Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Homogeneous Charged Compression Ignition (HCCI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2678 KiB  
Article
Simulation-Based Study of NH3/H2-Dual Fueled HCCI Engine Performance: Effects of Blending Ratio, Equivalence Ratio, and Compression Ratio Using Detailed Chemical Kinetic Modeling
by Fatimoh Balogun, Aneesh Vasudev, Alireza Kakoee, Katriina Sirviö and Maciej Mikulski
Processes 2025, 13(7), 2049; https://doi.org/10.3390/pr13072049 - 27 Jun 2025
Viewed by 360
Abstract
Challenges associated with the homogeneous charge combustion ignition (HCCI) concept include combustion phasing control and a narrow operating window. To address the HCCI engine developmental needs, chemical kinetic solvers have been recently included in the commercial engine simulation toolchains like GT-Suite v2024 upward. [...] Read more.
Challenges associated with the homogeneous charge combustion ignition (HCCI) concept include combustion phasing control and a narrow operating window. To address the HCCI engine developmental needs, chemical kinetic solvers have been recently included in the commercial engine simulation toolchains like GT-Suite v2024 upward. This study investigates the feasibility of ammonia (NH3) and hydrogen (H2) as dual fuels in homogenous charge compression ignition (HCCI) engines, leveraging chemical kinetics modeling via GT-Suite software v2024. A validated baseline model was adapted with NH3/H2 injectors and simulated across varying blending ratios (BR), compression ratios (CR), air–fuel equivalence ratios (ER), and engine speeds. Results reveal that adding 10% H2 to NH3 significantly improves ignition. Optimal performance was observed at a CR of 20 and a lean mixture, achieving higher indicated thermal efficiency (about 40%), while keeping the intrinsic advantages of zero-carbon fuel. However, NOx emissions increased with higher ER due to elevated combustion temperatures. The study emphasizes the trade-offs between efficiency and NOx emissions under tested conditions. Finally, despite the single-zone model limitations in neglecting thermal stratification, this study shows that kinetic modeling has great potential for effectively predicting trends in HCCI, thereby demonstrating the promise of NH3/H2 blends in HCCI engines for cleaner and efficient combustion, paving the way for advanced dual-fuel combustion concepts. Full article
Show Figures

Figure 1

25 pages, 5327 KiB  
Article
Optimization of Energy Management Strategy for Series Hybrid Electric Vehicle Equipped with Dual-Mode Combustion Engine Under NVH Constraints
by Shupeng Zhang, Hongnan Wang, Chengkai Yang, Zeping Ouyang and Xiaoxin Wen
Appl. Sci. 2024, 14(24), 12021; https://doi.org/10.3390/app142412021 - 22 Dec 2024
Cited by 2 | Viewed by 1580
Abstract
Energy management strategies (EMSs) are a core technology in hybrid electric vehicles (HEVs) and have a significant impact on their fuel economy. Optimal solutions for EMSs in the literature usually focus on improving fuel efficiency by operating the engine within a high efficiency [...] Read more.
Energy management strategies (EMSs) are a core technology in hybrid electric vehicles (HEVs) and have a significant impact on their fuel economy. Optimal solutions for EMSs in the literature usually focus on improving fuel efficiency by operating the engine within a high efficiency range, without considering the drivability, which is affected by noise–vibration–harshness (NVH) constraints at low vehicle speeds. In this paper, a dual-mode combustion engine was implemented in a plug-in series hybrid electric vehiclethat could operate efficiently either at low loads in homogeneous charge compression ignition (HCCI) mode or at high loads in spark ignition (SI) mode. An equivalent consumption minimization strategy (ECMS) combined with a dual-loop particle swarm optimization (PSO) algorithm was designed to solve the optimal control problem. A MATLAB/Simulink simulation was performed using a well-calibrated model of the target HEV to validate the proposed method, and the results showed that it can achieve a reduction in fuel consumption of around 1.3% to 9.9%, depending on the driving cycle. In addition, the operating power of the battery can be significantly reduced, which benefits the health of the battery. Furthermore, the proposed ECMS-PSO is computationally efficient, which guarantees fast offline optimization and enables real-time applications. Full article
(This article belongs to the Special Issue Recent Developments in Electric Vehicles)
Show Figures

Figure 1

7 pages, 1705 KiB  
Proceeding Paper
Study of the Negative Work Area in the p-V Diagram of an HCCI Engine
by Csaba Tóth-Nagy
Eng. Proc. 2024, 79(1), 22; https://doi.org/10.3390/engproc2024079022 - 4 Nov 2024
Viewed by 808
Abstract
Homogeneously charged compression ignition is a promising combustion process that is proven to increase combustion efficiency and decrease exhaust emissions when compared to Otto or Diesel engine efficiencies and emissions. The HCCI process can be considered an advancement on the path to sustainability. [...] Read more.
Homogeneously charged compression ignition is a promising combustion process that is proven to increase combustion efficiency and decrease exhaust emissions when compared to Otto or Diesel engine efficiencies and emissions. The HCCI process can be considered an advancement on the path to sustainability. However, improper control of the start of combustion causes the efficiency of the engine to drop significantly. The reason for this efficiency drop is that an early start of combustion causes the piston on the upward stroke to experience increased cylinder pressure after the combustion process is complete. The piston must further compress the cylinder content until it reaches the top dead center. During this process, the piston still experiences an increased gas force on the way towards TDC, having to invest extra disadvantageous work into the compression stroke, causing a negative work area in the pressure–volume diagram of the engine. The present study introduces the negative work area in the p-V diagram of an HCCI engine. It describes the phenomenon and explores the reasons behind it. It also investigates some of the factors affecting the negative work area in the p-V diagram. Full article
(This article belongs to the Proceedings of The Sustainable Mobility and Transportation Symposium 2024)
Show Figures

Figure 1

14 pages, 2147 KiB  
Article
Performance of a Methanol-Fueled Direct-Injection Compression-Ignition Heavy-Duty Engine under Low-Temperature Combustion Conditions
by Mark Treacy, Leilei Xu, Hesameddin Fatehi, Ossi Kaario and Xue-Song Bai
Energies 2024, 17(17), 4307; https://doi.org/10.3390/en17174307 - 28 Aug 2024
Cited by 2 | Viewed by 1740
Abstract
Low-temperature combustion (LTC) concepts, such as homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC), aim to reduce in-cylinder temperatures in internal combustion engines, thereby lowering emissions of nitrogen oxides (NOx) and soot. These LTC concepts are particularly attractive for [...] Read more.
Low-temperature combustion (LTC) concepts, such as homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC), aim to reduce in-cylinder temperatures in internal combustion engines, thereby lowering emissions of nitrogen oxides (NOx) and soot. These LTC concepts are particularly attractive for decarbonizing conventional diesel engines using renewable fuels such as methanol. This paper uses numerical simulations and a finite-rate chemistry model to investigate the combustion and emission processes in LTC engines operating with pure methanol. The aim is to gain a deeper understanding of the physical and chemical processes in the engine and to identify optimal engine operation in terms of efficiency and emissions. The simulations replicated the experimentally observed trends for CO, unburned hydrocarbons (UHCs), and NOx emissions, the required intake temperature to achieve consistent combustion phasing at different injection timings, and the distinctively different combustion heat release processes at various injection timings. It was found that the HCCI mode of engine operation required a higher intake temperature than PPC operation due to methanol’s low ignition temperature in fuel-richer mixtures. In the HCCI mode, the engine exhibited ultra-low NOx emissions but higher emissions of UHC and CO, along with lower combustion efficiency compared to the PPC mode. This was attributed to poor combustion efficiency in the near-wall regions and engine crevices. Low emissions and high combustion efficiency are achievable in PPC modes with a start of injection around a crank angle of 30° before the top dead center. The fundamental mechanism behind the engine performance is analyzed. Full article
(This article belongs to the Special Issue Towards Climate Neutral Thermochemical Energy Conversion)
Show Figures

Figure 1

16 pages, 3531 KiB  
Article
Combustion Test for the Smallest Reciprocating Piston Internal Combustion Engine with HCCI on the Millimeter Scale
by Huichao Shang, Li Zhang, Zhigang Tang, Jinlin Han, Yingzhang Wang and Tao Zhang
Appl. Sci. 2024, 14(16), 7359; https://doi.org/10.3390/app14167359 - 21 Aug 2024
Viewed by 1286
Abstract
Micro reciprocating piston internal combustion engines are potentially desirable for high-energy density micro power sources. However, complex subsystem functions hinder the downsizing of reciprocating piston internal combustion engines. The homogeneous charge compression-ignition (HCCI) combustion mode requires no external ignition system; it contributes to [...] Read more.
Micro reciprocating piston internal combustion engines are potentially desirable for high-energy density micro power sources. However, complex subsystem functions hinder the downsizing of reciprocating piston internal combustion engines. The homogeneous charge compression-ignition (HCCI) combustion mode requires no external ignition system; it contributes to structural simplification of the reciprocating piston internal combustion engines under a micro space constraint but has not been adequately verified at the millimeter scale. The study used a millimeter-scale HCCI reciprocating piston internal combustion engine fueled by a mixture of kerosene, ether, castor oil, and isopropyl nitrate for combustion investigation. The test engine with a displacement of 0.547 cc is the smallest reciprocating piston internal combustion engine known to have undergone in-cylinder combustion diagnosis. It is observed that the HCCI combustion mode at the millimeter scale can realize stable combustion with excellent cooperation for the thermodynamic cycle under appropriate structural and operating conditions, which is essentially not inferior to those in conventional-sized reciprocating piston internal combustion engines. This finding helps the next step of scaling down reciprocating piston internal combustion engines. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 3970 KiB  
Article
Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions
by Andrés David Morales Rojas, Sebastián Heredia Quintana and Iván Darío Bedoya Caro
Sustainability 2024, 16(5), 2026; https://doi.org/10.3390/su16052026 - 29 Feb 2024
Cited by 2 | Viewed by 2712
Abstract
One of the key factors of the current energy transition is the use of hydrogen (H2) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential [...] Read more.
One of the key factors of the current energy transition is the use of hydrogen (H2) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential to reduce carbon dioxide (CO2) emissions. In recent years, hydrogen or hydrogen-rich mixtures in internal combustion engines (ICEs) have gained popularity, with numerous reports documenting their use in spark ignition (SI) and compression ignition (CI) engines. Homogeneous charge compression ignition (HCCI) engines have the potential for substantial reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions, and the use of hydrogen along with this kind of combustion could substantially reduce CO2 emissions. However, there have been few reports using hydrogen in HCCI engines, with most studies limited to evaluating technical feasibility, combustion characteristics, engine performance, and emissions in laboratory settings at sea level. This paper presents a study of HCCI combustion using hydrogen in a stationary air-cooled Lombardini 25 LD 425-2 modified diesel engine located at 1495 m above sea level. An experimental phase was conducted to determine the intake temperature requirements and equivalence ratios for stable HCCI combustion. These results were compared with previous research carried out at sea level. To the best knowledge of the authors, this is the first report on the combustion and operational limits for an HCCI engine fueled with hydrogen under the mentioned specific conditions. Equivalence ratios between 0.21 and 0.28 and intake temperatures between 188 °C and 235 °C effectively achieved the HCCI combustion. These temperature values were, on average, 100 °C higher than those reported in previous studies. The maximum value for the indicated mean effective pressure (IMEPn) was 1.75 bar, and the maximum thermal efficiency (ITEn) was 34.5%. The achieved results are important for the design and implementation of HCCI engines running solely on hydrogen in developing countries located at high altitudes above sea level. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

5 pages, 1293 KiB  
Proceeding Paper
Three-Dimensional Design and Prediction of Temperature Distribution of a Partially Ceramic Coated Piston Used in Homogeneous Charge Compression Ignition Engine
by C. Sakthi Rajan, J. Venkatesh, K. Jayakumar and G. Prakash Kanna
Eng. Proc. 2024, 61(1), 21; https://doi.org/10.3390/engproc2024061021 - 31 Jan 2024
Cited by 1 | Viewed by 820
Abstract
The goal of this research is to analyze the effects of a partial thermal barrier coating on piston temperature distribution in homogeneous charge compression ignition (HCCI) engines, which are investigated using La2Zr2O7 nanocoating with 1 mm thickness for [...] Read more.
The goal of this research is to analyze the effects of a partial thermal barrier coating on piston temperature distribution in homogeneous charge compression ignition (HCCI) engines, which are investigated using La2Zr2O7 nanocoating with 1 mm thickness for numerical analysis. The thermal assessments of both conventional and coated pistons were performed using ANSYS V16. Engine testing was conducted on a single-cylinder, water-cooled CI engine for both the coated and conventional casings. According to the analytical results, the coated piston component’s surface temperature increased to 53 °C, which increased the temperature of the air–fuel mixture in the crevice and wall quenching zones. As a result, cold start HC emissions dramatically drop without impacting engine performance compared to normal engines. The maximum HC emission reduction over the standard engine was 43.2%. Full article
Show Figures

Figure 1

16 pages, 15542 KiB  
Article
Study on the Effect of Coupled Internal and External EGR on Homogeneous Charge Compression Ignition under High Pressure Rise Rate
by Huayu Tian, Jun Wang, Ran Zhang, Fan Wang, Yan Su and Yaodong Wang
Energies 2024, 17(1), 175; https://doi.org/10.3390/en17010175 - 28 Dec 2023
Cited by 4 | Viewed by 1330
Abstract
This paper investigated the effects of exhaust gas recirculation (EGR) on homogeneous charge compression ignition (HCCI) combustion in internal combustion engines. The exhaust valve closing (EVC) timings were scanned to obtain a set of baseline operating points for HCCI, and the coupling control [...] Read more.
This paper investigated the effects of exhaust gas recirculation (EGR) on homogeneous charge compression ignition (HCCI) combustion in internal combustion engines. The exhaust valve closing (EVC) timings were scanned to obtain a set of baseline operating points for HCCI, and the coupling control of the internal and external EGR was explored. The results indicate that external EGR delays HCCI ignition timing and slows down the combustion speed. As the internal EGR rate increases, the maximum external EGR ratio that can be tolerated decreases. For HCCI detonation operating points with low internal EGR rates, the addition of up to 10% of external EGR can control the pressure rise rate peak to less than 10 bar/°CA, resulting in reduced fuel consumption and increased indicated mean effective pressure (IMEP). However, for HCCI operating points with high internal EGR rates, the effect of external EGR is mainly observed in the control of the pressure rise rate, with limited increase in IMEP. Additionally, an increasing external EGR rate leads to a significant decrease in nitrogen oxide (NOx) emissions, while carbon monoxide (CO) and hydrocarbon (HC) emissions slightly increase before engine misfire occurs. These findings suggest that the coupling control of internal and external EGR should be explored further, particularly in relation to reducing the negative valve overlap (NVO) angle and improving combustion efficiency. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 4350 KiB  
Article
Frictional Losses of Ring Pack in SI and HCCI Engine
by Grzegorz Koszalka and Andrzej Wolff
Energies 2023, 16(24), 8096; https://doi.org/10.3390/en16248096 - 16 Dec 2023
Viewed by 1320
Abstract
The vast majority of research dedicated to enhancing the homogenous charge compression ignition (HCCI) low-temperature combustion system is focused on improving controllability, efficiency and emissions. This article aims to assess the impact of HCCI combustion on the operation of the piston ring system. [...] Read more.
The vast majority of research dedicated to enhancing the homogenous charge compression ignition (HCCI) low-temperature combustion system is focused on improving controllability, efficiency and emissions. This article aims to assess the impact of HCCI combustion on the operation of the piston ring system. Utilizing the measured pressures in the combustion chamber of a single-cylinder research engine operating in spark ignition (SI) and HCCI modes at various loads, simulations were carried out using an advanced ring pack model. This model integrates the gas flow, ring dynamics and ring mixed lubrication models. Simulations revealed that differences in the pressure above the piston between the HCCI and SI combustion significantly influence ring pack performance. The predicted energy losses due to the friction of piston rings against the cylinder liner are up to 5% higher in the HCCI engine than in the SI engine. This identified drawback diminishes the advantages of the HCCI engine resulting from higher thermal efficiency, and efforts should be made to minimize this negative impact. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application—2nd Edition)
Show Figures

Figure 1

16 pages, 1244 KiB  
Article
LSTM for Modeling of Cylinder Pressure in HCCI Engines at Different Intake Temperatures via Time-Series Prediction
by Moritz Sontheimer, Anshul-Kumar Singh, Prateek Verma, Shuo-Yan Chou and Yu-Lin Kuo
Machines 2023, 11(10), 924; https://doi.org/10.3390/machines11100924 - 25 Sep 2023
Cited by 3 | Viewed by 1762
Abstract
Modeling engines using physics-based approaches is a traditional and widely-accepted method for predicting in-cylinder pressure and the start of combustion (SOC). However, developing such intricate models typically demands significant effort, time, and knowledge about the underlying physical processes. In contrast, machine learning techniques [...] Read more.
Modeling engines using physics-based approaches is a traditional and widely-accepted method for predicting in-cylinder pressure and the start of combustion (SOC). However, developing such intricate models typically demands significant effort, time, and knowledge about the underlying physical processes. In contrast, machine learning techniques have demonstrated their potential for building models that are not only rapidly developed but also efficient. In this study, we employ a machine learning approach to predict the cylinder pressure of a homogeneous charge compression ignition (HCCI) engine. We utilize a long short-term memory (LSTM) based machine learning model and compare its performance against a fully connected neural network model, which has been employed in previous research. The LSTM model’s results are evaluated against experimental data, yielding a mean absolute error of 0.37 and a mean squared error of 0.20. The cylinder pressure prediction is presented as a time series, expanding upon prior work that focused on predicting pressure at discrete points in time. Our findings indicate that the LSTM method can accurately predict the cylinder pressure of HCCI engines up to 256 time steps ahead. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

21 pages, 1833 KiB  
Article
Experimental and Numerical Evaluation of an HCCI Engine Fueled with Biogas for Power Generation under Sub-Atmospheric Conditions
by Sebastián H. Quintana, Andrés D. Morales Rojas and Iván D. Bedoya
Energies 2023, 16(17), 6267; https://doi.org/10.3390/en16176267 - 29 Aug 2023
Cited by 4 | Viewed by 1688
Abstract
Energy transition to renewable sources and more efficient technologies is needed for sustainable development. Although this transition is expected to take a longer time in developing countries, strategies that have been widely explored by the international academic community, such as advanced combustion modes [...] Read more.
Energy transition to renewable sources and more efficient technologies is needed for sustainable development. Although this transition is expected to take a longer time in developing countries, strategies that have been widely explored by the international academic community, such as advanced combustion modes and microgeneration, could be implemented more easily. However, the implementation of these well-known strategies in developing countries requires in-depth research because of the specific technical, environmental, social, and economic conditions. The present research relies on the use of biogas-fueled HCCI engines for power generation under sub-atmospheric conditions provided by high altitudes above sea level in Colombia. A small air-cooled commercial Diesel engine was modified to run in HCCI combustion mode by controlling the air–biogas mixture temperature using an electric heater at a high speed of 1800 revolutions per minute. An experimental setup was implemented to measure and control the most important experimental variables, such as engine speed, biogas flow rate, intake temperature, crank angle degree, intake pressure, NOx emissions, and in-cylinder pressure. High intake temperature requirements of around 320 C were needed to achieve stable HCCI combustion; the maximum net indicated mean effective pressure (IMEPn) was around 1.5 bar, and the highest net indicated efficiency was close to 32%. Higher intake pressures and the addition of ozone to the intake mixture were numerically studied as ways to reduce the intake temperature requirements for stable HCCI combustion and improve engine performance. These strategies were studied using a one-zone model along with detailed chemical kinetics, and the model was adjusted using the experimental results. The simulation results showed that the addition of 500 ppm of ozone could reduce the intake temperature requirements by around 50 C. The experimental and numerical results achieved in this research are important for the design and implementation of HCCI engines running biogas for microgeneration systems in developing countries which exhibit more difficult conditions for HCCI combustion implementation. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

14 pages, 4701 KiB  
Article
A New Multi-Heuristic Method to Optimize the Ammonia–Water Power/Cooling Cycle Combined with an HCCI Engine
by Keyvan Bahlouli, Nasser Lotfi and Mazyar Ghadiri Nejad
Sustainability 2023, 15(8), 6545; https://doi.org/10.3390/su15086545 - 12 Apr 2023
Cited by 6 | Viewed by 1465
Abstract
Nowadays, sustainability is one of the key elements which should be considered in energy systems. Such systems are essential in any manufacturing system to supply the energy requirements of those systems. To optimize the energy consumption of any manufacturing system, various applications have [...] Read more.
Nowadays, sustainability is one of the key elements which should be considered in energy systems. Such systems are essential in any manufacturing system to supply the energy requirements of those systems. To optimize the energy consumption of any manufacturing system, various applications have been developed in the literature, with a number of pros and cons. In addition, in the majority of such applications, multi-objective optimization (MOO) plays an outstanding role. In related studies, the MOO strategy has been mainly used to maximize the performance and minimize the total cost of a trigeneration system with an HCCI (homogeneous charge compression ignition) engine as a prime mover based on the NSGA-II (non-dominated sorting genetic algorithm-II) algorithm. The current study introduces a novel multi-heuristic system (MHS) that serves as a metaheuristics cooperation platform for selecting the best design parameters. The MHS operates on a proposed strategy and prefers short runs of various metaheuristics to a single long run of a metaheuristic. The proposed MHS consists of four multi-objective metaheuristics collaborating to work on a common population of solutions. The optimization aims to maximize the exergy efficiency and minimize the total system cost. By utilizing four local archives and one global archive, the system optimizes these two objective functions. The idea behind the proposed MHS is that metaheuristics will be able to compensate for each other’s shortcomings in terms of extracting the most promising regions of the search space. Comparing the findings of the developed MHS shows that implementing the suggested strategy decreases the total unit costs of the system products to 25.85 USD/GJ, where the total unit cost of the base system was 28.89 USD/GJ, and the exergy efficiency of the system is increased up to 39.37%, while this efficiency was 22.81% in the base system. The finding illustrates significant improvements in system results and proves the high performance of the proposed method. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 6694 KiB  
Article
A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends
by Vincenzo De Bellis, Enrica Malfi, Alfredo Lanotte, Massimiliano De Felice, Luigi Teodosio and Fabio Bozza
Energies 2023, 16(1), 265; https://doi.org/10.3390/en16010265 - 26 Dec 2022
Cited by 7 | Viewed by 2672
Abstract
Homogeneous charge compression ignition is considered a promising solution to face the increasing regulations imposed by the legislator in the transport sector, thanks to pollutant and CO2 emissions reduction. In this work, a quasi-dimensional multi-zone HCCI model integrated with 1D commercial software [...] Read more.
Homogeneous charge compression ignition is considered a promising solution to face the increasing regulations imposed by the legislator in the transport sector, thanks to pollutant and CO2 emissions reduction. In this work, a quasi-dimensional multi-zone HCCI model integrated with 1D commercial software is developed and validated. It is based on the control mass Lagrangian approach and computes the mixture chemistry evolution through offline tabulation of chemical kinetics (tabulated kinetic of ignition). Thus, the simulation can predict mixture auto-ignition with reduced computational effort and high accuracy. Multi-zone schematization mimics the typical thermal stratification of HCCI engines, controlling the combustion evolution. The model is coupled to sub-models for pollutant emissions estimation. Initially, the tabulated chemistry approach is validated against a chemical kinetics solver applied to a constant-volume homogeneous reactor, considering various fuel blends. The model is then used to simulate the operations of four engines using different fuels (hydrogen, methane, n-heptane, and n-heptane/toluene/ethanol blend), under various boundary conditions. The model predictivity is demonstrated against pressure traces, heat release rate, and noxious emissions. The numerical results showed to adequately agree with measured counterparts (average relative error of 1.3% on in-cylinder pressure peak, average absolute error of 0.95 CAD on pressure peak angle, average relative error of 8.4% on uHCs emissions, absolute error below 1 ppm on NOx emissions) only adapting the thermal stratification to the engines under study. The methodology proved to be a reliable tool to investigate the operation of an HCCI engine, applicable in the development of new engine architecture. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

16 pages, 5859 KiB  
Article
Water Vapor Blending Ratio Effects on Combustion Thermal Performance and Emission of Hydrogen Homogeneous Charge Compression Ignition
by Wenhua Yuan, Xueliang Huang, Jun Fu, Yi Ma, Guangming Li and Qike Huang
Energies 2022, 15(23), 9055; https://doi.org/10.3390/en15239055 - 29 Nov 2022
Cited by 4 | Viewed by 1716
Abstract
A numerical model of the micro-free-piston engine was developed and its correctness was verified by the comparison between the simulation and referential experiment results under the same work conditions. Based on this numerical model, the effects of the water vapor blending ratio ( [...] Read more.
A numerical model of the micro-free-piston engine was developed and its correctness was verified by the comparison between the simulation and referential experiment results under the same work conditions. Based on this numerical model, the effects of the water vapor blending ratio (α) on combustion thermal performance and emission characteristics of hydrogen (H2) homogeneous charge compressing ignition (HCCI) were investigated numerically. The water vapor impact on combustion temperature was analyzed as well. The simulation results reveal that when the initial equivalent ratio is 0.5, blending H2 with water vapor can delay the ignition time and prolong the whole process. At the same time, the addition of water vapor to H2 decreases the peak combustion temperature and pressure, which will alleviate the detonation phenomenon of the combustion chamber. Moreover, the power output capacity and NOx emissions decrease with the increase in α. When α increases to 0.8, the mixture gas cannot be compressed to ignite. Finally, the dilution effect, thermal effect, and chemical effect of water vapor all have the potential to lower the combustion temperature and the dilution effect plays the leading role. Full article
Show Figures

Figure 1

17 pages, 8531 KiB  
Article
Study on Chemical Kinetics Mechanism of Ignition Characteristics of Dimethyl Ether Blended with Small Molecular Alkanes
by Kai Niu, Baofeng Yao, Yonghong Xu, Hongguang Zhang, Zhicheng Shi and Yan Wang
Energies 2022, 15(13), 4652; https://doi.org/10.3390/en15134652 - 24 Jun 2022
Cited by 4 | Viewed by 2228
Abstract
Dimethyl ether (DME)/C1-C4 alkane mixtures are ideal fuel for homogeneous charge compression ignition (HCCI) engines. The comparison of ignition delay and multi-stage ignition for DME/C1-C4 alkane mixtures can provide theoretical guidance for expanding the load range and controlling the ignition time of DME [...] Read more.
Dimethyl ether (DME)/C1-C4 alkane mixtures are ideal fuel for homogeneous charge compression ignition (HCCI) engines. The comparison of ignition delay and multi-stage ignition for DME/C1-C4 alkane mixtures can provide theoretical guidance for expanding the load range and controlling the ignition time of DME HCCI engines. However, the interaction mechanism between DME and C1-C4 alkane under engine relevant high-pressure and low-temperature conditions remains to be revealed, especially the comprehensive comparison of the negative temperature coefficient (NTC) and multi-stage ignition characteristic. Therefore, the CHEMKIN-PRO software is used to calculate the ignition delay process of DME/C1-C4 alkane mixtures (50%/50%) at different compressed temperatures (600–2000 K), pressures (20–50 bar), and equivalence ratios (0.5–2.0) and the multi-stage ignition process of DME/C1-C4 alkane mixtures (50%/50%) over the temperature of 650 K, pressure of 20 bar, and equivalence ratio range of 0.3–0.5. The results show that the ignition delay of the mixtures exhibits a typical NTC characteristic, which is more prominent at a low equivalence ratio and pressure range. The initial temperature of DME/CH4 mixtures of the NTC region is the highest. In the NTC region, the ignition delay DME/CH4 mixtures are the shortest, whereas DME/C3H8 mixtures are the longest. At low-temperature and lean-burn conditions, DME/C1-C4 alkane mixtures exhibit a distinct three-stage ignition characteristic. The time corresponding to heat release rate and pressure peak is the shortest for DME/CH4 mixtures, and it is the longest for DME/C3H8 mixtures. Kinetic analysis indicates that small molecular alkane competes with the OH radical produced in the oxidation process of DME, which inhibits the oxidation of DME and promotes the oxidation of small molecular alkane. The concentration of active radicals and the OH radical production rate of elementary reactions are the highest for DME/CH4 mixtures, and they are the lowest for DME/C3H8 mixtures. Full article
(This article belongs to the Special Issue Advanced Research on Internal Combustion Engines and Engine Fuels)
Show Figures

Figure 1

Back to TopTop