Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Hyperparasitoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2349 KB  
Article
Integrative Taxonomy to Assess the Parasitoid Complex of the Jumping Plant-Louse Cacopsylla pulchella (Hemiptera: Psyllidae) on Cercis siliquastrum in Central and Southern Italy
by Elia Russo, Gianluca Melone, Ciro Pugliese and Stefania Laudonia
Insects 2026, 17(1), 92; https://doi.org/10.3390/insects17010092 - 13 Jan 2026
Viewed by 303
Abstract
Urban green spaces host complex arthropod communities, in which natural insect antagonists play a key role in regulating pest populations. The jumping plant-louse Cacopsylla pulchella is a sap-sucking pest widespread across Europe that attacks Cercis siliquastrum L., which is commonly used as an [...] Read more.
Urban green spaces host complex arthropod communities, in which natural insect antagonists play a key role in regulating pest populations. The jumping plant-louse Cacopsylla pulchella is a sap-sucking pest widespread across Europe that attacks Cercis siliquastrum L., which is commonly used as an ornamental tree. Heavy infestations may contribute to host tree decline and cause indirect damage in urban environments by reducing aesthetic value and by extensive deposition of honeydew secretions on surrounding surfaces. As with many phytophagous insects occurring in urban contexts, information on the natural enemies of this species remains limited, particularly in Italy, and requires further documentation. Here, we investigated the parasitoids associated with C. pulchella in central and southern Italy based on surveys conducted between 2022 and 2025. Specimens were obtained from infested plant material and identified using an integrative taxonomic approach combining detailed morphological examination with DNA barcoding. Prionomitus mitratus was confirmed as the primary parasitoid of C. pulchella, while two species, Pachyneuron muscarum and Pachyneuron aphidis, were identified as hyperparasitoids. In addition, a single specimen of Anastatus bifasciatus was also recorded emerging from the psyllid as a hyperparasitoid. Molecular analyses generated the first publicly available mitochondrial and nuclear sequences for P. mitratus. For Pachyneuron, molecular results showed variable correspondence with available reference sequences, reflecting the uneven representation of species-level data for Pteromalidae in public databases. By integrating morphological and molecular evidence, this study clarifies trophic relationships within the C. pulchella parasitoid complex. It provides vouchered molecular references to support future taxonomic and ecological research in urban ecosystems. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects—2nd Edition)
Show Figures

Figure 1

10 pages, 12175 KB  
Article
Deciphering Morphological Variability: Addressing Taxonomic Ambiguities in Contemporary Species Delimitation (Hymenoptera, Figitidae)
by Mar Ferrer-Suay, George E. Heimpel, Ehsan Rakhshani and Jesús Selfa
Insects 2026, 17(1), 54; https://doi.org/10.3390/insects17010054 - 1 Jan 2026
Viewed by 430
Abstract
Species delimitation in Charipinae hyperparasitoids (Hymenoptera: Figitidae) is notoriously difficult due to their minute size and limited morphological variability. Traditional diagnostic characters sometimes show intraspecific variation, raising concerns about their reliability. Here, we applied an integrative taxonomic framework to evaluate species boundaries among [...] Read more.
Species delimitation in Charipinae hyperparasitoids (Hymenoptera: Figitidae) is notoriously difficult due to their minute size and limited morphological variability. Traditional diagnostic characters sometimes show intraspecific variation, raising concerns about their reliability. Here, we applied an integrative taxonomic framework to evaluate species boundaries among six species of Alloxysta Förster and four species of Phaenoglyphis Förster. We combined a morphological dataset of 53 characters with data from three molecular markers (COI, ITS2, and 16S rRNA) and reconstructed phylogenies under maximum-likelihood criteria. Phylogenies consistently recovered morphologically defined taxa as well-supported clades, confirming the overall reliability of traditional characters (pronotal and propodeal carinae, radial cell shape, and flagellomere proportions). On the other hand, molecular evidence refined certain species limits and highlighted cases of potential cryptic variation. Our results demonstrate that morphology still provides a strong baseline for Charipinae taxonomy, but integration with molecular data yields more robust and stable classifications. This study underscores the value of multi-locus approaches for resolving taxonomic ambiguities and provides a framework for future ecological and evolutionary research on these hyperparasitoid wasps. Full article
Show Figures

Graphical abstract

20 pages, 604 KB  
Review
Semiochemicals Used by Insect Parasitoids and Hyperparasitoids in Complex Chemical Environments and Their Application in Insect Pest Management
by Yalan Sun, Caihong Tian, Pengjun Xu, Junfeng Dong and Shaoli Wang
Horticulturae 2026, 12(1), 2; https://doi.org/10.3390/horticulturae12010002 - 19 Dec 2025
Viewed by 742
Abstract
Insect parasitoids are key biological agents within terrestrial ecosystems, offering a promising avenue for controlling insect pests. Hyperparasitoids are a group of insects that lay their eggs in or on the body of parasitoid hosts, which can greatly hamper the effectiveness of parasitoids. [...] Read more.
Insect parasitoids are key biological agents within terrestrial ecosystems, offering a promising avenue for controlling insect pests. Hyperparasitoids are a group of insects that lay their eggs in or on the body of parasitoid hosts, which can greatly hamper the effectiveness of parasitoids. To optimize their reproductive success, adult parasitoids/hyperparasitoids must find sufficient food sources and mate partners (when they do not reproduce parthenogenetically) and locate suitable hosts for their offspring. To complete these tasks, parasitoids largely rely on their ability to detect relevant chemical cues (semiochemicals or infochemicals). In the last three decades, the identities of semiochemicals and their ethological significance have been widely characterized, and the possibility of using these chemical cues in insect pest management has received a lot of attention. Insects have evolved a highly sensitive and sophisticated chemosensory system adept at navigating complex and dynamic chemical environments. In this review, we first summarize the semiochemicals used by insect parasitoids, primarily including semiochemicals involved in food location, host foraging, and mate finding, while also addressing semiochemicals employed by hyperparasitoids. Next, we discuss recent progress in elucidating the chemosensory mechanisms underlying parasitoid responses to semiochemicals, with a focus on olfactory and gustatory pathways. Finally, we evaluate the potential applications of semiochemicals in pest management, highlighting the roles of parasitoids and hyperparasitoids. This paper aims to establish a theoretical framework for the effective employment of parasitoids in biological control of insect pests. Full article
(This article belongs to the Special Issue Pest Management: Challenges, Strategies, and Solutions)
Show Figures

Graphical abstract

17 pages, 4271 KB  
Article
Demographic and Functional Consequences of Secondary Host Selection in a Facultative Autoparasitoid, Encarsia sophia (Hymenoptera: Aphelinidae)
by Siteng Zhang, Xiaocong Wang, Jing Wang, Shuli Gao, Zhiqi Zhang, Yuning Li, Nicolas Desneux, Junjie Zhang, Yue Zhao and Changchun Ruan
Insects 2025, 16(11), 1165; https://doi.org/10.3390/insects16111165 - 14 Nov 2025
Viewed by 676
Abstract
To evaluate the impact of secondary host selection by the autoparasitoid E. sophia on the fitness and biological control potential of its offspring, we compared the demographic traits, parasitism capacity, and host-feeding rates of populations reared on different secondary hosts: the heterospecific E. [...] Read more.
To evaluate the impact of secondary host selection by the autoparasitoid E. sophia on the fitness and biological control potential of its offspring, we compared the demographic traits, parasitism capacity, and host-feeding rates of populations reared on different secondary hosts: the heterospecific E. formosa and the conspecific E. sophia. Analyses conducted with TWOSEX-MSChart, CONSUME-MSChart, and TIMING-MSChart showed that the population reared on E. formosa and E. sophia as secondary hosts. The E. sophia population reared on E. formosa exhibited significantly shorter developmental times, extended adult longevity, and enhanced female reproductive output, characterized by higher fecundity and longer oviposition periods than the conspecific-reared group. This group also displayed superior host consumption, accelerated population growth, a shorter mean generation time, and improved biocontrol efficacy. These findings underscore the importance of secondary host optimization in mass rearing and offer a theoretical basis for improving the field performance of E. sophia. Full article
Show Figures

Figure 1

16 pages, 9701 KB  
Article
The Parasitoid Complex of Aleurothrixus floccosus (Hemiptera: Aleyrodidae) in the Citrus Groves of Central–Southern Italy
by Gianluca Melone, Lucia Andretta, Valentino Maria Guastaferro, Eleonora Romito, Giorgio Formisano, Massimo Giorgini and Stefania Laudonia
Insects 2025, 16(10), 1037; https://doi.org/10.3390/insects16101037 - 9 Oct 2025
Viewed by 2001
Abstract
The woolly whitefly, Aleurothrixus floccosus, is likely a Neotropical origin species that has spread globally. Introduced to France in 1969, it became a pest in southern European citrus groves, first reported in Italy in 1974. Integrated management using biological control agents is [...] Read more.
The woolly whitefly, Aleurothrixus floccosus, is likely a Neotropical origin species that has spread globally. Introduced to France in 1969, it became a pest in southern European citrus groves, first reported in Italy in 1974. Integrated management using biological control agents is crucial due to the low efficacy of chemical controls. Nymphs produce waxy filaments and honeydew, limiting insecticide contact. Natural enemies, especially from Neotropics, have been documented. The parasitoids Amitus spiniferus and Cales noacki were released in France in 1970 and later observed in Liguria, Italy. In the Campania region, C. noacki was first found on Aleurotuba jelineki in 1984 and this finding preceded the first report of A. floccosus in the same area. Subsequently, C. noacki was also introduced in other regions where it showed better adaptation throughout the Italian territory, reaching high parasitization levels on the woolly whitefly nymphs. After many years since the last field investigations, surveys in 2024–2025 in organic citrus groves in central and southern Italy identified additional parasitoids. Besides C. noacki and A. spiniferus, Eretmocerus paulistus and Signiphora xanthographa were found for the first time in Italy. Both species were originally described from the Neotropical ecozone. The aphelinid finding represents its first documented establishment in Italy, while the signiphorid one represents a new record for the European fauna. E. paulistus is a primary parasitoid, while S. xanthographa is a hyperparasitoid that can limit the effectiveness of other parasitoids. The interaction of these parasitoids resulted in high parasitism rates for A. floccosus nymphs. Preserving the current complexity of parasitoids in integrated pest management (IPM) programs could effectively control the woolly whitefly in central and southern Italy. Full article
(This article belongs to the Special Issue Insects Ecology and Biological Control Applications)
Show Figures

Figure 1

19 pages, 17815 KB  
Review
A Review of Aphid Parasitoids, with an Identification Key to the Genera of Economic Importance
by Mar Ferrer-Suay, Marc Barreda, Ehsan Rakhshani, Eugenia Rodrigo, Jesús Selfa and Andrew Polaszek
Insects 2025, 16(7), 648; https://doi.org/10.3390/insects16070648 - 20 Jun 2025
Cited by 1 | Viewed by 3075
Abstract
Agriculture plays an essential role in meeting global food demand, and so effective pest control is crucial. Aphids (Hemiptera: Aphididae) are a significant problem for many crops worldwide, and cause crop losses. They are considered one of the most important groups of pests [...] Read more.
Agriculture plays an essential role in meeting global food demand, and so effective pest control is crucial. Aphids (Hemiptera: Aphididae) are a significant problem for many crops worldwide, and cause crop losses. They are considered one of the most important groups of pests in the world. Aphid parasitoids are very important as biological agents, both for their effectiveness and their host range selectivity. This study provides a review of these groups of parasitoids and their possible role and use in aphid biological control. Two groups of primary parasitoids, Aphelinidae and Braconidae: Aphidiinae, are the main groups that can be used in the biological control of aphids. There is also a diversity of hyperparasitoids whose hosts are these primary parasitoids and therefore are likely to be detrimental to the biological control programs: Megaspilidae in the superfamily Ceraphronoidea, the following Chalcidoidea families: Encyrtidae, Eulophidae, Moranilidae, Pteromalidae, and Signiphoridae, and Cynipoidea: Figitidae: Charipinae. Records of Mymaridae emerging from aphids, while assumed to be obligate egg-parasitoids, are discussed. Dichotomous keys are provided to identify the superfamilies, families and most important genera associated with aphids. Full article
(This article belongs to the Special Issue Protecting Field Crops from Economically Damaging Aphid Infestation)
Show Figures

Figure 1

12 pages, 1630 KB  
Article
Clarification of the Taxonomic Status of Two Alloxysta Species Through Genetic Analysis (Figitidae: Charipinae)
by Mar Ferrer-Suay, Victor Cuesta-Porta, Jesús Selfa and Juli Pujade-Villar
Diversity 2025, 17(5), 362; https://doi.org/10.3390/d17050362 - 20 May 2025
Cited by 1 | Viewed by 735
Abstract
Charipinae taxonomy has been always very problematic because of the large number of described species and unclear interspecific limits. Following the morphological characterisation, molecular information is now used to determine the boundaries between species. In this context, we compared two cosmopolitan species: Alloxysta [...] Read more.
Charipinae taxonomy has been always very problematic because of the large number of described species and unclear interspecific limits. Following the morphological characterisation, molecular information is now used to determine the boundaries between species. In this context, we compared two cosmopolitan species: Alloxysta victrix (Westwood, 1833) and Alloxysta consobrina (Zetterstedt, 1838). Material from Alloxysta tscheki (Giraud, 1860) and Alloxysta leunisii (Hartig, 1841) was also included. An integrative phylogenetic study was performed using three molecular markers (COI, ITS2, and 16S) and a morphological matrix. Inter- and intraspecific genetic distances were calculated and compared with previous data. The results showed no differences between interspecific and intraspecific distances for the four studied species and no clear phylogenetic structure, in contrast to other well-resolved Charipinae species included in our analyses. In light of these findings, three new junior synonyms are established under A. victrix (Westwood, 1833): A. consobrina (Zetterstedt, 1838) n. syn., A. tscheki (Giraud, 1860) n. syn., and A. leunisii (Hartig, 1841) n. syn. Full article
(This article belongs to the Special Issue Advances in Hymenoptera Diversity and Biology)
Show Figures

Figure 1

41 pages, 10663 KB  
Article
Forty-Five Years of Caterpillar Rearing in Area de Conservación Guanacaste (ACG) Northwestern Costa Rica: DNA Barcodes, BINs, and a First Description of Plant–Caterpillar–Ichneumonoid Interactions Detected
by Donald L. J. Quicke, Daniel H. Janzen, Winnie Hallwachs, Mike J. Sharkey, Paul D. N. Hebert and Buntika A. Butcher
Diversity 2024, 16(11), 683; https://doi.org/10.3390/d16110683 - 7 Nov 2024
Cited by 5 | Viewed by 4686
Abstract
Foliage-feeding wild caterpillars have been collected and reared year-round by 1–30 rural resident parataxonomists in the Area de Conservación Guanacaste (ACG) in northwestern Costa Rica since 1978. The aim of the work was to describe the diversity and interactions of Lepidoptera and their [...] Read more.
Foliage-feeding wild caterpillars have been collected and reared year-round by 1–30 rural resident parataxonomists in the Area de Conservación Guanacaste (ACG) in northwestern Costa Rica since 1978. The aim of the work was to describe the diversity and interactions of Lepidoptera and their associations with larval food plants and parasitoids in a diverse tropical community. A total of 457,816 caterpillars developed into a moth or butterfly, and these were identified to the family and species/morphospecies, with 151,316 having been successfully barcoded and assigned a Barcode Index Number (BIN) and/or “scientific name”. The host food plant was usually identified to the species or morphospecies. In addition to adult moths and butterflies, rearings also yielded many hundreds of species of parasitic wasps and tachinid flies, many of which were also DNA-barcoded and assigned a name and/or BIN. Increasingly over recent years, these have been identified or described by expert taxonomists. Here, we provide a summary of the number of species of ichneumonoid (Ichneumonidae and Braconidae) parasitoids of the caterpillars, their hosts, the host food plants involved, the bi- and tritrophic interactions, and their relationships to the caterpillar sampling effort. The dataset includes 16,133 and 9453 independent rearings of Braconidae and Ichneumonidae, respectively, collectively representing 31 subfamilies, all with parasitoid barcodes and host and host food plant species-level identifications. Host caterpillars collectively represented 2456 species, which, in turn, were collectively eating 1352 species of food plants. Species accumulation curves over time for parasitoids, hosts, and plants show various asymptotic trends. However, no asymptotic trends were detected for numbers of unique parasitoid–host and host–plant bitrophic interactions, nor for tritrophic interactions, after 1983, because climate change then began to conspicuously reduce caterpillar densities. Parasitoid host ranges, the proportions of specialists at the host species and host genus levels, host family utilisation, and host guild sizes show some differences among taxa and are discussed in turn. Ichneumonidae are shown to preferentially parasitise caterpillars of larger-bodied hosts compared to Braconidae. Several of the host plant species from which caterpillars were collected have been introduced from outside of the Americas and their utilisation by endemic parasitoids is described. The obligately hyperparasitoid ichneumonid subfamily Mesochorinae is dealt with separately and its strong association with microgastrine braconid primary parasitoids is illustrated. We discuss the implications for studies of tropical insect community food web ecology and make suggestions for future work. The aim was to make available the data from this remarkable study and to provide an overview of what we think are some of the more interesting relationships that emerge—other scientists/readers are expected to have different questions that they will go on to explore the data to answer. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

15 pages, 8611 KB  
Article
Importance of Host Feeding in the Biological Control of Insect Pests: Case Study of Egg Parasitoid Species (Hymenoptera: Chalcidoidea: Trichogrammatidae)
by Tomas Cabello, Juan Ramón Gallego, Inmaculada Lopez, Manuel Gamez and Jozsef Garay
Insects 2024, 15(7), 496; https://doi.org/10.3390/insects15070496 - 3 Jul 2024
Cited by 4 | Viewed by 3352
Abstract
Over recent decades, intraguild predation (IGP) has attracted special attention, both from the theoretical and practical standpoints. The present paper addresses the interference competition between two Trichogramma species (egg parasitoids)—on the one hand, the extrinsic interactions (i.e., the indirect competition between female T. [...] Read more.
Over recent decades, intraguild predation (IGP) has attracted special attention, both from the theoretical and practical standpoints. The present paper addresses the interference competition between two Trichogramma species (egg parasitoids)—on the one hand, the extrinsic interactions (i.e., the indirect competition between female T. achaeae and T. brassicae), and on the other, the intrinsic interactions between the larvae of both species. Furthermore, T. achaeae is a better competitor than T. brassicae due to a dual mechanism—the former acts as a facultative hyperparasitoid of the latter, exclusively considering parasitism relationships as well as presenting predation activity by host feeding, which gives preference to eggs previously parasitized by T. brassicae over non-parasitized eggs. Both mechanisms are dependent on the prey density, which is demonstrated by a change in the functional response (i.e., the relationship between the numbers of prey attacked at different prey densities) of T. achaeae adult female—it changes from type II (i.e., initial phase in which the number of attacked targets increases hyperbolically and then reaches an asymptote, reflecting the handling capacity of the predator), in the absence of competition (an instantaneous search rate of a′ = 9.996 ± 4.973 days−1 and a handling time of Th = 0.018 ± 0.001 days), to type I (i.e., linear increase in parasitism rate as host densities rise, until reaching a maximum parasitism rate, and an instantaneous search rate of a′ = 0.879 ± 0.072 days−1 and a handling time of Th ≈ 0) when interference competition is present. These results show that there is a greater mortality potential of this species, T. achaeae, in conditions of competition with other species, T. brassicae in this case. Based on this, their implications in relation to the biological control of pests by parasitoid species are discussed. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 7756 KB  
Article
Molecular Data Confirm Interspecific Limits of Four Alloxysta and One Phaenoglyphis Species of Parasitic Wasps within the Subfamily Charipinae (Cynipoidea: Figitidae)
by Mar Ferrer-Suay, Mariana Bulgarella, George E. Heimpel, Ehsan Rakhshani and Jesús Selfa
Insects 2024, 15(5), 354; https://doi.org/10.3390/insects15050354 - 14 May 2024
Cited by 4 | Viewed by 1695
Abstract
The hymenopteran subfamily Charipinae (Cynipoidea: Figitidae) consist of a group of parasitic wasps that are exclusive hyperparasitoids of Hemipteran. The species boundaries in Charipinae have historically been unclear. While diagnostic morphological features have been established for the stepwise separation of species, it is [...] Read more.
The hymenopteran subfamily Charipinae (Cynipoidea: Figitidae) consist of a group of parasitic wasps that are exclusive hyperparasitoids of Hemipteran. The species boundaries in Charipinae have historically been unclear. While diagnostic morphological features have been established for the stepwise separation of species, it is recommended to confirm those limits using molecular data. Here, we focus on the genera Alloxysta Förster, 1869 and Phaenoglyphis Förster, 1869, both of which contain species that are hyperparasitoids of aphids. We sequenced three genes (mitochondrial COI and 16S rDNA, and nuclear ITS2 rDNA) from specimens that were identified as belonging to five species: Alloxysta brevis (Thomson, 1862), A. castanea (Hartig, 1841), A. ramulifera (Thomson, 1862), A. victrix (Westwood, 1833), and Phaenoglyphis villosa (Hartig, 1841). The phylogeny resulting from concatenating these genes supported the species status of the five morphologically identified taxa, with P. villosa nested within Alloxysta. Our study thus indicates that these molecular markers can successfully distinguish charipine species, and also indicates that the genera Alloxysta and Phaenoglyphis may be more closely related than previously hypothesized. We also present the first estimates of genetic distances for these species. Future studies that include more species, loci, and/or genomic data will complement our research and help determine species relationships within the Charipinae subfamily. Full article
(This article belongs to the Collection Hymenoptera: Biology, Taxonomy and Integrated Management)
Show Figures

Figure 1

23 pages, 2375 KB  
Article
Does This Look Infected? Hidden Host Plant Infection by the Pathogen Botrytis cinerea Alters Interactions between Plants, Aphids and Their Natural Enemies in the Field
by Norhayati Ngah, Rebecca L. Thomas and Mark D. E. Fellowes
Insects 2024, 15(5), 347; https://doi.org/10.3390/insects15050347 - 12 May 2024
Cited by 2 | Viewed by 2171
Abstract
Few studies have considered whether hidden (asymptomatic) plant pathogen infection alters ecological interactions at the higher trophic levels, even though such infection still affects plant physiology. We explored this question in two field experiments, where two varieties of lettuce (Little Gem, Tom Thumb) [...] Read more.
Few studies have considered whether hidden (asymptomatic) plant pathogen infection alters ecological interactions at the higher trophic levels, even though such infection still affects plant physiology. We explored this question in two field experiments, where two varieties of lettuce (Little Gem, Tom Thumb) infected with Botrytis cinerea were either (1) naturally colonised by aphids or (2) placed in the field with an established aphid colony. We then recorded plant traits and the numbers and species of aphids, their predators, parasitoids and hyperparasitoids. Infection significantly affected plant quality. In the first experiment, symptomatically infected plants had the fewest aphids and natural enemies of aphids. The diversity and abundance of aphids did not differ between asymptomatically infected and uninfected Little Gem plants, but infection affected the aphid assemblage for Tom Thumb plants. Aphids on asymptomatically infected plants were less attractive to predators and parasitoids than those on uninfected plants, while hyperparasitoids were not affected. In the second experiment, when we excluded natural enemies, aphid numbers were lower on asymptomatically and symptomatically infected plants, but when aphid natural enemies were present, this difference was removed, most likely because aphids on uninfected plants attracted more insect natural enemies. This suggests that hidden pathogen infection may have important consequences for multitrophic interactions. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

23 pages, 4517 KB  
Article
Aroplectrus dimerus (Hymenoptera: Eulophidae), Ectoparasitoid of the Nettle Caterpillar, Oxyplax pallivitta (Lepidoptera: Limacodidae): Evaluation in the Hawaiian Islands
by Juliana A. Yalemar, Walter T. Nagamine, Renato C. Bautista, Dexter Y. Cho, Larry M. Nakahara and Mohsen M. Ramadan
Life 2024, 14(4), 509; https://doi.org/10.3390/life14040509 - 15 Apr 2024
Cited by 1 | Viewed by 3103
Abstract
The stinging nettle caterpillar, Oxyplax (syn. Darna) pallivitta (Lepidoptera: Limacodidae), is a serious invasive pest of agricultural products and a health hazard on the Hawaiian Islands first discovered in 2001. Nursery workers and homeowners have been stung by the caterpillars while handling [...] Read more.
The stinging nettle caterpillar, Oxyplax (syn. Darna) pallivitta (Lepidoptera: Limacodidae), is a serious invasive pest of agricultural products and a health hazard on the Hawaiian Islands first discovered in 2001. Nursery workers and homeowners have been stung by the caterpillars while handling their plants, especially rhapis palms (Rhapis sp.). Throughout its invaded range, it causes widespread damage, including the many cultivated and native palm species that have grown in Hawaii. Larvae contain urticating hairs that secrete a toxin, causing painful skin swelling and irritation on contact. Horticulture and nursery products impacted by the limacodid pest are estimated at $84.3 million (2018 value). Suppression efforts with pesticides and lure traps were ineffective, and the moth population continued to spread to major Hawaiian Islands (Hawaii, Kauai, Maui, Oahu). The introduction of specific biological control agents from the native region was thought to be the long-term solution for this invasive pest. Initial exploration in Indonesia and Thailand resulted in the introduction of a pupal ectoparasitoid, Nesolynx sp. (Hymenoptera: Eulophidae: Tetrastichinae), that was not specific. The oriental wasp, Aroplectrus dimerus Lin (Hymenoptera: Eulophidae: Eulophinae), idiobiont gregarious ectoparasitoid of the stinging nettle caterpillar, was introduced from Taiwan in 2004 for host specificity studies and biocontrol in Hawaii. Host range testing showed the parasitoid attacked only limacodid species, and it was approved for field release in 2010. The parasitoid identity, host specificity under containment facility conditions, reproductive performance, and colonization on the major infested sites were assessed. A total of 13,379 parasitoids were colonized on 162 release sites on four Hawaiian Islands. Evaluations were conducted using field surveys of larvae, pupal counts, and male lure traps. Field parasitism was thoroughly investigated on Oahu Island, averaging 18.9 ± 5.6% of 3923 collected larvae during 2010–2023. The numbers of male moths caught/trap/month were significantly reduced on Oahu Island (p < 0.05). Recently, the hyperparasitoid, Pediobius imbreus Walker (Hymenoptera: Eulophidae: Entedoninae), was detected, reducing the efficiency of A. dimerus in the field. The mean hyperparasitism of A. dimerus pupae was 27.3 ± 7.6% on Oahu Island. There was no detailed biological assessment for A. dimerus or its field evaluation available in scientific literature. Results were discussed regarding the potential use of A. dimerus in biocontrol elsewhere if the stinging nettle caterpillar was invaded in the future. Full article
Show Figures

Figure 1

15 pages, 1627 KB  
Article
Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile
by Jeniffer K. Alvarez-Baca, Xiomara Montealegre, Armando Alfaro-Tapia, Francisca Zepeda-Paulo, Joan Van Baaren, Blas Lavandero and Cécile Le Lann
Insects 2023, 14(3), 288; https://doi.org/10.3390/insects14030288 - 15 Mar 2023
Cited by 5 | Viewed by 3227
Abstract
By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies’ diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the [...] Read more.
By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies’ diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid– parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 1541 KB  
Article
Intraguild Predation of Hippodamia variegata on Aphid Mummies in Cotton Field
by Shuying Dou, Bing Liu, Yangtian Liu, Jianping Zhang and Yanhui Lu
Insects 2023, 14(1), 81; https://doi.org/10.3390/insects14010081 - 13 Jan 2023
Cited by 12 | Viewed by 2930
Abstract
Intraguild predation among arthropod predators in agricultural ecosystems may have a negative impact on biological control. At present, there are few direct reports on trophic relationships among participants of predation in field groups. In this study, we measured the feeding choices of Hippodamia [...] Read more.
Intraguild predation among arthropod predators in agricultural ecosystems may have a negative impact on biological control. At present, there are few direct reports on trophic relationships among participants of predation in field groups. In this study, we measured the feeding choices of Hippodamia variegata (Goeze) towards mummies with different densities of Aphis gossypii Glover. The dynamics of the occurrence of mummies in the cotton field were investigated over 2017–2019. Singleplex PCR and multiplex PCR were used to detect the predation of 2090 H. variegata individuals on aphids and mummies in Xinjiang cotton field, which revealed the intraguild predation frequency between H. variegata and various parasitoids. There was no obvious feeding preference of H. variegata towards live aphids or mummies, which mainly depended on the relative density of prey. Among the four species of aphids detected in H. variegata, A. gossypii had a high detection rate and was the main prey source of the ladybeetle in the cotton filed. Mostly, ladybeetles consumed parasitoids through mummies, with 6.39% directly feeding on adult parasitoids. H. variegata had strong trophic links to both parasitoids and aphids. We established a food web of aphids–primary parasitoids–hyperparasitoids–H. variegata, which can be used to evaluate the pest control ability of H. variegata from a new perspective. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 467 KB  
Review
Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology
by Željko Tomanović, Nickolas G. Kavallieratos, Zhengpei Ye, Erifili P. Nika, Andjeljko Petrović, Ines M. G. Vollhardt and Christoph Vorburger
Insects 2022, 13(12), 1142; https://doi.org/10.3390/insects13121142 - 12 Dec 2022
Cited by 11 | Viewed by 5019
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology [...] Read more.
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid–parasitoid–hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
Back to TopTop