidence, and periodontal damages were reported. Using oscillating mechanical techniques was more efficient than using manual ones in terms of efficiency, predictability, and respect of enamel surfaces. Overall, the quality of the selected articles was low. More randomized controlled clinical trials with in vivo tests, research with longer follow-up times, and high-quality studies are needed to assess more valid statements. Conclusions: Higher accuracy of enamel reduction is achieved by means of oscillating mechanical techniques, which allows for more effective and predictable IPR procedures, as well as more preserved residual enamel surfaces. Full article
(This article belongs to the Special Issue Recent Advancements in Novel Dental Materials)
Show Figures

Figure 1

Back to TopTop