Modeling Hybrid Renewable Microgrids in Remote Northern Regions: A Comparative Simulation Study
Abstract
1. Introduction
2. Materials and Methods
2.1. An Outline of the Methods
2.2. Case Study Regions and RE Potential
2.2.1. Russian Federation—Republic of Sakha (Yakutia)
2.2.2. Norway—Hordaland County
2.2.3. United States—State of Alaska
2.3. Microgrid Design and Planning
2.4. Optimization Options
- System Configuration Definition: Users define the components of the microgrid, such as solar PV panels, wind turbines, diesel generators, batteries, and loads. Each component’s specifications, including capacity, cost, and operational parameters, are input into the software [68].
- Simulation Setup: HOMER Pro simulates the operation of each system configuration over a specified period, typically one year, using time steps ranging from one minute to one hour. This simulation accounts for factors like RE availability, load demands, and system constraints [66].
- Optimization Algorithm: HOMER Pro evaluates all feasible system configurations using its proprietary algorithm. The algorithm ranks configurations based on economic metrics (NPC, LCOE) and system reliability to identify the most cost-effective and efficient design [69].
- Constraints and Assumptions: The optimization incorporates several constraints [70]:
- ○
- Load and Generation Matching: The system must always meet load demand, considering RE variability and storage limits.
- ○
- Reserve Requirements: Adequate reserves are maintained to manage fluctuations in load or generation.
- ○
- Operational Constraints: Components operate within specified limits, and system configurations adhere to predefined rules.
- ○
- Economic Assumptions: Fuel prices, interest rates, and component lifespans are based on current market data and projections.
- Sensitivity Analysis: HOMER Pro conducts sensitivity analyses to assess how changes in parameters such as fuel prices or component costs affect system performance, enhancing robustness evaluation [71].
- Result Analysis and Reporting: The software generates detailed reports and graphs on the optimized system’s performance, costs, and sensitivities, assisting in decision-making and policy recommendations [72].
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BESS | Battery Energy Storage System |
| COE | Cost of Energy |
| DG | Diesel Generator |
| DPP | Diesel Power Plant |
| HOMER | Hybrid Optimization Model for Multiple Energy Sources |
| HPP | Hydro Power Plant |
| LCOE | The Levelized Cost of Energy |
| MG | Microgrids |
| NPC | Net Present Cost |
| O&M | Operation and Maintenance |
| PV | Photovoltaic |
| RE/S | Renewable Energy Sources |
| UPS | United Power System |
Appendix A
| Parameter | Yakutia | Hordaland | Alaska | Notes |
|---|---|---|---|---|
| Load profile | Average daily load: 1500 kWh/day | Average daily load: 1800 kWh/day | Average daily load: 1650 kWh/day | Hourly profile used in HOMER; adjusted seasonally |
| Project lifetime | 25 years | 25 years | 25 years | Standard microgrid lifetime assumption |
| Discount rate | 8% | 8% | 8% | Reflects regional financial assumptions |
| Diesel price | 0.98 $/L | 0.89 $/L | 1.05 $/L | Includes local transport costs |
| PV capital cost | 3750 $/kW | 5000 $/kW | 3910 $/kW | Based on local installation and shipping |
| PV O&M cost | 20 $/kW/yr | 25 $/kW/yr | 22 $/kW/yr | Annual fixed O&M |
| Wind turbine capital cost | 18,000 $/unit | 18,000 $/unit | 18,000 $/unit | Includes installation in harsh climates |
| Wind O&M cost | 180 $/yr | 180 $/yr | 180 $/yr | Annual fixed O&M per turbine |
| Battery capital cost | 400 $/kWh | 420 $/kWh | 410 $/kWh | Includes shipping to remote areas |
| Battery O&M cost | 10 $/kWh/yr | 12 $/kWh/yr | 11 $/kWh/yr | Annual fixed O&M |
| Converter capital cost | 833–1460 $/unit | 1000–2000 $/unit | 560–1320 $/unit | Varies by model size |
| Converter O&M cost | 100–150 $/yr | 80–180 $/yr | 95–180 $/yr | Annual fixed O&M |
| Fuel consumption (diesel) | 628–969 L/yr | 356–961 L/yr | 685–1280 L/yr | Based on HOMER optimization outputs |
| RE fraction (REC) | 26–64% | 26–79% | 17–48% | Fraction of total energy supplied by RE |
| Load profile source | Local community surveys & meteorological data | Local utility data & meteorology | Local utility data & meteorology | Combined with HOMER synthetic profiles |
References
- Teske, S. Achieving the Paris Climate Agreement: Setting Meaningful Goals for the Finance Industry. In Handbook of Climate Change Mitigation and Adaptation; Springer: New York, NY, USA, 2024; pp. 1–59. [Google Scholar]
- Kilinc-Ata, N.; Fikru, M.G. A Framework for Evaluating EV Battery Mineral Sourcing Challenges. Sustain. Futures 2025, 9, 100720. [Google Scholar] [CrossRef]
- Zhang, J. Energy access challenge and the role of fossil fuels in meeting electricity demand: Promoting renewable energy capacity for sustainable development. Geosci. Front. 2024, 15, 101873. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. Investigation of the Impact of Environmental Degradation on the Transition to Clean Energy: New Evidence from Sultanate of Oman. Energies 2025, 18, 839. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Camkaya, S.; Topal, S. What Role Do Foreign Direct Investment and Technology Play in Shaping the Impact on Environmental Sustainability in Newly Industrialized Countries (NIC)?: New Evidence from Wavelet Quantile Regression. Sustainability 2025, 17, 4966. [Google Scholar] [CrossRef]
- Purkait, P.; Basu, M.; Nath, S.R. Renewable energy integration to electric power grid: Opportunities, challenges, and solutions. In Challenges and Opportunities of Distributed Renewable Power; Springer: Singapore, 2024; pp. 37–100. [Google Scholar]
- Oulis Rousis, A.; Tzelepis, D.; Konstantelos, I.; Booth, C.; Strbac, G. (Design of a hybrid AC/DC microgrid using Homer Pro: Case study on an islanded residential application. Inventions 2018, 3, 55. [Google Scholar] [CrossRef]
- Proskuryakova, L.; Ermolenko, G. The future of Russia’s renewable energy sector: Trends, scenarios and policies. Renew. Energy 2019, 143, 1670–1686. [Google Scholar] [CrossRef]
- Souza Junior, M.E.T.; Freitas, L.C.G. Power electronics for modern sustainable power systems: Distributed generation, microgrids and smart grids—A review. Sustainability 2022, 14, 3597. [Google Scholar] [CrossRef]
- Ledwaba, L.P.; Hancke, G.P.; Isaac, S.J.; Venter, H.S. Smart microgrid energy market: Evaluating distributed ledger technologies for remote and constrained microgrid deployments. Electronics 2021, 10, 714. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Ata, R. The Place and Role of Digital Twin Applications: Directions for Energy and Education Sector. In Transforming Industry Using Digital Twin Technology; Springer: Cham, Switzerland, 2024; pp. 45–57. [Google Scholar]
- Alomari, M.A.; Al-Andoli, M.N.; Ghaleb, M.; Thabit, R.; Alkawsi, G.; Alsayaydeh, J.A.; Gaid, A.S. Security of Smart Grid: Cybersecurity Issues, Potential Cyberattacks, Major Incidents, and Future Directions. Energies 2025, 18, 141. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Rahman, M.P. Digitalization and financial development contribution to the green energy transition in Malaysia: Findings from the BARDL approach. Nat. Resour. Forum 2025, 49, 2775–2793. [Google Scholar] [CrossRef]
- Sandelic, M.; Peyghami, S.; Sangwongwanich, A.; Blaabjerg, F. Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges. Renew. Sustain. Energy Rev. 2022, 159, 112127. [Google Scholar] [CrossRef]
- Mutlag, A.A.; Abd, M.K.; Shneen, S.W. Power Management and Voltage Regulation in DC Microgrid with Solar Panels and Battery Storage System. J. Robot. Control (JRC) 2024, 5, 397–407. [Google Scholar] [CrossRef]
- Chisale, S.W.; Lee, H.S.; Calvo, M.S. Exploring Weather Research and Forecasting (WRF) Model Parameterizations for Enhanced Solar and Wind Energy Resources Predictions in Malawi. In Future Directions in Energy Engineering: Challenges, Opportunities, and Sustainability; Springer Nature: Cham, Switzerland, 2024; pp. 1–10. [Google Scholar]
- Kapen, P.T.; Medjo Nouadje, B.A.; Chegnimonhan, V.; Tchuen, G.; Tchinda, R. Techno-economic feasibility of a PV/battery/fuel cell/electrolyzer/biogas hybrid system for energy and hydrogen production in the far north region of cameroon by using HOMER pro. Energy Strategy Rev. 2022, 44, 100988. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Z. Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China. Renew. Energy 2023, 202, 1110–1137. [Google Scholar] [CrossRef]
- Akinyele, D.; Amole, A.; Olabode, E.; Olusesi, A.; Ajewole, T. Simulation and Analysis Approaches to Microgrid Systems Design: Emerging Trends and Sustainability Framework Application. Sustainability 2021, 13, 11299. [Google Scholar] [CrossRef]
- Zamora, I.; San Martin, J.I.; Asensio, F.J.; Saldaña, G.; Oñederra, O.; Goitia, U. Reliable Power Supply of Islanded Locations through Microgrids. Renew. Energy Power Qual. J. 2019, 17, 162–167. [Google Scholar] [CrossRef]
- Veilleux, G.; Potisat, T.; Pezim, D.; Ribback, C.; Ling, J.; Krysztofiński, A.; Ahmed, A.; Papenheim, J.; Mon Pineda, A.; Sembian, S.; et al. Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy Sustain. Dev. 2020, 54, 1–13. [Google Scholar] [CrossRef]
- Feng, W.; Jin, M.; Liu, X.; Bao, Y.; Marnay, C.; Yao, C.; Yu, J. A review of microgrid development in the United States–A decade of progress on policies, demonstrations, controls, and software tools. Appl. Energy 2018, 228, 1656–1668. [Google Scholar] [CrossRef]
- Mongrain, R.S.; Ayyanar, R. Multi-platform real-time microgrid simulation testbed with hierarchical control of distributed energy resources featuring energy storage balancing. IET Renew. Power Gener. 2020, 14, 834–844. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Shaikh, A.; Memon, Z.A.; Lashari, A.A.; Leghari, Z.H. Microgrids: A review on optimal hybrid technologies, configurations, and applications. Int. J. Energy Res. 2021, 45, 12564–12597. [Google Scholar] [CrossRef]
- Tomin, N.; Shakirov, V.; Kozlov, A.; Sidorov, D.; Kurbatsky, V.; Rehtanz, C.; Lora, E.E. Design and optimal energy management of community microgrids with flexible renewable energy sources. Renew. Energy 2022, 183, 903–921. [Google Scholar] [CrossRef]
- Sukneva, S.A. Migration processes in the Sakha Republic (Yakutia). Espace Popul. Soc. 2021, 1, 62–77. [Google Scholar] [CrossRef]
- GIS, R.E. GIS Renewable Energy Sources of Russia. 2022. Available online: https://gisre.ru/en/main/ (accessed on 27 June 2025).
- Gritsenko, D. Sustainable energy policies and programs in Yakutia. In Discourses on Sustainability; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 185–206. [Google Scholar]
- Neftegza.ru. Yakutia May Increase the Share of Renewable Power Output in the Arctic to 10% by 2024. 2022. Available online: https://neftegaz.ru/news/Alternative-energy/749815-yakutiya-mozhet-narastit-dolyu-vyrabotki-vozobnovlyaemoy-energii-v-arktike-do-10-v-2024-godu/ (accessed on 20 October 2025).
- Sokolnikova, P.; Lombardi, P.; Arendarski, B.; Suslov, K.; Pantaleo, A.; Kranhold, M.; Komarnicki, P. Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units. Renew. Energy 2020, 155, 979–989. [Google Scholar] [CrossRef]
- Khayrullina, A.; Blinov, D.; Borzenko, V. Air heated metal hydride energy storage system design and experiments for microgrid applications. Int. J. Hydrogen Energy 2019, 44, 19168–19176. [Google Scholar] [CrossRef]
- IEA. Norway Energy Policy Review. 2022. Available online: https://iea.blob.core.windows.net/assets/de28c6a6-8240-41d9-9082-a5dd65d9f3eb/NORWAY2022.pdf (accessed on 25 April 2025).
- Egging, R.; Tomasgard, A. Norway’s role in the European energy transition. Energy Strategy Rev. 2018, 20, 99–101. [Google Scholar] [CrossRef]
- Sasson, A.; Blomgren, A. Knowledge-Based Oil and Gas Industry; Research Report 3/2011; Nordberg Publisher: Stavanger, Norway, 2011. [Google Scholar]
- Mehammer, E.B.; Berg, K.; Torsæter, B.N.; Johansson, O. Power Quality in Islanded Microgrids supplied by Vehicle-to-Grid: Norwegian Pilot Study. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; IEEE: Washington, DC, USA, 2021; pp. 1–6. [Google Scholar]
- Mishra, S.; Bordin, C.; Tomasgard, A.; Palu, I. A multi-agent system approach for optimal microgrid expansion planning under uncertainty. Int. J. Electr. Power Energy Syst. 2019, 109, 696–709. [Google Scholar] [CrossRef]
- Bøe, V. Cost Optimization of Distributed Power Generation in Southern Norway, with Focus on Renewable Hybrid System Configurations. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2017. [Google Scholar]
- Sarker, S. Feasibility analysis of a renewable hybrid energy system with producer gas generator fulfilling remote household electricity demand in Southern Norway. Renew. Energy 2016, 87, 772–781. [Google Scholar] [CrossRef]
- US EIA Alaska. State Profile and Energy Estimates. 2023. Available online: https://www.eia.gov/state/analysis.php?sid=AK#:~:text=In%202022%2C%20natural%20gas%20fueled,about%203%25%20of%20Alaska’s%20generation (accessed on 25 April 2025).
- Asmus, P. How Alaska Fits into the Global Microgrid Movement. 2022. Available online: https://uaf.edu/acep-blog/how-alaska-fits-into-the-global-microgrid-movement%20.php#:~:text=When%20measured%20in%20terms%20of,installed%20according%20to%20Guidehouse%20Insights (accessed on 30 June 2025).
- Whitney, E.; Pike, C. An Alaska case study: Solar photovoltaic technology in remote microgrids. J. Renew. Sustain. Energy 2017, 9, 061704. [Google Scholar] [CrossRef]
- Holdmann, G.P.; Wies, R.W.; Vandermeer, J.B. Renewable energy integration in Alaska’s remote islanded microgrids: Economic drivers, technical strategies, technological niche development, and policy implications. Proc. IEEE 2019, 107, 1820–1837. [Google Scholar] [CrossRef]
- Bolt, G.; Wilber, M.; Huang, D.; Sambor, D.J.; Aggarwal, S.; Whitney, E. Modeling and Evaluating Beneficial Matches between Excess Renewable Power Generation and Non-Electric Heat Loads in Remote Alaska Microgrids. Sustainability 2022, 14, 3884. [Google Scholar] [CrossRef]
- Sambor, D.J.; Bishop, S.C.M.; Dotson, A.; Aggarwal, S.; Jacobson, M.Z. Optimizing demand response of a modular water reuse system in a remote Arctic microgrid. J. Clean. Prod. 2022, 346, 131110. [Google Scholar] [CrossRef]
- Bower, W.I.; Ton, D.T.; Guttromson, R.; Glover, S.F.; Stamp, J.E.; Bhatnagar, D.; Reilly, J. The Advanced Microgrid. Integration and Interoperability (No. SAND2014-1535); Sandia Report SAND2014-1535; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2014.
- Farhangi, H.; Joós, G. Microgrid Planning and Design: A Concise Guide; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Taraghi Nazloo, H.; Babazadeh, R.; Varmazyar, M. Optimal Configuration and Planning of Distributed Energy Systems Considering Renewable Energy Resources. J. Environ. Inform. 2024, 43, 1–12. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Qolipour, M.; Rezaei, M.; Jahangiri, M.; Goli, A.; Sedaghat, A. A novel integrated approach for ranking solar energy location planning: A case study. J. Eng. Des. Technol. 2020, 19, 698–720. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Ramli, M.A. Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Convers. Manag. 2018, 155, 42–57. [Google Scholar] [CrossRef]
- Jatoi, A.R.; Samo, S.R.; Jakhrani, A.Q. Influence of Temperature on Electrical Characteristics of Different Photovoltaic Module Technologies. Int. J. Renew. Energy Dev. 2018, 7, 85–91. [Google Scholar] [CrossRef]
- Kasaeian, A.; Rahdan, P.; Rad, M.A.V.; Yan, W.M. Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: A case study. Energy Convers. Manag. 2019, 198, 111810. [Google Scholar] [CrossRef]
- Cetinbas, I.; Tamyurek, B.; Demirtas, M. Design, analysis, and optimization of a hybrid microgrid system using HOMER software: Eskisehir Osmangazi University example. Int. J. Renew. Energy Dev. 2019, 8, 65–79. [Google Scholar] [CrossRef]
- Givler, T.; Lilienthal, P. Using HOMER Software, NREL’s Micropower Optimization Model, to Explore the Role of Gen-Sets in Small Solar Power Systems; Case Study: Sri Lanka; Technical Report NREL/TP-710-36774; National Renewable Energy Lab.: Golden, CO, USA, 2005.
- Nguyen, X.P.; Hoang, A.T. The flywheel energy storage system: An effective solution to accumulate renewable energy. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; IEEE: Washington, DC, USA, 2020; pp. 1322–1328. [Google Scholar]
- Bahramirad, S.; Reder, W.; Khodaei, A. Reliability-constrained optimal sizing of energy storage system in a microgrid. IEEE Trans. Smart Grid 2012, 3, 2056–2062. [Google Scholar] [CrossRef]
- Wang, P.; Goel, L.; Liu, X.; Choo, F.H. Harmonizing AC and DC: A hybrid AC/DC future grid solution. IEEE Power Energy Mag. 2013, 11, 76–83. [Google Scholar] [CrossRef]
- Brandao, D.I.; dos Santos, R.P.; Silva, W.W.A.; Oliveira, T.R.; Donoso-Garcia, P.F. Model-free energy management system for hybrid alternating current/direct current microgrids. IEEE Trans. Ind. Electron. 2020, 68, 3982–3991. [Google Scholar] [CrossRef]
- Xu, L.; Guerrero, J.M.; Lashab, A.; Wei, B.; Bazmohammadi, N.; Vasquez, J.; Abusorrah, A.M. A Review of DC Shipboard Microgrids Part I: Power Architectures, Energy Storage and Power Converters. IEEE Trans. Power Electron. 2021, 37, 5155–5172. [Google Scholar] [CrossRef]
- Babu, M.K.; Ray, P. Sensitivity analysis, optimal design, cost and energy efficiency study of a hybrid forecast model using HOMER pro. J. Eng. Res. 2023, 11, 100033. [Google Scholar] [CrossRef]
- NASA. 2023. Available online: https://data.nasa.gov/dataset/prediction-of-worldwide-energy-resources-power (accessed on 16 January 2025).
- Tan, S.; Wu, Y.; Xie, P.; Guerrero, J.M.; Vasquez, J.C.; Abusorrah, A. New challenges in the design of microgrid systems: Communication networks, cyberattacks, and resilience. IEEE Electr. Mag. 2020, 8, 98–106. [Google Scholar] [CrossRef]
- Mehta, S.; Basak, P. A case study on pv assisted microgrid using homer pro for variation of solar irradiance affecting cost of energy. In Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Delh, India, 28 February–1 March 2020; IEEE: Washington, DC, USA, 2020; pp. 1–6. [Google Scholar]
- Khalil, L.; Bhatti, K.L.; Awan, M.A.I.; Riaz, M.; Khalil, K.; Alwaz, N. Optimization and designing of hybrid power system using HOMER pro. Mater. Today Proc. 2021, 47, S110–S115. [Google Scholar] [CrossRef]
- Taghavifar, H.; Zomorodian, Z.S. Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran. Renew. Sustain. Energy Rev. 2021, 143, 110877. [Google Scholar] [CrossRef]
- Hafez, O.; Bhattacharya, K. Optimal planning and design of a renewable energy-based supply system for microgrids. Renew. Energy 2012, 45, 7–15. [Google Scholar] [CrossRef]
- Huner, B. Feasibility and environmental analysis of biogas-based hybrid energy system using HOMER pro software: A case study for Hatay. Energy Convers. Manag. 2025, 326, 119480. [Google Scholar] [CrossRef]
- Said, T.R.; Kichonge, B.; Kivevele, T. Optimal design and analysis of a grid-connected hybrid renewable energy system using HOMER Pro: A case study of Tumbatu Island, Zanzibar. Energy Sci. Eng. 2024, 12, 2137–2163. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Ogunwole, E.I. Microgrid system design, modeling, and simulation. In Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources; Academic Press: New York, NY, USA, 2024; pp. 345–376. [Google Scholar]
- Khalid, W. Design and Analysis of Hybrid Power System and IoT SCADA System for Remote Sites. Ph.D. Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2024. [Google Scholar]
- Basheer, Y.; Qaisar, S.M.; Waqar, A.; Lateef, F.; Alzahrani, A. Investigating the optimal DOD and battery technology for hybrid energy generation models in cement industry using HOMER Pro. IEEE Access 2023, 11, 81331–81347. [Google Scholar] [CrossRef]
- Hasan, S.M.N.; Ahmad, S.; Liaf, A.F.; Mustayen, A.G.M.B.; Hasan, M.M.; Ahmed, T.; Howlader, S.; Hassan, M.; Alam, M.R. Techno-economic performance and sensitivity analysis of an off-grid renewable energy-based hybrid system: A case study of Kuakata, Bangladesh. Energies 2024, 17, 1476. [Google Scholar] [CrossRef]
- Giedraityte, A.; Rimkevicius, S.; Marciukaitis, M.; Radziukynas, V.; Bakas, R. Hybrid renewable energy systems—A review of optimization approaches and future challenges. Appl. Sci. 2025, 15, 1744. [Google Scholar] [CrossRef]
- Bakar, N.N.A.; Guerrero, J.M.; Vasquez, J.C.; Bazmohammadi, N.; Othman, M.; Rasmussen, B.D.; Al-Turki, Y.A. Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study. Energies 2022, 15, 431. [Google Scholar] [CrossRef]
- Chisale, S.W.; Eliya, S.; Taulo, J. Optimization and design of hybrid power system using HOMER pro and integrated CRITIC-PROMETHEE II approaches. Green Technol. Sustain. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Naiborhu, M.A.; Purwanti, D.R.; Kumalasari, S.D.; Idris, M.K.; Dwisa, C.B.P.; Elkhomei, A.S.; Purnawanti, Y.N. Transportation challenges for onshore wind turbine power plant development in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2025, 1464, 012002. [Google Scholar] [CrossRef]
- Sovacool, B.K. The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Util. Policy 2009, 17, 288–296. [Google Scholar] [CrossRef]
- Conde, H.J.C.; Demition, C.M.; Honra, J. Storage Is the New Black: A Review of Energy Storage System Applications to Resolve Intermittency in Renewable Energy Systems. Energies 2025, 18, 354. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Vis, I.F.; Ursavas, E. Assessment approaches to logistics for offshore wind energy installation. Sustain. Energy Technol. Assess. 2016, 14, 80–91. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Proskuryakova, L. New energy-rich or still energy-poor? Evidence from selected African countries. Util. Policy 2025, 97, 102068. [Google Scholar] [CrossRef]
- Falcone, P.M. Sustainable energy policies in developing countries: A review of challenges and opportunities. Energies 2023, 16, 6682. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y. Smart microgrid integration and optimization. In Active Electrical Distribution Network: A Smart Approach; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; Volume 7, pp. 201–235. [Google Scholar]
- Deshmukh, M.K.; Singh, A.B. Modeling of Energy Performance of Stand-Alone SPV System Using HOMER Pro. Energy Procedia 2019, 156, 90–94. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, Q.; Zhang, Z. Algorithms for separating diffuse and beam irradiance from data over the East Asia-Pacific region: A multi-temporal-scale evaluation based on minute-level ground observations. Sol. Energy 2023, 252, 218–233. [Google Scholar] [CrossRef]
- Sitharthan, R.; Vimal, S.; Verma, A.; Karthikeyan, M.; Dhanabalan, S.S.; Prabaharan, N.; Rajesh, M.; Eswaran, T. Smart microgrid with the Internet of things for adequate energy management and analysis. Comput. Electr. Eng. 2023, 106, 108556. [Google Scholar] [CrossRef]
- Battisti, L. Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Adothu, B.; Kumar, S.; John, J.J.; Oreski, G.; Mathiak, G.; Jäckel, B.; Alberts, V.; Bin Jahangir, J.; Alam, M.A.; Gottschalg, R. Comprehensive review on performance, reliability, and roadmap of c-Si PV modules in desert climates: A proposal for improved testing standard. Prog. Photovolt. Res. Appl. 2024, 32, 495–527. [Google Scholar] [CrossRef]










| Symbol | Description |
|---|---|
| Net Present Cost of configuration | |
| Initial cost for element | |
| Cash flow at year for element | |
| x | Discount rate |
| Power shed | |
| Load demand | |
| Fraction of energy served by PV | |
| Reserve requirement at time | |
| Total cost of system element | |
| Salvage value of element | |
| Total electrical and thermal loads served | |
| Non-RE served | |
| Total annualized cost | |
| Operation & Maintenance cost | |
| Number of batteries required | |
| DOD | Depth of discharge of battery |
| Parameter | Proposed Model 1 | Proposed Model 2 | Proposed Model 3 | |
|---|---|---|---|---|
| Layout | PV (kW) | 1.50 | 1.94 | - |
| Converter (kW) | 0.833 | 1.33 | 1.46 | |
| Cost | NPC (thousand $) | 47.62 | 34.27 | 50.52 |
| COE (thousand $) | 0.90 | 0.65 | 0.95 | |
| Operating cost (thousand $/yr) | 1.67 | 1.94 | 2.22 | |
| Initial capital (thousand $) | 26.00 | 9.25 | 21.84 | |
| System | REC fraction % | 63.8 | 26.2 | 30.3 |
| Total fuel (L/yr) | 628 | 969 | 927 | |
| Diesel | Production (kWh) | 1.485 | 3.031 | 2.863 |
| O&M Cost ($/yr) | 149 | 136 | 135 | |
| Fuel Cost ($/yr) | 628 | 969 | 927 | |
| PV | Capital cost (thousand $) | 3.75 | 4.85 | - |
| Production (kWh/yr) | 1.53 | 1.97 | - | |
| Wind | Capital cost (thousand $) | 18.000 | - | 18.000 |
| Production (kWh/yr) | 2.64 | - | 2.64 | |
| O&M Cost ($) | 180 | - | 180 | |
| Converter | Rectifier mean output (kWh) | 0.07 | 0.17 | 0.23 |
| Inverter mean output (kWh) | 0.17 | 0.30 | 0.18 | |
| Battery | Autonomy (hr) | 11.5 | 11.5 | 8.97 |
| Annual throughput (kWh/yr) | 1.09 | 1.91 | 1.82 | |
| Nominal capacity (kWh) | 9.01 | 9.01 | 7.01 | |
| Usable nominal capacity | 5.40 | 5.40 | 4.20 | |
| Parameter | Model 1 | Model 2 | Model 3 | |
|---|---|---|---|---|
| Layout | PV (kW) | 2.00 | 2.18 | - |
| Converter (kW) | 1.00 | 1.28 | 2.00 | |
| Cost | NPC (thousand $) | 44.61 | 35.08 | 47.46 |
| COE (thousand $) | 0.84 | 0.66 | 0.89 | |
| Operating cost (thousand $/yr) | 1.31 | 1.92 | 1.92 | |
| Initial capital (thousand $) | 27.60 | 10.13 | 22.60 | |
| System | REC fraction % | 79.1 | 26.0 | 43.6 |
| Total fuel (L/yr) | 356 | 961 | 723 | |
| Diesel | Production (kWh) | 857 | 3.03 | 2.32 |
| O&M Cost ($/yr) | 82.4 | 131 | 94.9 | |
| Fuel Cost ($/yr) | 356 | 961 | 723 | |
| PV | Capital cost (thousand $) | 5.00 | 5.45 | - |
| Production (kWh/yr) | 1.80 | 1.96 | - | |
| Wind | Capital cost (thousand $) | 18.00 | - | 18.00 |
| Production (kWh/yr) | 3.76 | - | 3.76 | |
| O&M Cost ($) | 180 | - | 180 | |
| Converter | Rectifier mean output (kWh) | 0.07 | 0.17 | 0.23 |
| Inverter mean output (kWh) | 0.18 | 0.30 | 0.17 | |
| Battery | Autonomy (hr) | 12.8 | 12.8 | 11.5 |
| Annual throughput (kWh/yr) | 1.23 | 1.95 | 1.81 | |
| Nominal capacity (kWh) | 10.0 | 10.0 | 9.01 | |
| Usable nominal capacity | 6.00 | 6.00 | 5.40 | |
| Parameter | Proposed Model 1 | Proposed Model 2 | Proposed Model 3 | |
|---|---|---|---|---|
| Layout | PV (kW) | 1.56 | 1.75 | - |
| Converter (kW) | 1.32 | 1.28 | 0.560 | |
| Cost | NPC (thousand $) | 50.42 | 34.27 | 54.39 |
| COE (thousand $) | 0.95 | 0.64 | 1.03 | |
| Operating cost (thousand $/yr) | 1.86 | 1.97 | 2.60 | |
| Initial capital (thousand $) | 26.30 | 8.76 | 20.66 | |
| System | REC fraction % | 47.7 | 24.2 | 17.3 |
| Total fuel (L/yr) | 685 | 996 | 1.28 | |
| Diesel | Production (kWh) | 2.14 | 3.11 | 3.39 |
| O&M Cost ($/yr) | 95.8 | 140 | 260 | |
| Fuel Cost ($/yr) | 685 | 996 | 1.28 | |
| PV | Capital cost (thousand $) | 3.91 | 4.37 | - |
| Production (kWh/yr) | 1.60 | 1.79 | - | |
| Wind | Capital cost (thousand $) | 18.00 | - | 18.00 |
| Production (kWh/yr) | 1.56 | - | 1.56 | |
| O&M Cost ($) | 180 | - | 180 | |
| Converter | Rectifier mean output (kWh) | 0.15 | 0.17 | 0.15 |
| Inverter mean output (kWh) | 0.24 | 0.29 | 0.11 | |
| Battery | Autonomy (hr) | 11.5 | 11.5 | 5.13 |
| Annual throughput (kWh/yr) | 1.73 | 1.92 | 1.19 | |
| Nominal capacity (kWh) | 9.01 | 9.01 | 4.00 | |
| Usable nominal capacity | 5.40 | 5.40 | 2.40 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilinc-Ata, N.; Proskuryakova, L.N. Modeling Hybrid Renewable Microgrids in Remote Northern Regions: A Comparative Simulation Study. Energies 2025, 18, 5827. https://doi.org/10.3390/en18215827
Kilinc-Ata N, Proskuryakova LN. Modeling Hybrid Renewable Microgrids in Remote Northern Regions: A Comparative Simulation Study. Energies. 2025; 18(21):5827. https://doi.org/10.3390/en18215827
Chicago/Turabian StyleKilinc-Ata, Nurcan, and Liliana N. Proskuryakova. 2025. "Modeling Hybrid Renewable Microgrids in Remote Northern Regions: A Comparative Simulation Study" Energies 18, no. 21: 5827. https://doi.org/10.3390/en18215827
APA StyleKilinc-Ata, N., & Proskuryakova, L. N. (2025). Modeling Hybrid Renewable Microgrids in Remote Northern Regions: A Comparative Simulation Study. Energies, 18(21), 5827. https://doi.org/10.3390/en18215827

