Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (168)

Search Parameters:
Keywords = Homer-Pro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3268 KB  
Article
Unit Sizing and Feasibility Analysis of Green Hydrogen Storage Utilizing Excess Energy for Energy Islands
by Kemal Koca, Erkan Dursun, Eyüp Bekçi, Suat Uçar, Alper Nabi Akpolat, Maria Tsami, Teresa Simoes, Luana Tesch, Ahmet Aksöz and Ruben Paul Borg
Electronics 2026, 15(2), 362; https://doi.org/10.3390/electronics15020362 - 14 Jan 2026
Viewed by 379
Abstract
This study examines whether green hydrogen production using combined wind and solar energy on Marmara Island can meet the island’s electricity demand and fuel the fuel needs of a hydrogen-powered ferry. A hybrid system consisting of a 10 MW wind farm, a 3 [...] Read more.
This study examines whether green hydrogen production using combined wind and solar energy on Marmara Island can meet the island’s electricity demand and fuel the fuel needs of a hydrogen-powered ferry. A hybrid system consisting of a 10 MW wind farm, a 3 MW solar PV system, and a PEM electrolyzer sized to meet the island’s hydrogen demand was modeled for the island, located in the southwestern Sea of Marmara. The hydrogen production potential, energy flows, and techno-economic performance were evaluated using HOMER-Pro 3.18.4 version. According to the simulation results, the hybrid system generates approximately 62.6 GWh of electricity annually, achieving an 82.8% renewable energy share. A significant portion of the produced energy is transferred to the electrolyzer, producing approximately 729 tons of green hydrogen annually. The economic analysis demonstrates that the system is financially viable, with a net present cost of USD 61.53 million and a levelized energy cost of USD 0.175/kWh. Additionally, the design has the potential to reduce approximately 2637 tons of CO2 emissions over a 25-year period. The results demonstrate that integrating renewable energy sources with hydrogen production can provide a cost-effective and low-carbon solution for isolated communities such as islands, strengthening energy independence and supporting sustainable transportation options. It has been demonstrated that hydrogen produced by PEM electrolyzers powered by excess energy from the hybrid system could provide a reliable fuel source for hydrogen-fueled ferries operating between Marmara Island and the mainland. Overall, the findings indicate that pairing renewable energy generation with hydrogen production offers a realistic pathway for islands seeking cleaner transportation options and greater energy independence. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Graphical abstract

33 pages, 3089 KB  
Article
Designing a Sustainable Off-Grid EV Charging Station: Analysis Across Urban and Remote Canadian Regions
by Muhammad Nadeem Akram and Walid Abdul-Kader
Batteries 2026, 12(1), 17; https://doi.org/10.3390/batteries12010017 - 1 Jan 2026
Viewed by 348
Abstract
Electric vehicles are becoming more commonplace as we shift towards cleaner transportation. However, current charging infrastructure is immature, especially in remote and off-grid regions, making electric vehicle adoption challenging. This study presents an architecture for a standalone renewable energy-based electric vehicle charging station. [...] Read more.
Electric vehicles are becoming more commonplace as we shift towards cleaner transportation. However, current charging infrastructure is immature, especially in remote and off-grid regions, making electric vehicle adoption challenging. This study presents an architecture for a standalone renewable energy-based electric vehicle charging station. The proposed renewable energy system comprises wind turbines, solar photovoltaic panels, fuel cells, and a hydrogen tank. As an energy storage system, second-life electric vehicle batteries are considered. This study investigates the feasibility and performance of the charging station with respect to two vastly different Canadian regions, Windsor, Ontario (urban), and Eagle Plains, Yukon (remote). In modeling these two regions using HOMER Pro software, this study concludes that due to its higher renewable energy availability, Windsor shows a net-present cost of $2.80 million and cost of energy of $0.201/kWh as compared to the severe climate of Eagle Plains, with a net-present cost of $3.61 million and cost of energy of $0.259/kWh. In both cases, we see zero emissions in off-grid configurations. A sensitivity analysis shows that system performance can be improved by increasing wind turbine hub heights and solar photovoltaic panel lifespans. With Canada’s goal of transitioning towards 100% zero-emission vehicle sales by 2035, this study provides practical insights regarding site-specific resource optimization for electric vehicle infrastructure that does not rely on grid energy. Furthermore, this study highlights a means to progress the sustainable development goals, namely goals 7, 9, and 13, through the development of more accessible electric vehicle charging stations. Full article
Show Figures

Graphical abstract

38 pages, 9662 KB  
Article
Hybrid Optimisation of PV/Wind/BS Standalone System for Sustainable Energy Transition: Case Study of Nigeria
by Kehinde Zacheaus Babalola, Rolains Golchimard Elenga, Ali Mushtaque, Paolo Vincenzo Genovese and Moses Akintayo Aborisade
Energies 2026, 19(1), 89; https://doi.org/10.3390/en19010089 - 24 Dec 2025
Viewed by 392
Abstract
Energy deficits have been a major challenge in Sub-Saharan Africa (SSA), particularly in Nigeria. Consequently, the integration of renewable energy (RE) is a crucial strategy for achieving energy transition goals and addressing climate change issues. Therefore, this article investigates the technical, energy, economic, [...] Read more.
Energy deficits have been a major challenge in Sub-Saharan Africa (SSA), particularly in Nigeria. Consequently, the integration of renewable energy (RE) is a crucial strategy for achieving energy transition goals and addressing climate change issues. Therefore, this article investigates the technical, energy, economic, and environmental impact of PV/Wind/BS/Converter, a standalone hybrid energy mix for electrifying a single-family residential building prototype in multi-regional parts of Nigeria. This study aims to examine the renewable energy potential of three locations using HOMER Pro. The results indicate that Kano exhibits the lowest economic performance indices, with a net present cost (NPC) of USD 32,212.52 and a cost of energy (COE) of USD 0.6072/kWh, followed by Anambra (NPC: USD 45,671.68; COE: USD 0.8609/kWh) and Lagos (NPC: USD 47,184.62; COE: USD 0.8706/kWh). Technically, this study shows that the higher the renewable potential of a site, the lower the energy cost and vice versa. The sensitivity cases of key energy parameters—including solar PV cost, wind turbine cost, wind speed, solar radiation, and inflation rate—were considered to compare multiple scenarios and assess renewable energy potential variability under certain decision-making conditions. Economically, the Kano system shows the feasible capital cost of the energy produced, replacement cost, and operation and maintenance cost (O&M) for wind turbines, compared to the nil cost for Anambra and Lagos. Environmentally, the energy systems revealed 100% renewable fractions (RFs) with zero emissions at the three sites under study, which can enhance Nigeria’s energy transition plan and help in achieving the Sustainable Development Goals. Integrating RE supports the successful implementation of the recommended energy policy strategies for Nigeria. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

27 pages, 4179 KB  
Article
A Comparative Study of Private EV Charging Stations Using Grid-Connected Solar and Wind Energy Systems in Kuwait with HOMER Software
by Jasem Alazemi, Jasem Alrajhi, Ahmad Khalfan and Khalid Alkhulaifi
World Electr. Veh. J. 2025, 16(12), 647; https://doi.org/10.3390/wevj16120647 - 28 Nov 2025
Viewed by 649
Abstract
The rapid adoption of electric vehicles (EVs) has increased the need for sustainable charging infrastructure supported by renewable energy. This study presents a comprehensive techno-economic and environmental analysis of private EV charging stations in Kuwait powered by grid-connected solar and wind systems using [...] Read more.
The rapid adoption of electric vehicles (EVs) has increased the need for sustainable charging infrastructure supported by renewable energy. This study presents a comprehensive techno-economic and environmental analysis of private EV charging stations in Kuwait powered by grid-connected solar and wind systems using the HOMER Pro 3.18.4 optimization software. Four configurations—grid-only, grid–solar, grid–wind, and grid–solar–wind—were modelled and evaluated in terms of energy output, cost performance, and carbon emission reduction under Kuwait’s climatic conditions. HOMER simulated 484 systems, of which 244 were technically feasible. The optimal configuration, combining grid, 5 kW photovoltaic (PV) (BEIJIAYI 600 W panels), and a 5.1 kW AWS wind turbine, achieved a renewable fraction of 78%, reducing grid dependency by 78.1% and annual CO2 emissions by approximately 7027 kg. Although the hybrid system required a higher initial investment (USD 7662) than the grid-only setup (USD 1765), it achieved the lowest Levelized Cost of Energy (LCOE = USD 0.017/kWh) and long-term cost competitiveness through reduced operating expenses. Sensitivity analysis confirmed the hybrid system’s robustness against ±15% variations in wind speed and ±10% changes in solar irradiance. The results highlight that hybrid solar–wind systems can effectively mitigate intermittency through diurnal complementarity, where daytime solar generation and nighttime wind activity ensure continuous supply. The findings demonstrate that integrating renewables into Kuwait’s EV charging infrastructure enhances economic viability, energy security, and environmental sustainability. The study provides practical insights to guide renewable policy development, pilot deployment, and smart grid integration under Kuwait Vision 2030’s clean-energy framework. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

28 pages, 3917 KB  
Article
A Hybrid System That Integrates Renewable Energy for Groundwater Pumping with Battery Storage, Innovative in Rural Communities
by Daniel Icaza Alvarez, Jorge Rojas Espinoza, Carlos Flores-Vázquez and Andrés Cárdenas
Energies 2025, 18(22), 5976; https://doi.org/10.3390/en18225976 - 14 Nov 2025
Cited by 1 | Viewed by 769
Abstract
This article presents the design and evaluation of a hybrid groundwater pumping system with battery storage, implemented in the Puntahacienda community of Quingeo, Ecuador, as a sustainable alternative for energy supply in isolated rural areas. The system integrates solar photovoltaic, wind, and a [...] Read more.
This article presents the design and evaluation of a hybrid groundwater pumping system with battery storage, implemented in the Puntahacienda community of Quingeo, Ecuador, as a sustainable alternative for energy supply in isolated rural areas. The system integrates solar photovoltaic, wind, and a backup diesel generator, whose operation was analyzed using HOMER Pro software. The simulation allowed for component sizing, technical performance evaluation, and operating costs estimation, prioritizing the use of renewable sources and reducing dependence on fossil fuels. The results show that solar and wind energy can cover a large portion of the demand, while the diesel generator ensures resilience during critical periods. The battery bank optimizes stability and continuous supply, ensuring the availability of water for human and agricultural consumption. Furthermore, a significant reduction in greenhouse gas emissions and an improvement in economic sustainability compared to the exclusive use of diesel were evident. The final results show that the levelized cost was $0.186/kWh, making it competitive for an isolated rural community. It was also determined that the renewable energy fraction (RES) was 83.70%, the unmet demand was 0.42%, and CO2 emissions were 14,850 kg/year when including a diesel generator in the hybrid system. This study demonstrates the viability of hybrid renewable solutions as a tool to strengthen water and energy security in rural communities, constituting a replicable model in similar contexts in Latin America. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

31 pages, 6989 KB  
Article
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
by Ayoub Boutaghane, Mounir Aksas, Djafar Chabane and Nadhir Lebaal
Hydrogen 2025, 6(4), 103; https://doi.org/10.3390/hydrogen6040103 - 6 Nov 2025
Cited by 1 | Viewed by 1021
Abstract
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to [...] Read more.
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro, five representative Algerian regions were analyzed, accounting for variations in solar irradiation, wind speed, and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition, a comprehensive sensitivity analysis was conducted on solar irradiation, wind speed, and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation, with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh, the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg, and the net present cost (NPC) between 10.28 M$ and 17.7 M$, demonstrating that all cost metrics are highly sensitive to these variations. Full article
Show Figures

Graphical abstract

38 pages, 5289 KB  
Article
Forecasting Renewable Scenarios and Uncertainty Analysis in Microgrids for Self-Sufficiency and Reliability: Estimation of Extreme Scenarios for 2040 in El Hierro (Spain)
by Lucas Álvarez-Piñeiro, César Berna-Escriche, Paula Bastida-Molina and David Blanco-Muelas
Appl. Sci. 2025, 15(21), 11815; https://doi.org/10.3390/app152111815 - 5 Nov 2025
Viewed by 788
Abstract
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 [...] Read more.
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 GWh annually, assuming full economic decarbonization. Currently, El Hierro faces challenges due to its dependence on fossil fuels and inherent variability of renewable sources. To ensure system reliability, the study emphasizes the integration of renewable and storage technologies. Two scenarios are modeled using HOMER Pro 3.18.4 software with probabilistic methods to capture variability in generation and demand. The first scenario, BAU, represents the current system enhanced with electric vehicles. While the second, Efficiency, incorporates energy efficiency improvements and collective mobility policies. Both prioritize electrification and derive an optimal generation mix based on economic and technical constraints, to minimize Levelized Cost Of Energy (LCOE). The approach takes advantage of El Hierro’s abundant solar and wind resources, complemented by reversible pumped hydro storage and megabatteries. Fully renewable systems can meet demand reliably, producing about 30% energy surplus with an LCOE of roughly 10 c€/kWh. The final BAU scenario includes 53 MW of solar PV, 16 MW of wind, and a storage system of 40 MW–800 MWh. The Efficiency scenario has 42 MW of solar PV, 11.5 MW of wind, and 35 MW–550 MWh of storage. Uncertainty analysis indicates that maintaining system reliability requires an approximate 10% increase in both installed capacity and costs. This translates into an additional 7 MW of solar PV and 6 MW–23.5 MWh of batteries in the BAU, and 6 MW and 4 MW–16 MWh in the Efficiency. Full article
(This article belongs to the Special Issue Advanced Forecasting Techniques and Methods for Energy Systems)
Show Figures

Figure 1

28 pages, 2196 KB  
Article
Modeling Hybrid Renewable Microgrids in Remote Northern Regions: A Comparative Simulation Study
by Nurcan Kilinc-Ata and Liliana N. Proskuryakova
Energies 2025, 18(21), 5827; https://doi.org/10.3390/en18215827 - 4 Nov 2025
Viewed by 1051
Abstract
Remote northern regions face unique energy challenges due to geographic isolation, harsh climates, and limited access to centralized power grids. In response to growing environmental and economic pressures, there is a rising interest in hybrid energy systems that integrate renewable and conventional sources. [...] Read more.
Remote northern regions face unique energy challenges due to geographic isolation, harsh climates, and limited access to centralized power grids. In response to growing environmental and economic pressures, there is a rising interest in hybrid energy systems that integrate renewable and conventional sources. This study investigates sustainable and cost-effective energy supply strategies for off-grid northern communities through the modeling and simulation of multi-energy microgrids. Focusing on case studies from Yakutia (Russia), Hordaland (Norway), and Alaska (United States), the research employs a comprehensive methodology that combines a critical literature review, system design using HOMER Pro software (version 3.16.2), and a comparative analysis of simulation outcomes. Three distinct microgrid configurations are proposed, incorporating various combinations of solar photovoltaic (PV), wind energy, diesel generators, and battery storage systems. The findings reveal that integrating solar PV significantly enhances economic efficiency, particularly in regions with high solar irradiance, underscoring its pivotal role in shaping resilient, sustainable energy systems for remote northern areas. This study is innovative in its cross-regional comparative approach, linking techno-economic simulation with climatic variability analysis to identify context-specific energy strategies. The key findings highlight how hybrid microgrids combining PV, wind, and storage systems can reduce both costs and emissions by up to 35% compared to diesel-only systems, offering practical pathways toward sustainable electrification in high-latitude regions. Full article
(This article belongs to the Special Issue Advanced Grid Integration with Power Electronics: 2nd Edition)
Show Figures

Figure 1

30 pages, 7290 KB  
Article
Modeling and Optimization of a Hybrid Solar–Wind Energy System Using HOMER: A Case Study of L’Anse Au Loup
by Sujith Eswaran and Ashraf Ali Khan
Energies 2025, 18(21), 5794; https://doi.org/10.3390/en18215794 - 3 Nov 2025
Viewed by 1334
Abstract
The rural community of L’Anse au Loup in southern Labrador depends on a long-distance transmission link to Hydro-Québec for its electricity supply, with diesel generation as backup during outages. This dependence raises electricity costs, exposes the community to supply disruptions, and limits control [...] Read more.
The rural community of L’Anse au Loup in southern Labrador depends on a long-distance transmission link to Hydro-Québec for its electricity supply, with diesel generation as backup during outages. This dependence raises electricity costs, exposes the community to supply disruptions, and limits control over local energy security. This study evaluates the feasibility of a solar–wind hybrid energy system to reduce imported electricity and improve supply reliability. A detailed site assessment identified a 50-hectare area north of the community as suitable for system installation, offering adequate space and minimal land-use conflict. Using Hybrid Optimization of Multiple Energy Resources (HOMER Pro 3.18.3) software, the analysis modeled local load data, renewable resource profiles, and financial parameters to determine the optimal grid-connected configuration. The optimized design installs 19.25 MW of photovoltaic (PV) and 4.62 MW of wind capacity, supported by inverters and maximum power point tracking (MPPT) to ensure stable operation. Simulations show that the hybrid system supplies about 70% of annual demand, cuts greenhouse gas emissions by more than 95% compared with conventional generation, and lowers long-term energy costs. The results confirm that the proposed configuration can strengthen local energy security and provide a replicable framework for other remote and coastal communities in Newfoundland and Labrador pursuing decarbonization. Full article
Show Figures

Figure 1

31 pages, 8105 KB  
Article
Multi-Criteria Decision-Making for Hybrid Renewable Energy in Small Communities: Key Performance Indicators and Sensitivity Analysis
by Helena M. Ramos, Praful Borkar, Oscar E. Coronado-Hernández, Francisco Javier Sánchez-Romero and Modesto Pérez-Sánchez
Energies 2025, 18(21), 5665; https://doi.org/10.3390/en18215665 - 28 Oct 2025
Cited by 1 | Viewed by 713
Abstract
The increasing decentralization of energy systems calls for robust frameworks to evaluate the technical and economic feasibility of hybrid renewable configurations at the community scale. This study presents an integrated methodology that combines Key Performance Indicators (KPIs), sensitivity analysis, and Multi-Criteria Decision-Making to [...] Read more.
The increasing decentralization of energy systems calls for robust frameworks to evaluate the technical and economic feasibility of hybrid renewable configurations at the community scale. This study presents an integrated methodology that combines Key Performance Indicators (KPIs), sensitivity analysis, and Multi-Criteria Decision-Making to assess hybrid systems in Castanheira de Pera, a small community in central Portugal. Fourteen configurations (C1–C14) integrating hydropower, solar PV, wind, and battery storage were simulated using HOMER Pro 3.16.2, PVsyst 8.0.16, Python 3.14.0, and Excel under both wet and dry hydrological conditions. A gate-controlled hydro-buffering model was applied to optimize short-term storage operation, increasing summer energy generation by 52–88% without additional infrastructure. Among all configurations, C8 achieved the highest Net Present Value (≈EUR 153,700) and a strong Internal Rate of Return (IRR), while maintaining a stable Levelized Cost of Electricity (LCOE) of around 0.042 EUR/kWh. Comparative decision scenarios highlight distinct stakeholder priorities: storage-intensive systems (C14, C11) maximize energy security, whereas medium-scale hybrids (C8, C7) offer superior economic performance. Overall, the results confirm that hybridization significantly improves community energy autonomy and resilience. Future work should extend this framework to include environmental and social indicators, enabling a more comprehensive techno-socio-economic assessment of hybrid renewable systems. Full article
Show Figures

Figure 1

23 pages, 2613 KB  
Article
Analytical Design and Hybrid Techno-Economic Assessment of Grid-Connected PV System for Sustainable Development
by Adebayo Sodiq Ademola and Abdulrahman AlKassem
Processes 2025, 13(11), 3412; https://doi.org/10.3390/pr13113412 - 24 Oct 2025
Viewed by 997
Abstract
Renewable energy sources can be of significant help to rural communities with inadequate electricity access. This study presents a comprehensive techno-economic assessment of a 500 kWp solar Photovoltaic (PV) energy system designed for Ibadan, Nigeria. A novel hybrid modeling framework was developed in [...] Read more.
Renewable energy sources can be of significant help to rural communities with inadequate electricity access. This study presents a comprehensive techno-economic assessment of a 500 kWp solar Photovoltaic (PV) energy system designed for Ibadan, Nigeria. A novel hybrid modeling framework was developed in which technical performance analysis was employed using PVSyst, whereas economic and optimization analysis was carried out using HOMER. Simulation outputs from PVSyst were integrated as inputs into HOMER, enabling a more accurate and consistent cross-platform assessment. Nigeria’s enduring energy crisis, marked by persistent grid unreliability and limited electricity access, necessitates need for exploration of sustainable alternatives. Among these, solar photovoltaic (PV) technology offers significant promise given the country’s abundant solar irradiation. The proposed system was evaluated using meteorological and load demand data. PVSyst simulations projected an annual energy yield of 714,188 kWh, with a 25-year lifespan yielding a performance ratio between 77% and 78%, demonstrating high operational efficiency. Complementary HOMER Pro analysis revealed a competitive levelized cost of energy (LCOE) of USD 0.079/kWh—substantially lower than the baseline grid-only cost of USD 0.724/kWh, and a Net Present Cost (NPC) of USD 6.1 million, reflecting considerable long-term financial savings. Furthermore, the system achieved compelling environmental outcomes, including an annual reduction of approximately 160,508 kg of CO2 emissions. Sensitivity analysis indicated that increasing the feed-in tariff (FiT) from USD 0.10 to USD 0.20/kWh improved the project’s financial viability, shortening payback periods to just 5.2 years and enhancing return on investment. Overall, the findings highlight the technical robustness, economic competitiveness, and environmental significance of deploying solar-based energy solutions, while reinforcing the urgent need for supportive energy policies to incentivize large-scale adoption. Full article
Show Figures

Figure 1

31 pages, 5934 KB  
Article
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
by Tuba Tezer
Processes 2025, 13(10), 3339; https://doi.org/10.3390/pr13103339 - 18 Oct 2025
Viewed by 1268
Abstract
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, [...] Read more.
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, a fuel cell-based combined heat and power (CHP) unit, and a boiler to meet both electrical and thermal demands. Within this broader optimization framework, six optimal configurations emerged, representing grid-connected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh), with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways, coordinated operation, waste heat utilization, and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE, confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE, particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers, while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall, these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

19 pages, 5634 KB  
Article
New Microgrid Architectures for Telecommunication Base Stations in Non-Interconnected Zones: A Colombian Case Study
by Eduardo Gómez-Luna, Mario A. Palacios and Juan C. Vasquez
Energies 2025, 18(20), 5499; https://doi.org/10.3390/en18205499 - 18 Oct 2025
Cited by 1 | Viewed by 791
Abstract
This paper proposes a novel microgrid (MG) architecture designed for telecommunication base stations in non-interconnected regions, with the main objective of mitigating mobile service interruptions caused by power outages. This research consists of three key modules: the first module on resources and components, [...] Read more.
This paper proposes a novel microgrid (MG) architecture designed for telecommunication base stations in non-interconnected regions, with the main objective of mitigating mobile service interruptions caused by power outages. This research consists of three key modules: the first module on resources and components, the second module on characterization, and the third module on design and methodology. The first module presents a comprehensive identification and description of the resources and components of the microgrid within the base station; the second module characterizes the topology and specific configurations of the microgrid; and the last module covers a new methodology for the installation of microgrids in geographic areas lacking electrification, which becomes the contribution of this research work. The novelty of this research presents new control architectures, energy management, and system optimization, including technical–economic analysis. The research outcome highlights the economic and social benefits for both local communities and mobile phone service providers. This research aims to establish a guideline on how these factors affect the focus region of this research. With this technological proposal, a continuous and uninterrupted mobile service is achieved, thus improving the quality of service and minimizing the failures induced by electricity in non-interconnected areas. The tests and validation of the system were carried out with Homer Pro software, integrating socioeconomic and environmental factors. The results obtained present a key solution for this type of application, minimizing costs and increasing reliability for users. Full article
Show Figures

Figure 1

25 pages, 3199 KB  
Article
Challenges in Aquaculture Hybrid Energy Management: Optimization Tools, New Solutions, and Comparative Evaluations
by Helena M. Ramos, Nicolas Soehlemann, Eyup Bekci, Oscar E. Coronado-Hernández, Modesto Pérez-Sánchez, Aonghus McNabola and John Gallagher
Technologies 2025, 13(10), 453; https://doi.org/10.3390/technologies13100453 - 7 Oct 2025
Viewed by 688
Abstract
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. [...] Read more.
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. The system also incorporates a 250 kW small hydroelectric plant and a wood drying kiln that utilizes surplus wind energy. This study conducts a comparative analysis between HY4RES, a research-oriented simulation model, and HOMER Pro, a commercially available optimization tool, across multiple hybrid energy scenarios at two aquaculture sites. For grid-connected configurations at the Primary site (base case, Scenarios 1, 2, and 6), both models demonstrate strong concordance in terms of energy balance and overall performance. In Scenario 1, a peak power demand exceeding 1000 kW is observed in both models, attributed to the biomass kiln load. Scenario 2 reveals a 3.1% improvement in self-sufficiency with the integration of photovoltaic generation, as reported by HY4RES. In the off-grid Scenario 3, HY4RES supplies an additional 96,634 kWh of annual load compared to HOMER Pro. However, HOMER Pro indicates a 3.6% higher electricity deficit, primarily due to battery energy storage system (BESS) losses. Scenario 4 yields comparable generation outputs, with HY4RES enabling 6% more wood-drying capacity through the inclusion of photovoltaic energy. Scenario 5, which features a large-scale BESS, highlights a 4.7% unmet demand in HY4RES, whereas HOMER Pro successfully meets the entire load. In Scenario 6, both models exhibit similar load profiles; however, HY4RES reports a self-sufficiency rate that is 1.3% lower than in Scenario 1. At the Secondary site, financial outcomes are closely aligned. For instance, in the base case, HY4RES projects a cash flow of 54,154 EUR, while HOMER Pro estimates 55,532 EUR. Scenario 1 presents nearly identical financial results, and Scenario 2 underscores HOMER Pro’s superior BESS modeling capabilities during periods of reduced hydroelectric output. In conclusion, HY4RES demonstrates robust performance across all scenarios. When provided with harmonized input parameters, its simulation results are consistent with those of HOMER Pro, thereby validating its reliability for hybrid energy management in aquaculture applications. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
Show Figures

Figure 1

30 pages, 6379 KB  
Article
Remuneration of Ancillary Services from Microgrids: A Cost Variation-Driven Methodology
by Yeferson Lopez Alzate, Eduardo Gómez-Luna and Juan C. Vasquez
Energies 2025, 18(19), 5177; https://doi.org/10.3390/en18195177 - 29 Sep 2025
Cited by 1 | Viewed by 714
Abstract
Microgrids (MGs) have emerged as pivotal players in the energy transition by enabling the efficient integration of distributed energy resources and the provision of ancillary services to the power system. Despite their technical capabilities, MGs still face economic and regulatory barriers that hinder [...] Read more.
Microgrids (MGs) have emerged as pivotal players in the energy transition by enabling the efficient integration of distributed energy resources and the provision of ancillary services to the power system. Despite their technical capabilities, MGs still face economic and regulatory barriers that hinder their widespread deployment in electricity markets. This paper presents a structured methodological framework to assess the economic viability of MGs delivering services such as peak shaving, loss compensation, and voltage support, among others. The proposed approach considers three distinct scenarios: (1) MGs supplying energy to local loads, (2) hybrid MGs combining local supply with ancillary services, and (3) MGs exclusively dedicated to ancillary services. The framework incorporates adjusted levelized cost of electricity (LCOE), levelized avoided cost of electricity (LACE), and net value metrics, while accounting for tax incentives and market price signals. A case study based in Colombia (Cali and Camarones) validates the framework through simulations conducted in HOMER Pro V3.18.4 and MATLAB Online. The results indicate that remuneration schemes based on availability and service utilization significantly enhance the viability of MGs. The proposed methodology is applicable to emerging regulatory environments and offers guidance for designing public policies that promote the active participation of MGs in supporting grid operations. Full article
Show Figures

Figure 1

Back to TopTop