Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = IFIC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 1261 KB  
Article
A Java Library to Perform S-Expansions of Lie Algebras
by Carlos Inostroza, Igor Kondrashuk, Nelson Merino and Felip Nadal
Axioms 2025, 14(10), 735; https://doi.org/10.3390/axioms14100735 - 29 Sep 2025
Viewed by 679
Abstract
The contraction method is a procedure that allows to establish non-trivial relations between Lie algebras and has had successful applications in both mathematics and theoretical physics. This work deals with generalizations of the contraction procedure, with a main focus on the so-called S [...] Read more.
The contraction method is a procedure that allows to establish non-trivial relations between Lie algebras and has had successful applications in both mathematics and theoretical physics. This work deals with generalizations of the contraction procedure, with a main focus on the so-called S-expansion method, as it includes most of the other generalized contractions. Basically, the S-expansion combines a Lie algebra G with a finite abelian semigroup S in order to define new S-expanded algebras. After giving a description of the main ingredients used in this paper, we present a Java library that automates the S-expansion procedure. With this computational tool, we are able to represent Lie algebras and semigroups, so we can perform S-expansions of Lie algebras using arbitrary semigroups. We explain how the library methods have been constructed and how they work; then, we give a set of example programs aimed to solve different problems. They are presented so that any user can easily modify them to perform their own calculations, without necessarily being an expert in Java. Finally, some comments about further developments and possible new applications are made. Full article
(This article belongs to the Special Issue New Perspectives in Lie Algebras)
Show Figures

Figure 1

19 pages, 1517 KB  
Article
Probing the Topology of the Early Universe Using CMB Temperature and Polarization Anisotropies
by Miguel-Angel Sanchis-Lozano
Universe 2025, 11(9), 306; https://doi.org/10.3390/universe11090306 - 9 Sep 2025
Viewed by 538
Abstract
The temperature and polarization anisotropies of the cosmic microwave background (CMB) as measured today can offer key insights into the topology of the early universe prior to inflation, for example by discriminating between flat and warped geometries. In this paper, we focus on [...] Read more.
The temperature and polarization anisotropies of the cosmic microwave background (CMB) as measured today can offer key insights into the topology of the early universe prior to inflation, for example by discriminating between flat and warped geometries. In this paper, we focus on a Kaluza–Klein model with an extra spatial dimension that compactifies at the Grand Unified Theory (GUT) epoch, subject to mixed Neumann/Dirichlet boundary conditions at fixed points. As a consequence, a set of Infrared (IR) cutoffs emerges in both the scalar and tensor spectra, leading to observable consequences in the CMB. We examine the possible signatures of such a topology in detail, particularly in relation to the even–odd parity imbalance already reported by the COBE, WMAP and Planck missions in the temperature angular correlations. Furthermore, we extend our analysis to the existing Planck E-mode polarization data and to the high-precision B-mode polarization measurements expected from the forthcoming LiteBIRD mission. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—'Cosmology')
Show Figures

Figure 1

14 pages, 959 KB  
Article
Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e Colliders
by Emanuela Musumeci, Adrián Irles, Redamy Pérez-Ramos, Imanol Corredoira, Edward Sarkisyan-Grinbaum, Vasiliki A. Mitsou and Miguel Ángel Sanchis-Lozano
Physics 2025, 7(3), 30; https://doi.org/10.3390/physics7030030 - 22 Jul 2025
Viewed by 845
Abstract
Future e+e colliders are expected to play a fundamental role in measuring Standard Model (SM) parameters with unprecedented precision and in probing physics beyond the SM (BSM). This study investigates two-particle angular correlation distributions involving final-state SM charged hadrons. Unexpected [...] Read more.
Future e+e colliders are expected to play a fundamental role in measuring Standard Model (SM) parameters with unprecedented precision and in probing physics beyond the SM (BSM). This study investigates two-particle angular correlation distributions involving final-state SM charged hadrons. Unexpected correlation structures in these distributions is considered to be a hint for new physics perturbing the QCD partonic cascade and thereby modifying azimuthal and (pseudo)rapidity correlations. Using Pythia8 Monte Carlo generator and fast simulation, including selection cuts and detector effects, we study potential structures in the two-particle angular correlation function. We adopt the QCD-like Hidden Valley (HV) scenario as implemented in Pythia8 generator, with relatively light HV v-quarks (below about 100 GeV), to illustrate the potential of this method. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

43 pages, 520 KB  
Review
Polynomial Affine Model of Gravity: After 10 Years
by Oscar Castillo-Felisola, Bastian Grez, Manuel Morocho-López, Jose Perdiguero, Aureliano Skirzewski, Jefferson Vaca-Santana and Nicolas Zambra-Gómez
Universe 2025, 11(3), 102; https://doi.org/10.3390/universe11030102 - 18 Mar 2025
Cited by 3 | Viewed by 668
Abstract
The polynomial affine model of gravity was proposed as an alternative to metric and metric-affine gravitational models. What, in the beginning, was thought to be a source of unpredictability—the presence of many terms in the action—turned out to be a milestone since it [...] Read more.
The polynomial affine model of gravity was proposed as an alternative to metric and metric-affine gravitational models. What, in the beginning, was thought to be a source of unpredictability—the presence of many terms in the action—turned out to be a milestone since it contains all possible combinations of the fields compatible with the covariance under diffeomorphisms. Here, we present a review of the advances in the analysis of the model after 10 years of its proposal and sketch the guidelines for our future perspectives. Full article
(This article belongs to the Special Issue Modified Gravity and Dark Energy Theories)
21 pages, 1643 KB  
Article
Readout System for Multipurpose Real-Time and Portable Spectrometer
by Diego Real, Jose Ballester, David Calvo, Mario Manzaneda, Alberto Moreno, Francisco Albiol and Luis Alonso
Electronics 2025, 14(3), 506; https://doi.org/10.3390/electronics14030506 - 26 Jan 2025
Viewed by 1296
Abstract
A ready-to-use spectrometer-based product, which focuses on data acquisition using a BeagleBone board and a Hamamatsu C12666MA spectrometer module, is presented. The device meets stringent requirements, including the ability to measure the visible light spectrum over a wide range of intensities, being compact [...] Read more.
A ready-to-use spectrometer-based product, which focuses on data acquisition using a BeagleBone board and a Hamamatsu C12666MA spectrometer module, is presented. The device meets stringent requirements, including the ability to measure the visible light spectrum over a wide range of intensities, being compact and lightweight, and having customizable electronics to suit different application needs. The system’s primary component is a Hamamatsu C12666MA spectrometer module with a measurement range of 341 nm to 780 nm, which is supplemented by supporting electronics such as a microcontroller and an analog-to-digital converter. The development encompasses hardware design, the fabrication of a control board, and software development for spectral acquisition and visualization. The software controls the spectral measurement process and facilitates data processing and analysis. The results demonstrate that the designed system can accurately capture spectra and fulfill the specified requirements. Additionally, this work investigates and evaluates the potential migration of the data acquisition system to Field-Programmable Gate Array technology. Such a migration offers several advantages, including real-time processing, parallel data handling capabilities, reduced latency, and greater flexibility in adapting to various spectrometer configurations, as well as the possibility to work in a synchronized way with other devices. These improvements would significantly expand the system’s potential applications in real-time spectroscopy and other demanding optical measurement tasks. The proposed system thus provides a foundation for future enhancements, which could exploit Field-Programmable Gate Array technology, potentially revolutionizing the efficiency and application scope of portable spectrometry devices. Full article
(This article belongs to the Special Issue New Advances of FPGAs in Signal Processing)
Show Figures

Figure 1

16 pages, 2739 KB  
Article
Channel Shortening-Based Single-Carrier Underwater Acoustic Communications in Impulsive Environment
by Xingbin Tu, Zicheng Li, Yan Wei and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(1), 103; https://doi.org/10.3390/jmse13010103 - 7 Jan 2025
Cited by 1 | Viewed by 1083
Abstract
Underwater acoustic (UWA) communication encounters significant challenges, including impulsive noise from breaking waves and marine organisms, as well as long-delay taps caused by ocean properties and high transmission rates. To address these issues, we enhance the channel estimation process by introducing iteratively reweighted [...] Read more.
Underwater acoustic (UWA) communication encounters significant challenges, including impulsive noise from breaking waves and marine organisms, as well as long-delay taps caused by ocean properties and high transmission rates. To address these issues, we enhance the channel estimation process by introducing iteratively reweighted least squares (IRLS) methods and propose an impulsive noise suppression algorithm. Furthermore, we analyze the inter-frequency interference (IFI) resulting from channel variability and implement IFI cancellation (IFIC) during iterative processing. Furthermore, an IFIC-based dual decision–feedback equalization (DDFE) algorithm is proposed for fast time-varying channels, enabling a considerable reduction in channel length and subsequent equalizer complexity. The proposed IFIC-based DDFE algorithm with impulsive noise suppression has been validated through sea trial data, demonstrating robustness against impulsive noise. Experimental results indicate that the proposed algorithm reduces click signal energy and significantly improves receiver performance compared to traditional DDFE algorithms. This research highlights the effectiveness of adapted UWA communication strategies in environments characterized by impulsive noise and long delay taps, facilitating more reliable UWA communication. Full article
Show Figures

Figure 1

15 pages, 455 KB  
Article
Low-Resource Time-to-Digital Converters for Field Programmable Gate Arrays: A Review
by Diego Real and David Calvo
Sensors 2024, 24(17), 5512; https://doi.org/10.3390/s24175512 - 26 Aug 2024
Viewed by 2735
Abstract
A fundamental aspect in the evolution of Time-to-Digital Converters (TDCs) implemented within Field-Programmable Gate Arrays (FPGAs), given the increasing demand for detection channels, is the optimization of resource utilization. This study reviews the principal methodologies employed for implementing low-resource TDCs in FPGAs. It [...] Read more.
A fundamental aspect in the evolution of Time-to-Digital Converters (TDCs) implemented within Field-Programmable Gate Arrays (FPGAs), given the increasing demand for detection channels, is the optimization of resource utilization. This study reviews the principal methodologies employed for implementing low-resource TDCs in FPGAs. It outlines the foundational architectures and interpolation techniques utilized to bolster TDC performances without unduly burdening resource consumption. Low-resource Tapped Delay Line, Vernier Ring Oscillator, and Multi-Phase Shift Counter TDCs, including the use of SerDes, are reviewed. Additionally, novel low-resource architectures are scrutinized, including Counter Gray Oscillator TDCs and interpolation expansions using Process–Voltage–Temperature stable IODELAYs. Furthermore, the advantages and limitations of each approach are critically assessed, with particular emphasis on resolution, precision, non-linearities, and especially resource utilization. A comprehensive summary table encapsulating existing works on low-resource TDCs is provided, offering a comprehensive overview of the advancements in the field. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 945 KB  
Article
Nonsingular, Lump-like, Scalar Compact Objects in (2 + 1)-Dimensional Einstein Gravity
by Roberto V. Maluf, Gerardo Mora-Pérez, Gonzalo J. Olmo and Diego Rubiera-Garcia
Universe 2024, 10(6), 258; https://doi.org/10.3390/universe10060258 - 11 Jun 2024
Cited by 2 | Viewed by 1435
Abstract
We study the space-time geometry generated by coupling a free scalar field with a noncanonical kinetic term to general relativity in (2+1) dimensions. After identifying a family of scalar Lagrangians that yield exact analytical solutions in static and circularly [...] Read more.
We study the space-time geometry generated by coupling a free scalar field with a noncanonical kinetic term to general relativity in (2+1) dimensions. After identifying a family of scalar Lagrangians that yield exact analytical solutions in static and circularly symmetric scenarios, we classify the various types of solutions and focus on a branch that yields asymptotically flat geometries. We show that the solutions within such a branch can be divided in two types, namely naked singularities and nonsingular objects without a center. In the latter, the energy density is localized around a maximum and vanishes only at infinity and at an inner boundary. This boundary has vanishing curvatures and cannot be reached by any time-like or null geodesic in finite affine time. This allows us to consistently interpret such solutions as nonsingular, lump-like, static compact scalar objects whose eventual extension to the (3+1)-dimensional context could provide structures of astrophysical interest. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

17 pages, 5240 KB  
Article
The Power Board of the KM3NeT Digital Optical Module: Design, Upgrade, and Production
by Sebastiano Aiello, Arnauld Albert, Sergio Alves Garre, Zineb Aly, Antonio Ambrosone, Fabrizio Ameli, Michel Andre, Eleni Androutsou, Mancia Anguita, Laurent Aphecetche, Miguel Ardid, Salva Ardid, Hicham Atmani, Julien Aublin, Francesca Badaracco, Louis Bailly-Salins, Zuzana Bardacova, Bruny Baret, Adriana Bariego, Suzan Basegmez Du Pree, Yvonne Becherini, Meriem Bendahman, Francesco Benfenati, Marouane Benhassi, David M. Benoit, Edward Berbee, Vincent Bertin, Simone Biagi, Markus Boettcher, Danilo Bonanno, Jihad Boumaaza, Mohammed Bouta, Mieke Bouwhuis, Cristiano Bozza, Riccardo Maria Bozza, Horea Branzas, Felix Bretaudeau, Ronald Bruijn, Jurgen Brunner, Riccardo Bruno, Ernst Jan Buis, Raffaele Buompane, Jose Busto, Barbara Caiffi, David Calvo, Stefano Campion, Antonio Capone, Francesco Carenini, Víctor Carretero, Théophile Cartraud, Paolo Castaldi, Vincent Cecchini, Silvia Celli, Luc Cerisy, Mohamed Chabab, Michael Chadolias, Cèdric Champion, Andrew Chen, Silvio Cherubini, Tommaso Chiarusi, Marco Circella, Rosanna Cocimano, João Coelho, Alexis Coleiro, Stephane Colonges, Rosa Coniglione, Paschal Coyle, Alexandre Creusot, Giacomo Cuttone, Richard Dallier, Yara Darras, Antonio De Benedittis, Maarten de Jong, Paul de Jong, Bianca De Martino, Els de Wolf, Valentin Decoene, Riccardo Del Burgo, Ilaria Del Rosso, Umberto Maria Di Cerbo, Letizia Stella Di Mauro, Irene Di Palma, Antonio Diaz, Cristian Díaz Martín, Dídac Diego-Tortosa, Carla Distefano, Alba Domi, Corinne Donzaud, Damien Dornic, Manuel Dörr, Evangelia Drakopoulou, Doriane Drouhin, Rastislav Dvornický, Thomas Eberl, Eliska Eckerova, Ahmed Eddymaoui, Maximilian Eff, Imad El Bojaddaini, Sonia El Hedri, Alexander Enzenhöfer, Giovanna Ferrara, Miroslav Filipovic, Francesco Filippini, Dino Franciotti, Luigi Antonio Fusco, Omar Gabella, Jean-Louis Gabriel, Silvia Gagliardini, Tamas Gal, Juan García Méndez, Alfonso Andres Garcia Soto, Clara Gatius Oliver, Nicole Geißelbrecht, Houria Ghaddari, Lucio Gialanella, Brad K. Gibson, Emidio Giorgio, Isabel Goos, Pranjupriya Goswami, Damien Goupilliere, Sara Rebecca Gozzini, Rodrigo Gracia, Kay Graf, Carlo Guidi, Benoît Guillon, Miguel Gutiérrez, Aart Heijboer, Amar Hekalo, Lukas Hennig, Juan-Jose Hernandez-Rey, Walid Idrissi Ibnsalih, Giulia Illuminati, Peter Jansweijer, Bouke Jisse Jung, Piotr Kalaczyński, Oleg Kalekin, Uli Katz, Amina Khatun, Giorgi Kistauri, Claudio Kopper, Antoine Kouchner, Vincent Kueviakoe, Vladimir Kulikovskiy, Ramaz Kvatadze, Marc Labalme, Robert Lahmann, Giuseppina Larosa, Chiara Lastoria, Alfonso Lazo, Sebastien Le Stum, Grégory Lehaut, Emanuele Leonora, Nadja Lessing, Giuseppe Levi, Miles Lindsey Clark, Pietro Litrico, Fabio Longhitano, Jerzy Mańczak, Jhilik Majumdar, Leonardo Malerba, Fadahat Mamedov, Alberto Manfreda, Martina Marconi, Annarita Margiotta, Antonio Marinelli, Christos Markou, Lilian Martin, Juan Antonio Martínez-Mora, Fabio Marzaioli, Massimo Mastrodicasa, Stefano Mastroianni, Sandra Miccichè, Gennaro Miele, Pasquale Migliozzi, Emilio Migneco, Saverio Minutoli, Maria Lucia Mitsou, Carlos Maximiliano Mollo, Lizeth Morales Gallegos, Michele Morga, Abdelilah Moussa, Ivan Mozun Mateo, Rasa Muller, Paolo Musico, Maria Rosaria Musone, Mario Musumeci, Sergio Navas, Amid Nayerhoda, Carlo Alessandro Nicolau, Bhuti Nkosi, Brían Ó Fearraigh, Veronica Oliviero, Angelo Orlando, Enzo Oukacha, Daniele Paesani, Juan Palacios González, Gogita Papalashvili, Vittorio Parisi, Emilio Pastor, Alice Paun, Gabriela Emilia Pavalas, Giuliano Pellegrini, Santiago Pena Martinez, Mathieu Perrin-Terrin, Jerome Perronnel, Valentin Pestel, Rebekah Pestes, Paolo Piattelli, Chiara Poirè, Vlad Popa, Thierry Pradier, Jorge Prado, Sara Pulvirenti, Gilles Quemener, Carlos Quiroz, Ushak Rahaman, Nunzio Randazzo, Richard Randriatoamanana, Soebur Razzaque, Immacolata Carmen Rea, Diego Real, Giorgio Riccobene, Joshua Robinson, Andrey Romanov, Adrian Saina, Francisco Salesa Greus, Dorothea Franziska Elisabeth Samtleben, Agustín Sánchez Losa, Simone Sanfilippo, Matteo Sanguineti, Claudio Santonastaso, Domenico Santonocito, Piera Sapienza, Jan-Willem Schmelling, Jutta Schnabel, Johannes Schumann, Hester Schutte, Jordan Seneca, Nour-Eddine Sennan, Bastian Setter, Irene Sgura, Rezo Shanidze, Ankur Sharma, Yury Shitov, Fedor Šimkovic, Andreino Simonelli, Anna Sinopoulou, Mikhail Smirnov, Bernardino Spisso, Maurizio Spurio, Dimitris Stavropoulos, Ivan Štekl, Mauro Taiuti, Yahya Tayalati, Hannes Thiersen, Iara Tosta e Melo, Efi Tragia, Benjamin Trocme, Vasileios Tsourapis, Ekaterini Tzamariudaki, Antonin Vacheret, Angel Valer Melchor, Veronica Valsecchi, Vincent van Beveren, Thijs van Eeden, Daan van Eijk, Véronique Van Elewyck, Hans van Haren, Godefroy Vannoye, George Vasileiadis, Francisco Vazquez De Sola, Cedric Verilhac, Alessandro Veutro, Salvatore Viola, Daniele Vivolo, Joern Wilms, Harold Yepes Ramirez, Giorgos Zarpapis, Sandra Zavatarelli, Angela Zegarelli, Daniele Zito, Juan de Dios Zornoza, Juan Zuñiga and Natalia Zywuckaadd Show full author list remove Hide full author list
Electronics 2024, 13(11), 2044; https://doi.org/10.3390/electronics13112044 - 24 May 2024
Cited by 1 | Viewed by 2181
Abstract
The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea, consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of [...] Read more.
The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea, consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three-inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module also includes calibration instruments and electronics for power, readout, and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and ten prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, which total 828 as of October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. The validation of a pre-production series has been completed, and a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure safe operation at the bottom of the Mediterranean Sea throughout the observatory’s lifespan. Full article
Show Figures

Figure 1

12 pages, 1518 KB  
Article
Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection
by Diego Real, David Calvo, Juan de Dios Zornoza, Mario Manzaneda, Rebecca Gozzini, Carlos Ricolfe-Viala, Rafael Lajara and Francisco Albiol
Sensors 2024, 24(7), 2084; https://doi.org/10.3390/s24072084 - 25 Mar 2024
Cited by 1 | Viewed by 2026
Abstract
Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address [...] Read more.
Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented. Full article
(This article belongs to the Special Issue Advanced Silicon Photomultiplier Based Sensors)
Show Figures

Figure 1

14 pages, 386 KB  
Article
The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime
by Roberto Balbinot and Alessandro Fabbri
Universe 2024, 10(1), 18; https://doi.org/10.3390/universe10010018 - 29 Dec 2023
Cited by 10 | Viewed by 1867
Abstract
The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. [...] Read more.
The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner–Nordström black hole (both extremal and not), highlighting the similarities and striking differences. Full article
Show Figures

Figure 1

18 pages, 1479 KB  
Article
US Adults’ Perceptions, Beliefs, and Behaviors towards Plant-Rich Dietary Patterns and Practices: International Food Information Council Food and Health Survey Insights, 2012–2022
by Katherine Consavage Stanley, Valisa E. Hedrick, Elena Serrano, Adrienne Holz and Vivica I. Kraak
Nutrients 2023, 15(23), 4990; https://doi.org/10.3390/nu15234990 - 1 Dec 2023
Cited by 9 | Viewed by 8315
Abstract
Expert groups recommend that populations adopt dietary patterns higher in whole, plant-based foods and lower in red and processed meat as a high-impact climate action. Yet, there is limited understanding of populations’ willingness to adopt plant-rich dietary patterns. This study examined United States [...] Read more.
Expert groups recommend that populations adopt dietary patterns higher in whole, plant-based foods and lower in red and processed meat as a high-impact climate action. Yet, there is limited understanding of populations’ willingness to adopt plant-rich dietary patterns. This study examined United States (US) adults’ perceptions, beliefs, and behaviors towards plant-rich dietary patterns and practices over a decade. Fifteen questions from the International Food Information Council’s Food and Health Surveys (2012–2022) were analyzed across four sustainability domains (i.e., human health, environmental, social, and economic domains). Most respondents had favorable perceptions of environmentally sustainable food and beverages, but sustainability influenced less than half of consumers’ purchase decisions. Plant-rich dietary pattern adherence increased across survey years (12.1% [2019] to 25.8% [2022], p < 0.001). One-quarter (28.1%) of Americans reported reducing their red meat intake over 12 months (2020–2022). Yet, another 15.5% reported greater red meat intake, and 18.8% reported greater plant-based meat alternative (PBMA) intake over 12 months. The percentage of respondents who reported greater red meat and PBMA consumption in the previous 12 months significantly increased across the years surveyed (2020–2022, p < 0.05). IFIC Survey findings highlight growing US consumer awareness of health, environmental, and social sustainability but low adoption of plant-rich dietary patterns and practices. Government leadership and coordinated actions by health professionals, civil society, and businesses are needed to educate and incentivize Americans to adopt plant-rich dietary behaviors, and greater industry transparency is needed to show how food and beverage products support human and planetary health. Full article
Show Figures

Figure 1

25 pages, 518 KB  
Article
The Fuzzy Bit
by Milagrosa Aldana and María Antonia Lledó
Symmetry 2023, 15(12), 2103; https://doi.org/10.3390/sym15122103 - 23 Nov 2023
Viewed by 2084
Abstract
In this paper, the formulation of Quantum Mechanics in terms of fuzzy logic and fuzzy sets is explored. A result by Pykacz, which establishes a correspondence between (quantum) logics (lattices with certain properties) and certain families of fuzzy sets, is applied to the [...] Read more.
In this paper, the formulation of Quantum Mechanics in terms of fuzzy logic and fuzzy sets is explored. A result by Pykacz, which establishes a correspondence between (quantum) logics (lattices with certain properties) and certain families of fuzzy sets, is applied to the Birkhoff–von Neumann logic, the lattice of projectors of a Hilbert space. Three cases are considered: the qubit, two qubits entangled, and a qutrit ‘nested’ inside the two entangled qubits. The membership functions of the fuzzy sets are explicitly computed and all the connectives of the fuzzy sets are interpreted as operations with these particular membership functions. In this way, a complete picture of the standard quantum logic in terms of fuzzy sets is obtained for the systems considered. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 1672 KB  
Article
The Hawking Effect in the Particles–Partners Correlations
by Roberto Balbinot and Alessandro Fabbri
Physics 2023, 5(4), 968-982; https://doi.org/10.3390/physics5040063 - 27 Sep 2023
Cited by 1 | Viewed by 1962
Abstract
We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space–time on this are shown in various examples ranging from acoustic black holes to regular [...] Read more.
We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space–time on this are shown in various examples ranging from acoustic black holes to regular black holes. Full article
Show Figures

Figure 1

16 pages, 1527 KB  
Article
The Neutrino Mediterranean Observatory Laser Beacon: Design and Qualification
by Diego Real, Agustín Sánchez Losa, Antonio Díaz, Francisco Salesa Greus and David Calvo
Appl. Sci. 2023, 13(17), 9935; https://doi.org/10.3390/app13179935 - 2 Sep 2023
Viewed by 1408
Abstract
This paper encapsulates details of the NEMO laser beacon’s design, offering a profound contribution to the field of the time calibration of underwater neutrino telescopes. The mechanical design of the laser beacon, which operates at a depth of 3500 m, is presented, together [...] Read more.
This paper encapsulates details of the NEMO laser beacon’s design, offering a profound contribution to the field of the time calibration of underwater neutrino telescopes. The mechanical design of the laser beacon, which operates at a depth of 3500 m, is presented, together with the design of the antibiofouling system employed to endure the operational pressure and optimize the operational range, enhancing its functionality and enabling time calibration among multiple towers. A noteworthy innovation central to this development lies in the battery system. This configuration enhances the device’s portability, a crucial aspect in underwater operations. The comprehensive design of the laser beacon, encompassing the container housing, the requisite battery system for operation, electronics, and an effective antibiofouling system, is described in this paper. Additionally, this paper presents the findings of the laser beacon’s qualification process. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

Back to TopTop