Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Insect Sampling
2.4. Non-Emerged-Primary Aphid Parasitoids and Hyperparasitoids Identification
2.4.1. DNA Extraction and Quantification
2.4.2. PCR Amplification
2.4.3. Sequencing and Editing
2.5. Quantitative Food Web Construction
2.6. Food Web Metrics
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, R.M. Will a large complex system be stable? Nature 1972, 238, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Ricklefs, R. Environmental heterogeneity and plant species diversity: A hypothesis. Am. Nat. 1976, 111, 376–381. [Google Scholar] [CrossRef]
- Hunter, M.D.; Price, P.W. Playing Chutes and Ladders: Heterogeneity and the Relative Roles of Bottom-Up and Top-Down Forces in Natural Communities. Ecology 1992, 73, 724–732. Available online: http://www.jstor.org/stable/1940152 (accessed on 21 September 2022). [CrossRef]
- Wright, D.H. Species-Energy Theory: An Extension of Species-Area Theory. Oikos 1983, 41, 496. [Google Scholar] [CrossRef] [Green Version]
- Tylianakis, J.M.; Laliberté, E.; Nielsen, A.; Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 2010, 143, 2270–2279. [Google Scholar] [CrossRef]
- Haddad, N.M.; Crutsinger, G.M.; Gross, K.; Haarstad, J.; Tilman, D. Plant diversity and the stability of foodwebs. Ecol. Lett. 2011, 14, 42–46. [Google Scholar] [CrossRef]
- Moreira, X.; Mooney, K.A. Influence of plant genetic diversity on interactions between higher trophic levels. Biol. Lett. 2013, 9, 20130133. [Google Scholar] [CrossRef] [Green Version]
- Gagic, V.; Hänke, S.; Thies, C.; Scherber, C.; Tomanović, Ž.; Tscharntke, T. Agricultural intensification and cereal aphid-parasitoid-hyperparasitoid food webs: Network complexity, temporal variability and parasitism rates. Oecologia 2012, 170, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.M.; Brose, U.; Dunne, J.A.; Hall, R.O.; Hladyz, S.; Kitching, R.L.; Martinez, N.D.; Rantala, H.; Romanuk, T.N.; Stouffer, D.B.; et al. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 2012, 27, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Roubinet, E.; Jonsson, T.; Malsher, G.; Staudacher, K.; Traugott, M.; Ekbom, B.; Jonsson, M. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 2018, 8, 8054. [Google Scholar] [CrossRef] [Green Version]
- Tylianakis, J.M.; Binzer, A. Effects of global environmental changes on parasitoid-host food webs and biological control. Biol. Control 2014, 75, 77–86. [Google Scholar] [CrossRef]
- Bartomeus, I.; Gravel, D.; Tylianakis, J.M.; Aizen, M.A.; Dickie, I.A.; Bernard-Verdier, M. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 2016, 30, 1894–1903. [Google Scholar] [CrossRef] [Green Version]
- Balzan, M.V.; Bocci, G.; Moonen, A.C. Utilisation of plant functional diversity in wildflower strips for the delivery of multiple agroecosystem services. Entomol. Exp. Appl. 2016, 158, 304–319. [Google Scholar] [CrossRef]
- Hatt, S.; Mouchon, P.; Lopes, T.; Francis, F. Effects of wildflower strips and an adjacent forest on aphids and their natural enemies in a pea field. Insects 2017, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Bugg, R.L.; Waddington, C. Using cover crops to manage arthropod pests of orchards: A review. Agric. Ecosyst. Environ. 1994, 50, 11–28. [Google Scholar] [CrossRef]
- Denys, C.; Tscharntke, T. Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 2002, 130, 315–324. [Google Scholar] [CrossRef]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; De Clerck, F.; Grab, H.; Gratton, C.; Hunt, L.; Larsen, A.E.; Martínez-Salinas, A.; et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [Green Version]
- Alarcón-Segura, V.; Grass, I.; Breustedt, G.; Rohlfs, M.; Tscharntke, T. Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. J. Appl. Ecol. 2022, 59, 1513–1523. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Pickett, C.H.; Roltsch, W.; Corbett, A. The role of rubidium marked natural enemy refuge in the establishment and movement of Bemisia parasitoids. Int. J. Pest Manag. 2004, 50, 183–191. [Google Scholar] [CrossRef]
- Quijas, S.; Schmid, B.; Balvanera, P. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic Appl. Ecol. 2010, 11, 582–593. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Srivastava, D.S.; Duffy, J.E.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C.; Cadotte, M.W.; Carroll, I.T.; Weis, J.J.; et al. Effects of biodiversity on the functioning of ecosystems: A summary of 164 experimental manipulations of species richness. Ecology 2009, 90, 854. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 2017, 62, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.; Pervin, M.; Mondal, F.; Mala, M. Habitat Management: A key option to enhance natural enemies of crop pest. Univers. J. Plant Sci. 2016, 4, 50–57. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Jedlicka, J.A.; Bothwell, S.G.; Moreno, C.R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 573–592. [Google Scholar] [CrossRef]
- Poveda, K.; Gómez, M.I.; Martínez, E. Diversification practices: Their effect on pest regulation and production. Rev. Colomb. Entomol. 2008, 34, 131–144. [Google Scholar] [CrossRef]
- Jeavons, E.; van Baaren, J.; Le Ralec, A.; Buchard, C.; Duval, F.; Llopis, S.; Postic, E.; Le Lann, C. Third and fourth trophic level composition shift in an aphid–parasitoid–hyperparasitoid food web limits aphid control in an intercropping system. J. Appl. Ecol. 2021, 59, 300–313. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.; Blitzer, E.; Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef]
- Gagic, V.; Bartomeus, I.; Jonsson, T.; Taylor, A.; Winqvist, C.; Fischer, C.; Slade, E.M.; Steffan-Dewenter, I.; Emmerson, M.; Potts, S.G.; et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142620. [Google Scholar] [CrossRef] [Green Version]
- Maisonhaute, J.É.; Labrie, G.; Lucas, E. Direct and indirect effects of the spatial context on the natural biocontrol of an invasive crop pest. Biol. Control 2017, 106, 64–76. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Morris, R.J. Ecological Networks Across Environmental Gradients. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 25–48. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Tscharntke, T.; Lewis, O.T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 2007, 445, 202–205. [Google Scholar] [CrossRef]
- Holt, D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 1977, 12, 197–229. [Google Scholar] [CrossRef]
- Bukovinszky, T.; Van Veen, F.J.F.; Jongema, Y.; Dicke, M. Direct and indirect effects of resource quality on food web structure. Science 2008, 319, 804–807. [Google Scholar] [CrossRef]
- Montoya, J.M.; Rodríguez, M.A.; Hawkins, B.A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 2003, 6, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Derocles, S.A.P.; Le Ralec, A.; Besson, M.M.; Maret, M.; Walton, A.; Evans, D.M.; Plantegenest, M. Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats. Mol. Ecol. 2014, 23, 3900–3911. [Google Scholar] [CrossRef]
- van Altena, C.; Hemerik, L.; de Ruiter, P.C. Food web stability and weighted connectance: The complexity-stability debate revisited. Theor. Ecol. 2016, 9, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Mougi, A.; Kondoh, M. Diversity of interaction types and ecological community stability. Science 2012, 337, 349–351. [Google Scholar] [CrossRef]
- Kondoh, M.; Mougi, A. What kind of interaction-type diversity matters for community stability? In Adaptive Food Webs: Stability and Transitions of Real and Model Ecosystems; Moore, J., De Ruiter, P., McCann, K., Woltors, V., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 19–30. [Google Scholar] [CrossRef]
- Snyder, W.E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 2019, 135, 73–82. [Google Scholar] [CrossRef]
- Morris, R.J.; Lewis, O.T.; Godfray, H.C.J. Experimental evidence for apparent competition in a tropical forest food web. Nature 2004, 428, 310–313. [Google Scholar] [CrossRef]
- Müller, C.; Adriaanse, I.; Belshaw, W.; Godfray, H. The structure of an aphid-parasitoid community. J. Anim. Ecol. 1999, 68, 346–370. [Google Scholar] [CrossRef]
- Gagic, V.; Tscharntke, T.; Dormann, C.F.; Gruber, B.; Wilstermann, A.; Thies, C. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. R. Soc. B Biol. Sci. 2011, 278, 2946–2953. [Google Scholar] [CrossRef] [PubMed]
- Lohaus, K.; Vidal, S.; Thies, C. Farming practices change food web structures in cereal aphid-parasitoid-hyperparasitoid communities. Oecologia 2013, 171, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenheim, J.A. Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. Entomol. 1998, 43, 421–447. [Google Scholar] [CrossRef] [Green Version]
- Thies, C.; Roschewitz, I.; Tscharntke, T. The landscape context of cereal aphid-parasitoid interactions. Proc. R. Soc. B Biol. Sci. 2005, 272, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Marco, F.; Urbaneja, A.; Jaques, J.A.; Rugman-Jones, P.F.; Stouthamer, R.; Tena, A. Untangling the aphid-parasitoid food web in citrus: Can hyperparasitoids disrupt biological control? Biol. Control 2015, 81, 111–121. [Google Scholar] [CrossRef]
- Alvarez-Baca, J.K.; Montealegre, X.; Le Lann, C.; Van Baaren, J.; Lavandero, B. Effect of a cover crop on the aphid incidence is not explained by increased top-down regulation. PeerJ 2022, 10, e13299. [Google Scholar] [CrossRef]
- Montes, C.; Perez-Quezada, J.F.; Peña-Neira, A.; Tonietto, J. Climatic potential for viticulture in Central Chile. Aust. J. Grape Wine Res. 2012, 18, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef] [Green Version]
- DGAC. Reporte Climático 2018. Available online: www.meteochile.gob.cl (accessed on 3 September 2022).
- Blackman, R.; Eastop, V. Taxonomic Issues; John Wiley & Sons: Hoboken, NJ, USA; Chichester, UK, 2007. [Google Scholar]
- Blackman, R.; Eastop, V. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons: Hoboken, NJ, USA; New York, NY, USA, 2000. [Google Scholar] [CrossRef] [Green Version]
- González, R. Insectos y Acaros de Importancia Agricola y Cuarentenaria en Chile; Universidad de Chile: Santiago, Chile, 1989. [Google Scholar] [CrossRef]
- Colfer, R.G.; Rosenheim, J.A. Predation on immature parasitoids and its impact on aphid suppression. Oecologia 2001, 126, 292–304. [Google Scholar] [CrossRef]
- Nieto Nafría, J.M.; Fuentes-Contreras, E.; Castro Colmenero, M.; Aldea Piera, M.; Ortego, J.; Mier Durante, M.P.; Durante, M.P.M. Catálogo de los áfidos (Hemiptera, Aphididae) de Chile, con plantas hospedadoras y distribuciones regional y provincial. Graellsia 2016, 72, e050. [Google Scholar] [CrossRef] [Green Version]
- Starý, P. The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Dtsch. Entomol. Z. 1995, 42, 113–138. [Google Scholar] [CrossRef]
- Tomanovic, Ž.; Petrovic, A.; Mitrovic, M.; Kavallieratos, N.; Stary, P.; Rakhshani, E.; Rashanipour, M.; Popovic, A.; Shukshuk, A.; Ivanovic, A. Molecular and morphological variability within the Aphidius colemani group with redescription of Aphidius platensis Brethes (Hymenoptera: Braconidae: Aphidiinae). Bull. Entomol. Res. 2014, 104, 552–565. [Google Scholar] [CrossRef]
- Hullé, M.; Chaubet, B.; Turpeau, E.; Simon, J.C. Encyclop’Aphid: A website on aphids and their natural enemies. Entomol. Gen. 2020, 40, 97–101. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Sint, D.; Traugott, M. Food Web Designer: A flexible tool to visualize interaction networks. J. Pest Sci. 2016, 89, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.F.; Frund, J.; Bluthgen, N.; Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Maunsell, S.C.; Kitching, R.L.; Burwell, C.J.; Morris, R.J. Changes in host-parasitoid food web structure with elevation. J. Anim. Ecol. 2015, 84, 353–363. [Google Scholar] [CrossRef]
- Beckett, S.; Devoto, M.; Felix, G.; Iriondo, J.; Op-Sahl, T.; Pinheiro, R.; Strauss, R.; Vazquez, D.; Clauset, A.; Rodriguez, M.; et al. Visualising Bipartite Networks and Calculating Some (Ecological) Indices; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Oksanen, F.J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, O.; Solymos, P.; Henry, M.; Stevens, H.; et al. Vegan: Community Ecology Package. R package Version 2.4-3. 2017. Available online: https://cran.r-project.org/package=vegan (accessed on 15 March 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S.; Adler, D.; Bates, D.; Baud-Bovy, G.; Ellison, S.; Firth, D.; Friendly, M.; Gorjanc, G.; Graves, S.; et al. Package “Car”. Companion to Applied Regression Depends R (>=3.2.0); R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Martínez, S.A.; Lavandero, B. The effect of landscape context on the biological control of Sitobion avenae: Temporal partitioning response of natural enemy guilds. J. Pest Sci. 2018, 91, 41–53. [Google Scholar] [CrossRef]
- Poelman, E.H.; Cusumano, A.; De Boer, J.G. The ecology of hyperparasitoids. Annu. Rev. Entomol. 2022, 67, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Völkl, W. Hyperparasitism: Multitrophic ecology and behavior. Annu. Rev. Entomol. 1999, 44, 291–315. [Google Scholar] [CrossRef]
- Buitenhuis, R.; McNeil, J.N.; Boivin, G.; Brodeur, J. The role of honeydew in host searching of aphid hyperparasitoids. J. Chem. Ecol. 2004, 30, 273–285. [Google Scholar] [CrossRef]
- Nakashima, Y.; Higashimura, Y.; Mizutani, K. Host discrimination and ovicide by aphid hyperparasitoids Asaphes suspensus (Hymenoptera: Pteromalidae) and Dendrocerus carpenteri (Hymenoptera: Megaspilidae). Appl. Entomol. Zool. 2016, 51, 609–614. [Google Scholar] [CrossRef]
- Sullivan, D.J. Insect hyperparasitism. Annu. Rev. Entomol. 1987, 32, 49–70. [Google Scholar] [CrossRef]
- Albrecht, M.; Duelli, P.; Schmid, B.; Müller, C.B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 2007, 76, 1015–1025. [Google Scholar] [CrossRef]
- Zepeda-Paulo, F.A.; Ortiz-Martínez, S.A.; Figueroa, C.C.; Lavandero, B. Adaptive evolution of a generalist parasitoid: Implications for the effectiveness of biological control agents. Evol. Appl. 2013, 6, 983–999. [Google Scholar] [CrossRef]
- Lérault, L.; Clavel, E.; Villegas, C.M.; Cabrera, N.; Jaloux, B.; Plantegenest, M.; Lavandero, B. Providing alternative hosts and nectar to aphid parasitoids in a plum orchard to determine resource complementarity and distance range effect on biological control. Agronomy 2022, 12, 77. [Google Scholar] [CrossRef]
- Veres, A.; Petit, S.; Conord, C.; Lavigne, C. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 2013, 166, 110–117. [Google Scholar] [CrossRef]
- Dong, Z.; Men, X.; Liu, S.; Zhang, Z. Food web structure of parasitoids in greenhouses is affected by surrounding landscape at different spatial scales. Sci. Rep. 2019, 9, 8442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Veen, F.J.F.; Müller, C.B.; Pell, J.K.; Godfray, H.C.J. Food web structure of three guilds of natural enemies: Predators, parasitoids and pathogens of aphids. J. Anim. Ecol. 2008, 77, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Raymond, L.; Plantegenest, M.; Gagic, V.; Navasse, Y.; Lavandero, B. Aphid parasitoid generalism: Development, assessment, and implications for biocontrol. J. Pest Sci. 2016, 89, 7–20. [Google Scholar] [CrossRef]
- Philpott, S.M.; Lucatero, A.; Bichier, P.; Egerer, M.H.; Jha, S.; Lin, B.; Liere, H. Natural enemy–herbivore networks along local management and landscape gradients in urban agroecosystems. Ecol. Appl. 2020, 30, e02201. [Google Scholar] [CrossRef]
Treatment | |||||||
---|---|---|---|---|---|---|---|
SV | OCC | Model Values | |||||
Index | Mean | SE | Mean | SE | d.f. | X2 | p-Value |
Species richness (S) | 6.67 | 2.96 | 2.50 | 0.65 | 1 | 6.89 | 0.01 |
Shannon–Weiner diversity index (H′) | 0.91 | 0.51 | 0.69 | 0.24 | 1 | 0.19 | 0.66 |
Simpson (1-D) index | 0.42 | 0.22 | 0.41 | 0.14 | 1 | 0.00 | 0.99 |
Evenness of Pielou index | 0.42 | 0.09 | 0.62 | 0.06 | 1 | 3.77 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Baca, J.K.; Montealegre, X.; Alfaro-Tapia, A.; Zepeda-Paulo, F.; Van Baaren, J.; Lavandero, B.; Le Lann, C. Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile. Insects 2023, 14, 288. https://doi.org/10.3390/insects14030288
Alvarez-Baca JK, Montealegre X, Alfaro-Tapia A, Zepeda-Paulo F, Van Baaren J, Lavandero B, Le Lann C. Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile. Insects. 2023; 14(3):288. https://doi.org/10.3390/insects14030288
Chicago/Turabian StyleAlvarez-Baca, Jeniffer K., Xiomara Montealegre, Armando Alfaro-Tapia, Francisca Zepeda-Paulo, Joan Van Baaren, Blas Lavandero, and Cécile Le Lann. 2023. "Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile" Insects 14, no. 3: 288. https://doi.org/10.3390/insects14030288