Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (702)

Search Parameters:
Keywords = Hypoxia-Inducible Factor-1α (HIF-1α)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 774 KiB  
Review
Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors
by Lara Colby, Caroline Preskitt, Jennifer S. Ho, Karl Balsara and Dee Wu
Int. J. Mol. Sci. 2025, 26(15), 7541; https://doi.org/10.3390/ijms26157541 - 5 Aug 2025
Viewed by 174
Abstract
Brain metastases are a common and deadly complication of many primary tumors. The progression of these tumors is poorly understood, and treatment options are limited. Two important components of tumor growth are hypoxia and angiogenesis. We conducted a review to look at the [...] Read more.
Brain metastases are a common and deadly complication of many primary tumors. The progression of these tumors is poorly understood, and treatment options are limited. Two important components of tumor growth are hypoxia and angiogenesis. We conducted a review to look at the possibility of a symbiotic relationship between two transcription factors, Hypoxia-Inducible Factor 1α (HIF1α) and Vascular Endothelial Growth Factor (VEGF), and the role they play in metastasis to the brain. We delve further into this possible relationship by examining commonly used chemotherapeutic agents and their targets. Through an extensive literature review, we identified articles that provided evidence of a strong connection between these transcription factors and the growth of brain metastases, many highlighting a symbiotic relationship. Further supporting this, combinations of chemotherapeutic drugs with varying targets have increased the efficacy of treatment. Angiogenesis and hypoxia have long been known to play a large role in the invasion, growth, and poor outcomes of tumors. However, it is not fully understood how these factors influence one another during metastases. While prior studies have investigated the effects separately, we specifically delve into the synergistic and compounding effects that may exist between them. Our findings underscore the need for greater research allocation to investigate the possible symbiotic relationship between angiogenesis and hypoxia in brain metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Tumor Metastasis and Inhibition)
Show Figures

Figure 1

20 pages, 1886 KiB  
Article
Elevated IGFBP4 and Cognitive Impairment in a PTFE-Induced Mouse Model of Obstructive Sleep Apnea
by E. AlShawaf, N. Abukhalaf, Y. AlSanae, I. Al khairi, Abdullah T. AlSabagh, M. Alonaizi, A. Al Madhoun, A. Alterki, M. Abu-Farha, F. Al-Mulla and J. Abubaker
Int. J. Mol. Sci. 2025, 26(15), 7423; https://doi.org/10.3390/ijms26157423 - 1 Aug 2025
Viewed by 155
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical [...] Read more.
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical observation of elevated IGFBP4 in OSA patients motivated the present investigation in a controlled animal model. Building on the previously reported protocol, OSA was induced in male C57BL/6 mice (9–12 weeks old) through intralingual injection of polytetrafluoroethylene (PTFE), producing tongue hypertrophy, intermittent airway obstruction, and hypoxemia. After 8–10 weeks, the study assessed (1) hypoxia biomarkers—including HIF-1α and VEGF expression—and (2) neurobehavioral outcomes in anxiety and cognition using the open-field and novel object recognition tests. PTFE-treated mice exhibited a significant increase in circulating IGFBP4 versus both baseline and control groups. Hepatic Igfbp4 mRNA was also upregulated. Behaviorally, PTFE mice displayed heightened anxiety-like behavior and impaired novel object recognition, paralleling cognitive deficits reported in human OSA. These findings validate the PTFE-induced model as a tool for studying OSA-related hypoxia and neurocognitive dysfunction, and they underscore IGFBP4 as a promising biomarker and potential mediator of OSA’s systemic effects. Full article
(This article belongs to the Special Issue Sleep and Breathing: From Molecular Perspectives)
Show Figures

Figure 1

23 pages, 954 KiB  
Review
The Role of Cobalt Ions in Angiogenesis—A Review
by Wiktor Gregorowicz and Lukasz Pajchel
Int. J. Mol. Sci. 2025, 26(15), 7236; https://doi.org/10.3390/ijms26157236 - 26 Jul 2025
Viewed by 382
Abstract
Cobalt is an essential trace element involved in key biological processes. It serves most notably as a component of vitamin B12 (cobalamin) and a regulator of erythropoiesis. While cobalt deficiency can lead to disorders such as megaloblastic anemia, excess cobalt poses toxicological [...] Read more.
Cobalt is an essential trace element involved in key biological processes. It serves most notably as a component of vitamin B12 (cobalamin) and a regulator of erythropoiesis. While cobalt deficiency can lead to disorders such as megaloblastic anemia, excess cobalt poses toxicological risks to the thyroid, cardiovascular, and hematopoietic systems. In recent years, cobalt ions (Co2+) have gained attention for their ability to mimic hypoxia and promote angiogenesis. This represents a crucial mechanism for tissue regeneration. Cobalt mediates this effect mainly by stabilizing hypoxia-inducible factor 1α (HIF-1α) under normoxic conditions, thereby upregulating angiogenic genes, including VEGF, FGF, and EPO. Experimental studies—from cell culture to animal models—have demonstrated cobalt-induced enhancement of endothelial proliferation, migration, and microvascular formation. Emerging evidence also indicates that Co2+-stimulated macrophages secrete integrin-β1-rich exosomes. These exosomes enhance endothelial motility and tubulogenesis independently of VEGF. Furthermore, cobalt-modified biomaterials have been developed to deliver cobalt ions in a controlled manner. Examples include cobalt-doped β-tricalcium phosphate or bioactive glasses. These materials support both angiogenesis and osteogenesis.This review summarizes current findings on cobalt’s role in angiogenesis. The emphasis is on its potential in cobalt-based biomaterials for tissue engineering and regenerative medicine. Full article
Show Figures

Graphical abstract

20 pages, 32329 KiB  
Article
D-Tryptophan Promotes Skin Wound Healing via Extracellular Matrix Remodeling in Normal and Diabetic Models
by Dawit Adisu Tadese, James Mwangi, Brenda B. Michira, Yi Wang, Kaixun Cao, Min Yang, Mehwish Khalid, Ziyi Wang, Qiumin Lu and Ren Lai
Int. J. Mol. Sci. 2025, 26(15), 7158; https://doi.org/10.3390/ijms26157158 - 24 Jul 2025
Viewed by 289
Abstract
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. [...] Read more.
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. Among these, D-amino acids such as D-tryptophan (D-Trp) have emerged as key regulators of cellular processes; however, their therapeutic potential in diabetic wounds remains largely unexplored. Here, we investigate the therapeutic potential of D-Trp in streptozotocin (STZ)-induced diabetic mice, comparing it with phosphate-buffered saline (PBS) controls and vascular endothelial growth factor (VEGF) as a positive control. Wound healing, inflammation, and histopathology were assessed. Protein and gene expression were analyzed via Western blot and RT-qPCR, respectively. Biolayer interferometry (BLI) measured the binding of D-Trp to hypoxia-inducible factor-1α (HIF-1α). D-Trp accelerated wound healing by modulating extracellular matrix (ECM) remodeling, signaling, and apoptosis. It upregulated matrix metalloproteinases (MMP1, MMP3, MMP-9), Janus kinase 2 (JAK2), and mitogen-activated protein kinase (MAPK) proteins while reducing pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], IL-6). D-Trp also suppressed caspase-3 and enhanced angiogenesis through HIF-1α activation. These findings suggest that D-Trp promotes healing by boosting ECM turnover, reducing inflammation, and activating MAPK/JAK pathways. Thus, D-Trp is a promising therapeutic for diabetic wounds. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

14 pages, 546 KiB  
Review
Belzutifan-Associated Hypoxia: A Review of the Novel Therapeutic, Proposed Mechanisms of Hypoxia, and Management Recommendations
by John Kucharczyk, Anshini Bhatt, Laura Bauer and Minas Economides
Int. J. Mol. Sci. 2025, 26(15), 7094; https://doi.org/10.3390/ijms26157094 - 23 Jul 2025
Viewed by 547
Abstract
Belzutifan is a hypoxia-inducible factor-2α (HIF-2α) inhibitor that received FDA approval in 2021 for treating cancers resulting from von Hippel-Lindau (VHL) disease, including clear cell renal cell carcinoma (ccRCC), followed by approval in 2023 for sporadic ccRCC that has progressed through multiple lines [...] Read more.
Belzutifan is a hypoxia-inducible factor-2α (HIF-2α) inhibitor that received FDA approval in 2021 for treating cancers resulting from von Hippel-Lindau (VHL) disease, including clear cell renal cell carcinoma (ccRCC), followed by approval in 2023 for sporadic ccRCC that has progressed through multiple lines of therapy. HIF-2α is a promising drug target, as VHL is commonly inactivated in ccRCC, which results in HIF-2α-mediated signaling that is considered central to tumorigenesis. Belzutifan has demonstrated efficacy in clinical trials in the first-line and subsequent line settings, and in combination with tyrosine kinase inhibitors. Despite being overall well tolerated, belzutifan has a distinct safety profile because of its unique mechanism of action. Anemia was the most common adverse event observed in clinical trials and is considered an on-target effect. Hypoxia is also frequently observed and commonly results in dose reductions, treatment discontinuation, and supplemental oxygen use. This review summarizes the rates of hypoxia seen in clinical trials of belzutifan in ccRCC. As the cause of hypoxia is not well understood, this review also discusses possible mechanisms of hypoxia based on preclinical studies of the HIF pathway and HIF-2α inhibitors. Finally, this review proposes monitoring and management recommendations for clinicians prescribing belzutifan to ccRCC patients. Full article
(This article belongs to the Special Issue Recent Advances in Urological Cancer)
Show Figures

Figure 1

27 pages, 4223 KiB  
Article
Prolyl Hydroxylase Inhibitor-Mediated HIF Activation Drives Transcriptional Reprogramming in Retinal Pigment Epithelium: Relevance to Chronic Kidney Disease
by Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla and József Balla
Cells 2025, 14(14), 1121; https://doi.org/10.3390/cells14141121 - 21 Jul 2025
Viewed by 517
Abstract
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved [...] Read more.
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved in eye diseases, this study examined the effects of HIF-PHIs on metabolism and gene expression in retinal pigment epithelium (RPE) cells. Results revealed that PHIs differentially induced angiogenic (VEGFA, ANG) and glycolytic (PDK1, GLUT1) gene expression, with Roxadustat causing the strongest transcriptional changes. However, Roxadustat-induced angiogenic signals did not promote endothelial tube formation. Moreover, it did not induce oxidative stress, inflammation, or significant antioxidant gene responses in ARPE-19 cells. Roxadustat also reduced the inflammatory cytokine response to tumor necrosis factor-α, including IL-6, IL-8, and MCP-1, and did not exacerbate VEGF expression under high-glucose conditions. Overall, Roxadustat triggered complex gene expression changes without promoting inflammation or oxidative stress in RPE cells. Despite these findings, ophthalmologic monitoring is advised during PHI treatment in CKD patients receiving HIF-PHIs. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

20 pages, 3053 KiB  
Article
ERRα and HIF-1α Cooperate to Enhance Breast Cancer Aggressiveness and Chemoresistance Under Hypoxic Conditions
by Dimas Carolina Belisario, Anna Sapino, Ilaria Roato, Amalia Bosia, Sophie Doublier and Serena Marchiò
Cancers 2025, 17(14), 2382; https://doi.org/10.3390/cancers17142382 - 18 Jul 2025
Viewed by 396
Abstract
Background/Objectives: HIF-1α and ERRα are both implicated in breast cancer progression, yet their functional interplay remains poorly understood. This study investigates their molecular crosstalk in the context of hypoxia-induced drug resistance. Methods: MCF-7 (estrogen receptor, ER-positive) spheroids and CoCl2-treated [...] Read more.
Background/Objectives: HIF-1α and ERRα are both implicated in breast cancer progression, yet their functional interplay remains poorly understood. This study investigates their molecular crosstalk in the context of hypoxia-induced drug resistance. Methods: MCF-7 (estrogen receptor, ER-positive) spheroids and CoCl2-treated SK-BR-3 (ER-negative) cells were used to model tumor hypoxia. Protein expression, coimmunoprecipitation, chromatin immunoprecipitation (ChIP), pharmacological inhibition, and siRNA-mediated gene silencing were employed to assess physical and functional interactions. Immunohistochemistry (IHC) on a tissue microarray (TMA) of 168 invasive breast carcinomas was performed to evaluate clinical relevance. Results: ERRα levels remained unchanged under hypoxia, while its coactivator, Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 α (PGC-1α), was upregulated. ERRα physically interacted with HIF-1α and was required for HIF-1 transcriptional activity under hypoxic conditions. ChIP assays showed that ERRα-driven overexpression of Permeability glycoprotein 1 (P-gp) and Vascular Endothelial Growth Factor (VEGF) was mediated by HIF-1α binding to the MDR1 and VEGF promoters. Inhibition or silencing of ERRα reversed P-gp overexpression and restored intracellular doxorubicin. TMA analysis confirmed the clinical correlation between ERRα, HIF-1α, and P-gp expression, highlighting the role of ERRα in hypoxia-induced drug resistance. ERRα expression was independent of ER status, suggesting an estrogen-independent function. Conclusions: This study identifies a novel physical and functional interaction between ERRα and HIF-1α that promotes chemoresistance in hypoxic breast tumors. Targeting ERRα may represent a promising therapeutic strategy to overcome drug resistance in aggressive, ER-independent breast cancer subtypes. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

18 pages, 609 KiB  
Protocol
The Potential of Normobaric Oxygen Therapy to Enhance Erythropoiesis, Reduce Oxidative Stress, and Modulate Immune Function in Colorectal Cancer Patients Undergoing Chemotherapy: Study Protocol for a Prospective, Randomized, Double-Blind, Placebo-Controlled Trial (NBO-ONCO)
by Jacek Polański, Beata Jankowska-Polańska, Robert Dymarek, Olga Zajączkowska, Sebastian Makuch, Beata Freier, Dorota Kamińska, Edyta Pawlak, Adam Busławski and Jerzy Zwoździak
J. Clin. Med. 2025, 14(14), 5057; https://doi.org/10.3390/jcm14145057 - 17 Jul 2025
Viewed by 457
Abstract
Background/Objectives: Colorectal cancer (CRC) patients undergoing chemotherapy often experience anemia, oxidative stress, and immune suppression, significantly impacting their quality of life and treatment outcomes. Normobaric oxygen (NBO) therapy, which delivers oxygen at atmospheric pressure with an elevated oxygen concentration, has shown the potential [...] Read more.
Background/Objectives: Colorectal cancer (CRC) patients undergoing chemotherapy often experience anemia, oxidative stress, and immune suppression, significantly impacting their quality of life and treatment outcomes. Normobaric oxygen (NBO) therapy, which delivers oxygen at atmospheric pressure with an elevated oxygen concentration, has shown the potential to enhance erythropoiesis, reduce oxidative stress, and modulate immune function. However, its efficacy in CRC patients remains underexplored. This study aims to evaluate the effects of NBO exposures on (1) supporting erythropoiesis by measuring erythropoietin (EPO) levels and hypoxia-inducible factor 1-alpha (HIF-1α), (2) reducing oxidative stress and improving stress and emotional well-being, and (3) modulating immune function by assessing cytokine profiles. Secondary objectives include assessing the impact of NBO on patient-reported outcome measures (PROMs) such as stress, anxiety, depression, and quality of life. Methods: This is a prospective, randomized, double-blind, placebo-controlled clinical trial. A total of 254 CRC patients undergoing chemotherapy will be randomized 1:1 to receive either active NBO therapy (n = 127, study group) or placebo NBO therapy (n = 127, control group). The intervention will consist of 10 NBO sessions over five weeks. Primary outcomes include biomarkers of erythropoiesis, oxidative stress, and immune response. Secondary outcomes assess quality of life and psychological well-being. Data will be collected at baseline, mid-intervention, post-intervention, and during two follow-up visits (3 and 6 months post-intervention). Results: The study hypothesizes that NBO therapy will improve erythropoiesis, reduce oxidative stress, and enhance immune function in CRC patients, leading to improved quality of life and clinical outcomes. Conclusions: Findings from this trial may establish NBO as a novel supportive therapy for CRC patients undergoing chemotherapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 5083 KiB  
Article
Effect of Hypoxia on Adult Müller Glia Cultures
by Xabier Miguel-López, Laura Prieto-López, Elena Vecino and Xandra Pereiro
Biomedicines 2025, 13(7), 1743; https://doi.org/10.3390/biomedicines13071743 - 16 Jul 2025
Viewed by 278
Abstract
Background: The retina, a light-sensitive tissue of the central nervous system that is located at the posterior part of the eye, is particularly vulnerable to alterations in oxygen levels. In various retinal diseases, such as central retinal vein occlusion, glaucoma, and diabetic [...] Read more.
Background: The retina, a light-sensitive tissue of the central nervous system that is located at the posterior part of the eye, is particularly vulnerable to alterations in oxygen levels. In various retinal diseases, such as central retinal vein occlusion, glaucoma, and diabetic retinopathy, hypoxia (a condition of low oxygen levels) is commonly observed. Müller glia, the principal glial cells in the retina, play a crucial role in supporting the metabolic needs of retinal neurons. They are also responsible for sensing oxygen levels and, in response to hypoxia, express Hypoxia-Inducible Factor 1 (HIF-1), a transcription factor that activates signaling pathways related to hypoxia. Methods: In this study, primary rat Müller glial cells were cultured and exposed to a 1% oxygen for 72 h. Following this, immunohistochemical assays were conducted to assess the effects of hypoxia on various parameters, including HIF-1α expression, cell survival, Müller glia-specific markers (CRALBP and GS), gliosis (GFAP expression), apoptosis (caspase-3 expression), cell proliferation (Ki-67 expression), and metabolic stress (indicated by the number of mitochondria per cell). Results: Under hypoxic conditions, a decrease in Müller glial survival and proliferation was observed. Conversely, there was an increase in HIF-1α expression, GFAP expression, caspase-3-positive cells, and the number of mitochondria per cell. However, no significant changes were noted in the expression of the Müller glial markers GS and CRALBP. Conclusions: In conclusion, hypoxia resulted in reduced proliferation and survival of Müller glial cells, primarily due to increased apoptosis and heightened metabolic stress. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 6789 KiB  
Article
Metabolic Plasticity and Transcriptomic Reprogramming Orchestrate Hypoxia Adaptation in Yak
by Ci Huang, Yilie Liao, Wei Peng, Hai Xiang, Hui Wang, Jieqiong Ma, Zhixin Chai, Zhijuan Wu, Binglin Yue, Xin Cai, Jincheng Zhong and Jikun Wang
Animals 2025, 15(14), 2084; https://doi.org/10.3390/ani15142084 - 15 Jul 2025
Viewed by 291
Abstract
The yak (Bos grunniens) has exceptional hypoxia resilience, making it an ideal model for studying high-altitude adaptation. Here, we investigated the effects of oxygen concentration on yak cardiac fibroblast proliferation and the underlying molecular regulatory pathways using RNA sequencing (RNA-seq) and [...] Read more.
The yak (Bos grunniens) has exceptional hypoxia resilience, making it an ideal model for studying high-altitude adaptation. Here, we investigated the effects of oxygen concentration on yak cardiac fibroblast proliferation and the underlying molecular regulatory pathways using RNA sequencing (RNA-seq) and metabolic analyses. Decreased oxygen levels significantly inhibited cardiac fibroblast proliferation and activity. Intriguingly, while the mitochondrial DNA (mtDNA) content remained stable, we observed coordinated upregulation of mtDNA-encoded oxidative phosphorylation components. Live-cell metabolic assessment further demonstrated that hypoxia led to mitochondrial respiratory inhibition and enhanced glycolysis. RNA-seq analysis identified key hypoxia adaptation genes, including glycolysis regulators (e.g., HK2, TPI1), and hypoxia-inducible factor 1-alpha (HIF-1α), with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighting their involvement in metabolic regulation. The protein–protein interaction network identified three consensus hub genes across five topological algorithms (CCNA2, PLK1, and TP53) that may be involved in hypoxia adaptation. These findings highlight the importance of metabolic reprogramming underlying yak adaptation to hypoxia, providing valuable molecular insights into the mechanisms underlying high-altitude survival. Full article
Show Figures

Figure 1

19 pages, 6101 KiB  
Article
A High-Calorie Diet Aggravates Lipopolysaccharide-Induced Pulmonary Inflammation in Juvenile Rats via Hypothalamic-Pituitary-Adrenal Axis-Related Pathways
by Qianqian Li, Hui Liu, Chen Bai, Lin Jiang, Chen Su, Xueying Qin, Tiegang Liu and Xiaohong Gu
Int. J. Mol. Sci. 2025, 26(14), 6554; https://doi.org/10.3390/ijms26146554 - 8 Jul 2025
Viewed by 304
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays an important regulatory role in inflammatory responses to systemic or local infection in the host. A high-calorie diet, which can aggravate pediatric pneumonia and delay recovery, is intimately associated with HPA axis disorder; however, its underlying mechanisms remain [...] Read more.
The hypothalamic-pituitary-adrenal (HPA) axis plays an important regulatory role in inflammatory responses to systemic or local infection in the host. A high-calorie diet, which can aggravate pediatric pneumonia and delay recovery, is intimately associated with HPA axis disorder; however, its underlying mechanisms remain unknown. This study examined whether the mechanism by which a high-calorie diet aggravates pneumonia is related to HPA axis disorder. In this study, juvenile rats were fed a high-calorie diet and/or nebulized with lipopolysaccharide (LPS) for model construction. Our data shows that a high-calorie diet increases interleukin-1 beta(IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels in lung tissues and aggravates LPS-induced inflammatory injury in the lungs of juvenile rats. Additionally, we found that a high-calorie diet decreases the expression level of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in juvenile rats with pneumonia, resulting in HPA axis disorder. Hypothalamus proteomics and Western blot results proved that a high-calorie diet upregulated the expression level of hypothalamus hypoxia-inducible factor-1 alpha (HIF-1α) in juvenile rats with pneumonia, and this mechanism is associated with reduced HIF-1α ubiquitination. We further observed that HPA axis disorder was significantly abated and inflammatory damage in rat lung tissues was significantly alleviated after in vivo HIF-1α pathway inhibition. This shows that pneumonia aggravation by a high-calorie diet is associated with interference in the HIF-1α-mediated HPA axis. A high-calorie diet boosts HIF-1α signaling in the hypothalamus and exacerbates LPS-induced pneumonia by disrupting the HPA axis. This sheds light on lung inflammation and strengthens the lung-brain connection. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

24 pages, 3627 KiB  
Article
Andrographolide Mitigates Inflammation and Reverses UVB-Induced Metabolic Reprogramming in HaCaT Cells
by Carolina Manosalva, Pablo Alarcón, Lucas Grassau, Carmen Cortés, Juan L. Hancke and Rafael A. Burgos
Int. J. Mol. Sci. 2025, 26(13), 6508; https://doi.org/10.3390/ijms26136508 - 6 Jul 2025
Viewed by 516
Abstract
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored [...] Read more.
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored AP’s multitarget therapeutic effects on wound healing under photoaging conditions (PhA/WH) using network pharmacology and experimental validation. Scratch wound assays showed that AP promoted keratinocyte migration in UVB-exposed HaCaT cells. Bioinformatic analysis identified 10 key targets in PhA/WH, including TNF-α, IL-1β, JUN, PPARγ, MAPK3, TP53, TGFB1, HIF-1α, PTGS2, and CTNNB1. AP suppressed UVB-induced pro-inflammatory gene expression (IL-1β, IL-6, IL-8, and COX-2) and inhibited the phosphorylation of ERK1/2 and P38, while enhancing Hypoxia-Inducible Factor-1alpha (HIF-1α) and peroxisome proliferator-activated receptors (PPARγ) expression. GC/MS-based metabolomics revealed that AP reversed UVB-induced disruptions in fatty acid metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid (TCA) cycle, indicating its role in restoring the metabolic balance necessary for tissue regeneration. In conclusion, andrographolide modulates key inflammatory and metabolic pathways involved in wound repair and photoaging. These mechanistic insights contribute to a better understanding of the molecular processes underlying skin regeneration under photodamage and may inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

12 pages, 5543 KiB  
Article
Hypoxic Conditions Promote Cartilage Repair in a Rat Knee Osteochondral Defect Model via Hypoxia-Inducible Factor-1α
by Kei Nakamura, Atsuo Inoue, Yuji Arai, Shuji Nakagawa, Yuta Fujii, Ryota Cha, Keisuke Sugie, Kentaro Hayashi, Tsunao Kishida, Osam Mazda and Kenji Takahashi
Int. J. Mol. Sci. 2025, 26(13), 6370; https://doi.org/10.3390/ijms26136370 - 2 Jul 2025
Viewed by 394
Abstract
Bone marrow stimulation is a treatment for articular cartilage injuries that promotes cartilage repair by inducing the migration and accumulation of mesenchymal stem cells (MSCs), but often results in fibrocartilage with limited durability. This study aimed to investigate the effect of hypoxic conditions [...] Read more.
Bone marrow stimulation is a treatment for articular cartilage injuries that promotes cartilage repair by inducing the migration and accumulation of mesenchymal stem cells (MSCs), but often results in fibrocartilage with limited durability. This study aimed to investigate the effect of hypoxic conditions on cartilage repair using a rat osteochondral defect model. Osteochondral defects (1.0 mm in diameter) were created in the femoral trochlear groove, and rats were exposed to hypoxic conditions (12% O2) for 4 weeks postoperatively. Histological analysis was performed, and protein expression of hypoxia-inducible factor-1α (HIF-1α) and SRY-box transcription factor 9 (SOX9) in the repair tissue was evaluated after 1 week. As a result, after 1 week, protein expression of HIF-1α and SOX9 in the Hypoxia group was significantly increased compared to the Normoxia group. After 4 weeks, the Hypoxia group exhibited a hyaline cartilage-like tissue structure with a significantly lower Modified Wakitani score compared to the Normoxia group. Furthermore, after 4 weeks, the inhibition of HIF-1α suppressed cartilage repair. These findings suggest that hypoxic conditions promote SOX9 expression via HIF-1α during the early phase of MSC chondrogenic differentiation and promote the formation of hyaline cartilage-like repair tissue. In conclusion, bone marrow stimulation under hypoxic conditions may enhance the repair effect on articular cartilage injuries. Full article
(This article belongs to the Special Issue Molecular Biology of Hypoxia)
Show Figures

Figure 1

13 pages, 443 KiB  
Article
Association of Helicobacter pylori with Serum HIF-1α, HIF-2α, and Human Transmembrane Prolyl 4-Hydroxylase Activity in Patients with Chronic Gastritis
by Sefa Ergün, Fadime Kutluk, Basar Can Turgut, Seyma Dumur, Uğurcan Sayılı, Dilek Duzgun Ergun and Hafize Uzun
Medicina 2025, 61(7), 1174; https://doi.org/10.3390/medicina61071174 - 28 Jun 2025
Viewed by 372
Abstract
Background and Objectives: Chronic mucosal infection with Helicobacter pylori (H. pylori) plays a key role in the development of gastroduodenal disorders such as chronic gastritis, peptic ulcers, gastric lymphoma, and gastric cancer by triggering local immune responses and inducing hypoxic [...] Read more.
Background and Objectives: Chronic mucosal infection with Helicobacter pylori (H. pylori) plays a key role in the development of gastroduodenal disorders such as chronic gastritis, peptic ulcers, gastric lymphoma, and gastric cancer by triggering local immune responses and inducing hypoxic and inflammatory conditions in the gastric mucosa. This study aims to evaluate the potential diagnostic value of hypoxia-inducible factors HIF-1α and HIF-2α, along with transmembrane prolyl 4-hydroxylase (P4H-TM), as biomarkers in H. pylori-positive patients. Additionally, the study investigates the association between these markers and alterations in lipid profiles, as well as their involvement in the molecular mechanisms underlying gastric conditions like gastritis, particularly in the context of H. pylori infection. Materials and Methods: This study was conducted at Istanbul Avcılar Murat Kölük State Hospital’s General Surgery Outpatient Clinic. A total of 60 participants were included: 40 patients diagnosed with chronic gastritis (20 H. pylori-positive and 20 H. pylori-negative) and 20 healthy controls confirmed negative by 13C-urea breath test. Blood samples were collected for ELISA analysis of HIF-1α, HIF-2α, and P4H-TM levels. Additionally, lipid profiles were measured and compared among the groups. Results: No significant differences were found among the groups in terms of demographic factors such as age, sex, or body mass index (BMI). However, significant variations were observed in the levels of HIF-1α, HIF-2α, and P4H-TM across all groups (p < 0.001 for each marker). These markers were substantially elevated in the H. pylori-positive gastritis group compared to both the H. pylori-negative and healthy control groups. Receiver Operating Characteristic (ROC) curve analysis revealed that all evaluated markers exhibited strong diagnostic accuracy in differentiating H. pylori-positive individuals from other groups. HIF-1α (AUC: 0.983) and HIF-2α (AUC: 0.981) both achieved 100% sensitivity with specificities of 93.3% and 91.1%, respectively. P4H-TM showed an AUC of 0.927, with 85% sensitivity and 95.6% specificity. Conclusions: These findings indicate that HIF-1α, HIF-2α, and P4H-TM may serve as effective biomarkers for diagnosing H. pylori-positive patients and may be linked to changes in lipid metabolism. The elevated expression of these markers in response to H. pylori infection highlights their potential roles in the inflammatory and hypoxic pathways that contribute to the pathogenesis of gastric diseases such as gastritis. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

11 pages, 1438 KiB  
Article
Purple Potato Extract Suppresses Hypoxia-Induced Metabolic Reprogramming and Inhibits HIF-1α Signaling in Caco-2 Cells
by Qiaorong Cui, Qi Sun, Alejandro Bravo Iniguez, Xinrui Li, Min Du and Mei-Jun Zhu
Nutrients 2025, 17(13), 2079; https://doi.org/10.3390/nu17132079 - 23 Jun 2025
Viewed by 495
Abstract
Background: The hypoxia-inducible factor 1α (HIF-1α) pathway plays a key role in promoting glycolysis and tumor progression under hypoxic conditions in cancer cells. Purple potato (PP) extract, which is a polyphenol-rich natural product, has previously been shown to enhance mitochondrial function and suppress [...] Read more.
Background: The hypoxia-inducible factor 1α (HIF-1α) pathway plays a key role in promoting glycolysis and tumor progression under hypoxic conditions in cancer cells. Purple potato (PP) extract, which is a polyphenol-rich natural product, has previously been shown to enhance mitochondrial function and suppress tumor growth in several cancer models. We hypothesized that PP extract could counteract hypoxia-induced glycolysis by targeting the HIF-1α pathway. Methods: Human colonic epithelial Caco-2 cells were treated with PP extract under hypoxic conditions, and its effects on glycolysis, oxidative phosphorylation, and HIF-1α signaling were evaluated. Results: Under hypoxia PP extract suppressed glycolysis, as evidenced by reduced lactate production and lower phosphorylated pyruvate dehydrogenase levels. In parallel, genes associated with oxidative phosphorylation were upregulated by PP extract, suggesting a metabolic shift under hypoxia. Additionally, PP extract reduced the protein accumulation of HIF-1α and its transcriptional activator XBP1 induced by hypoxia. Correspondingly, the expression of several HIF-1α downstream target genes, including Vegfa, Pdk1, Ldha, Hk1, and Glut1, was markedly reduced. Functionally, PP extract inhibited cell proliferation, migration, and drug resistance under hypoxic stress, indicating a broader inhibitory effect on hypoxia-driven malignant phenotypes. Conclusion: These findings suggest that PP extract disrupts cancer cell adaptation to hypoxia and supports its potential as a dietary approach against hypoxia-driven colorectal cancer, through further preclinical studies are warranted. Full article
Show Figures

Graphical abstract

Back to TopTop