Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = High Resolution Melting analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2270 KiB  
Article
Progress in Our Understanding of the Cross-Protection Mechanism of CTV-VT No-SY Isolates Against Homologous SY Isolates
by Grazia Licciardello, Giuseppe Scuderi, Marcella Russo, Marina Bazzano, Giuseppe Paradiso, Moshe Bar-Joseph and Antonino F. Catara
Pathogens 2025, 14(7), 701; https://doi.org/10.3390/pathogens14070701 - 16 Jul 2025
Viewed by 262
Abstract
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both [...] Read more.
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both mild and severe isolates, some of them associated with seedling yellows (SY) syndrome. Mild CTV-VT isolates that do not induce SY symptoms (no-SY) show minor variations in their Orf1a, p23, and p33 genes, with a single nucleotide polymorphism at position 161 of the p23 gene. These isolates can repress superinfection with homologous severe isolates. The aim of this study was to investigate the mechanism of cross-protection by means of biological indexing, real-time RT-PCR high-resolution melting (HRM), and p23 gene amplicon sequencing. Four no-SY CTV-VT isolates were inoculated onto SO seedlings and Hamlin sweet orange trees grafted on SO. These plants were later challenged with two homologous CTV-VT SY isolates and remained asymptomatic. The biological evaluation of the infection process in superinfected plants was investigated via inoculation of the bark on SO seedlings that were also asymptomatic. A parallel HRM analysis of midvein RNA extracts revealed that the melting temperature (Tm) of the no-SY isolates was statistically lower than that of the SY isolates. The Tm values of RNAs extracts from superinfected plants were not statistically different from those of the no-SY isolates. This suggests that the SY isolates failed to establish infection or replicate in plants pre-inoculated with no-SY isolates. This blockage of replication resembles superinfection exclusion, with attractive perspectives to prevent SY damage in field applications. Full article
Show Figures

Figure 1

20 pages, 3812 KiB  
Article
Rising Net Shortwave Radiation and Land Surface Temperature Drive Snow Cover Phenology Shifts Across the Mongolian Plateau During the 2000–2022 Hydrological Years
by Xiaona Chen and Shiqiu Lin
Remote Sens. 2025, 17(13), 2221; https://doi.org/10.3390/rs17132221 - 28 Jun 2025
Viewed by 316
Abstract
Snow cover phenology (SCP) serves as a critical regulator of hydrological cycles and ecosystem stability across the Mongolian Plateau (MP). Despite its importance, the spatiotemporal patterns of SCP and their climatic drivers remain poorly quantified, constrained by persistent gaps in satellite snow cover [...] Read more.
Snow cover phenology (SCP) serves as a critical regulator of hydrological cycles and ecosystem stability across the Mongolian Plateau (MP). Despite its importance, the spatiotemporal patterns of SCP and their climatic drivers remain poorly quantified, constrained by persistent gaps in satellite snow cover observations. Leveraging a high-resolution (500 m) daily gap-filled Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover dataset combined with reanalysis climate datasets, we systematically quantified SCP dynamics and identified the dominant controls during the 2000–2022 hydrological years using trend analysis and ridge regression. Our results reveal a significant divergence in SCP parameters: snow end dates (De) advanced markedly across the entire plateau (0.29 days yr−1, p < 0.01), accounting for 90.39% of SCP anomalies. In contrast, snow onset date (Do) exhibited unnoticeable changes, explaining 9.58% of SCP changes. Attribution analysis demonstrates that 47.72% of De variability stems from increased net shortwave radiation (+0.38 Wm−2 yr−1) and rising temperatures (+0.06 °C yr−1) during the melting season, with net shortwave radiation exerting stronger control (R2 = 0.73) than temperature (R2 = 0.63). This study establishes the first continuous, high-resolution SCP climatology for the MP, providing mechanistic insights into cryosphere–atmosphere interactions that inform adaptive water resource strategies for climate-vulnerable arid ecosystems in this region. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

56 pages, 2573 KiB  
Review
A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation
by Usman Aziz, Marion McAfee, Ioannis Manolakis, Nick Timmons and David Tormey
Materials 2025, 18(12), 2870; https://doi.org/10.3390/ma18122870 - 17 Jun 2025
Cited by 1 | Viewed by 590
Abstract
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), [...] Read more.
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), and electron beam melting (EBM) remains challenged by inherent process-related defects such as residual stresses, porosity, anisotropy, and surface roughness. This review critically examines these AM techniques, focusing on optimizing key manufacturing parameters, mitigating defects, and implementing effective post-processing treatments. This review highlights how process parameters including laser power, energy density, scanning strategy, layer thickness, build orientation, and preheating conditions directly affect microstructural evolution, mechanical properties, and defect formation in AM-fabricated 316/316L stainless steel. Comparative analysis reveals that SLM excels in achieving refined microstructures and high precision, although it is prone to residual stress accumulation and porosity. DED, on the other hand, offers flexibility for large-scale manufacturing but struggles with surface finish and mechanical property consistency. EBM effectively reduces thermal-induced residual stresses due to its sustained high preheating temperatures (typically maintained between 700 °C and 850 °C throughout the build process) and vacuum environment, but it faces limitations related to resolution, cost-effectiveness, and material applicability. Additionally, this review aligns AM techniques with specific defect reduction strategies, emphasizing the importance of post-processing methods such as heat treatment and hot isostatic pressing (HIP). These approaches enhance structural integrity by refining microstructure, reducing residual stresses, and minimizing porosity. By providing a comprehensive framework that connects AM techniques optimization strategies, this review serves as a valuable resource for academic and industry professionals. It underscores the necessity of process standardization and real-time monitoring to improve the reliability and consistency of AM-produced 316/316L stainless steel components. A targeted approach to these challenges will be crucial in advancing AM technologies to meet the stringent performance requirements of various high-value industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

12 pages, 1437 KiB  
Article
The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage
by Anastassia Y. Borisova, Kirill Lozovoy, Alessandro Pugliara, Teresa Hungria, Claudie Josse and Philippe de Parseval
Minerals 2025, 15(6), 569; https://doi.org/10.3390/min15060569 - 27 May 2025
Viewed by 408
Abstract
The main constituent of the planetary lithosphere is the dominant silicate mineral, olivine α-(Mg,Fe)2SiO4, which, along with associated minerals and the olivine-hosted inclusions, records the physical–chemical conditions during the crystal growth and transport to the planetary surface. However, there [...] Read more.
The main constituent of the planetary lithosphere is the dominant silicate mineral, olivine α-(Mg,Fe)2SiO4, which, along with associated minerals and the olivine-hosted inclusions, records the physical–chemical conditions during the crystal growth and transport to the planetary surface. However, there is a lack of physical–chemical information regarding the kinetic factors that regulate crystal growth during melt–rock, fluid–rock, and magma–rock interactions. Here, we conducted an experimental reaction between hydrated peridotite rock and basaltic melt and coupled this with a structural and elemental analysis of the quenched products by high-resolution transmission electron microscopy. The quenched products revealed crystallographically oriented oxide nanocrystals of ilmenite (Fe,Mg)(Ti,Si)O3 that grew over the newly formed olivine in the boundary layer melt of the reaction zone. We established that the growth mechanism is epitaxial and is common to both experimental and natural systems. The kinetic model developed for shallow (<1 GPa) crystal growth requires open system conditions and the presence of melt or fluid. It implies that the current geodynamic models that consider natural ilmenite–olivine assemblage as a proxy for deep to ultra-deep (>>1 GPa) conditions should be revised. The resulting kinetic model has a wide range of geological implications—from disequilibrium mineral growth and olivine-hosted inclusion production to mantle metasomatism—and helps to clarify how geological reactions proceed at depth. Full article
Show Figures

Figure 1

11 pages, 1542 KiB  
Article
Feasible and Rapid Screening of IDH1/2 and FLT3-TKD2 Mutations by High-Resolution Melting for Patients with Acute Myeloid Leukemia
by José Vicente Gil, Sandra de las Heras, Alberto Miralles, Claudia Sargas, Marta Llop, Rebeca Rodríguez-Veiga, Laura Torres-Miñana, Blanca Boluda, Isabel Cano-Ferri, Evelyn Acuña-Cruz, Irene Navarro, Pilar Lloret-Madrid, Pau Montesinos and Eva Barragán
Diagnostics 2025, 15(10), 1230; https://doi.org/10.3390/diagnostics15101230 - 14 May 2025
Viewed by 511
Abstract
Background: In recent years, numerous recurrently mutated genes have been identified in acute myeloid leukemia (AML), some of which, such as FLT3 and IDH1/2, serve as therapeutic targets, offering new treatment options. Rapid mutational analysis is crucial for timely and optimal [...] Read more.
Background: In recent years, numerous recurrently mutated genes have been identified in acute myeloid leukemia (AML), some of which, such as FLT3 and IDH1/2, serve as therapeutic targets, offering new treatment options. Rapid mutational analysis is crucial for timely and optimal therapy selection. This study aims to develop and validate a rapid, cost-effective, and sensitive screening method for detecting IDH1, IDH2, and FLT3-TKD2 mutations using polymerase chain reaction (PCR) and high-resolution melting curve analysis (HRM). Methods: A PCR-HRM assay was developed to simultaneously detect mutations in IDH1, IDH2, and FLT3-TKD2. The method was applied to a cohort of 1363 AML patients, and its performance, including turnaround time, was evaluated through comparison with next-generation sequencing (NGS) results. Results: The PCR-HRM method demonstrated a positive percent agreement of 98%, 98%, and 92% for IDH1, IDH2, and FLT3-TKD2, respectively, and a negative percent agreement of 100% for all three genes compared to NGS. No false positives were observed, and false negatives were detected in less than 1% of cases, mostly in FLT3-TKD2, all occurring below the established limit of detection. The turnaround time and cost of PCR-HRM were significantly lower than those of NGS. Conclusions: This method offers a highly sensitive, specific, and time-efficient approach for the simultaneous detection of IDH1, IDH2, and FLT3-TKD2 mutations in AML patients. Its rapid turnaround time and cost-effectiveness make it a valuable tool for routine clinical screening, facilitating timely and targeted treatment decisions. Full article
(This article belongs to the Special Issue Diagnosis, Prognosis and Management of Hematologic Malignancies)
Show Figures

Figure 1

21 pages, 7179 KiB  
Article
Structural Similarity-Guided Siamese U-Net Model for Detecting Changes in Snow Water Equivalent
by Karim Malik and Colin Robertson
Remote Sens. 2025, 17(9), 1631; https://doi.org/10.3390/rs17091631 - 4 May 2025
Viewed by 555
Abstract
Snow water equivalent (SWE), the amount of water generated when a snowpack melts, has been used to study the impacts of climate change on the cryosphere processes and snow cover dynamics during the winter season. In most analyses, high-temporal-resolution SWE and SD data [...] Read more.
Snow water equivalent (SWE), the amount of water generated when a snowpack melts, has been used to study the impacts of climate change on the cryosphere processes and snow cover dynamics during the winter season. In most analyses, high-temporal-resolution SWE and SD data are aggregated into monthly and yearly averages to detect and characterize changes. Aggregating snow measurements, however, can magnify the modifiable aerial unit problem, resulting in differing snow trends at different temporal resolutions. Time series analysis of gridded SWE data holds the potential to unravel the impacts of climate change and global warming on daily, weekly, and monthly changes in snow during the winter season. Consequently, this research presents a high-temporal-resolution analysis of changes in the SWE across the cold regions of Canada. A Siamese UNet (Si-UNet) was developed by modifying the model’s last layer to incorporate the structural similarity (SSIM) index. The similarity values from the SSIM index are passed to a contrastive loss function, where the optimization process maximizes SSIM index values for pairs of similar SWE images and minimizes the values for pairs of dissimilar SWE images. A comparison of different model architectures, loss functions, and similarity metrics revealed that the SSIM index and the contrastive loss improved the Si-UNet’s accuracy by 16%. Using our Si-UNet, we found that interannual SWE declined steadily from 1979 to 2018, with March being the month in which the most significant changes occurred (R2 = 0.1, p-value < 0.05). We conclude with a discussion on the implications of the findings from our study of snow dynamics and climate variables using gridded SWE data, computer vision metrics, and fully convolutional deep neural networks. Full article
Show Figures

Figure 1

16 pages, 3529 KiB  
Article
The Clinical and Laboratory Landscape of COVID-19 During the Initial Period of the Pandemic and at the Beginning of the Omicron Era
by Yulia A. Desheva, Tamara N. Shvedova, Olga S. Kopteva, Danila S. Guzenkov, Polina A. Kudar, Tatiana S. Kotomina, Daria S. Petrachkova, Elena P. Grigorieva, Anna A. Lerner and Stanislav V. Ponkratov
Viruses 2025, 17(4), 481; https://doi.org/10.3390/v17040481 - 27 Mar 2025
Viewed by 563
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underwent significant mutations, resulting in the Omicron variant. Methods: In this study, we analyzed blood samples from 98 patients with acute coronavirus disease 19 (COVID-19) hospitalized during the initial SARS-CoV-2 wave and the onset of [...] Read more.
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underwent significant mutations, resulting in the Omicron variant. Methods: In this study, we analyzed blood samples from 98 patients with acute coronavirus disease 19 (COVID-19) hospitalized during the initial SARS-CoV-2 wave and the onset of Omicron in 2021. High-resolution melting (HRM) analysis of PCR products was used to analyze RNA extracted from clinical samples collected in July and November 2021 from patients infected with SARS-CoV-2. Results: HRM analysis revealed a characteristic deletion in the N protein RNA of the virus isolated in November 2021, associated with the Omicron variant. Elevated levels of inflammatory markers and interleukin-6 (IL-6) were observed in both waves of COVID-19. Complement levels and IgG and IgM antibodies to SARS-CoV-2 were detected more often during the second wave. An increase in hemagglutinin-inhibiting (HI) antibodies against influenza viruses was observed in paired blood specimens from moderate to severe COVID-19 patients during both outbreaks. Conclusions: Patients admitted during both waves of COVID-19 showed a significant rise in inflammatory markers, suggesting that Omicron triggers inflammatory responses. The rapid formation of IgM and IgG in Omicron may indicate a faster immune response. Seasonal flu may negatively impact the clinical course of coronavirus infections. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

33 pages, 6590 KiB  
Review
Current Progress and Future Trends of Genomics-Based Techniques for Food Adulteration Identification
by Jing Zhao, Wei Yang, Hongli Cai, Guangtian Cao and Zhanming Li
Foods 2025, 14(7), 1116; https://doi.org/10.3390/foods14071116 - 24 Mar 2025
Cited by 2 | Viewed by 1875
Abstract
Addressing the pervasive issue of food adulteration and fraud driven by economic interests has long presented a complex challenge. Such adulteration not only compromises the safety of the food supply chain and destabilizes the market economy but also poses significant risks to public [...] Read more.
Addressing the pervasive issue of food adulteration and fraud driven by economic interests has long presented a complex challenge. Such adulteration not only compromises the safety of the food supply chain and destabilizes the market economy but also poses significant risks to public health. Food adulteration encompasses practices such as substitution, process manipulation, mislabeling, the introduction of undeclared ingredients, and the adulteration of genetically modified foods. Given the diverse range of deceptive methods employed, genomics-based identification techniques have increasingly been utilized for detecting food adulteration. Compared to traditional detection methods, technologies such as polymerase chain reaction (PCR), next-generation sequencing (NGS), high-resolution melt (HRM) analysis, DNA barcoding, and the CRISPR–Cas system have demonstrated efficacy in accurately and sensitively detecting even trace amounts of adulterants. This paper provides an overview of genomics-based approaches for identifying food adulteration, summarizes the latest applications in certification procedures, discusses current limitations, and explores potential future trends, thereby offering new insights to enhance the control of food quality and contributing to the development of more robust regulatory frameworks and food safety policies. Full article
Show Figures

Figure 1

21 pages, 7169 KiB  
Review
Wire Arc Additive Manufacturing for Widespread Architectural Application: A Review Informed by Large-Scale Prototypes
by Felix Raspall, Sergio Araya, Maximiliano Pazols, Eduardo Valenzuela, Martín Castillo and Paola Benavides
Buildings 2025, 15(6), 906; https://doi.org/10.3390/buildings15060906 - 13 Mar 2025
Cited by 2 | Viewed by 2231
Abstract
This paper reviews the potential of Wire Arc Additive Manufacturing (WAAM) for architecture. It uniquely addresses its feasibility by evaluating existing large-scale, real-world prototypes developed to date and compiling critical gaps identified in the literature. Although previous review papers concerning WAAM for architecture [...] Read more.
This paper reviews the potential of Wire Arc Additive Manufacturing (WAAM) for architecture. It uniquely addresses its feasibility by evaluating existing large-scale, real-world prototypes developed to date and compiling critical gaps identified in the literature. Although previous review papers concerning WAAM for architecture exist, they focus on the technical aspects of the technology, such as the mechanical properties, defects, and process parameters. No existing review analyzes which architectural applications are being implemented nor the scale and degree prototyping accomplished for each application. WAAM, a form of metal additive manufacturing using an electric arc to melt and deposit wire, offers unique advantages for the construction industry. It allows for high deposition rates, structural integrity, and cost-efficiency using steel. However, challenges such as producing large-scale components and limited design freedom and lower resolution compared to other additive manufacturing processes remain. This review first contextualizes WAAM within the broader landscape of additive manufacturing technologies for construction and examines its proposed architectural applications, such as steel connections, columns, trusses, and bridge elements. This study emphasizes the need for real-world experimentation through large-scale prototypes to assess the practicality and scalability of WAAM in architecture. The results of this study reveal that 36 architectural projects using WAAM exist in the literature, whose application range from structural (such as beams, columns, and nodes) to nonstructural components (such as facades and ornamental elements). Based on these, a classification for WAAM in architecture is proposed: (1) stand-alone WAAM structures, (2) printed connector pieces to join standard steel parts, and (3) reinforcement for conventional steel elements using WAAM. The size of typical functional prototypes to date averages 200 × 200 × 200 mm, with exceptional cases such as the diagrid column of 2000 mm height and the MX3D Bridge, which spans over 12 m. A detailed analysis of seven projects documents the scale and development of the prototypes, functional lab configuration, and process parameters. Through this review, the current technical feasibility of WAAM in architecture is established. Full article
(This article belongs to the Special Issue Architectural Design Supported by Information Technology: 2nd Edition)
Show Figures

Figure 1

23 pages, 15634 KiB  
Article
Post-Processing PEEK 3D-Printed Parts: Experimental Investigation of Annealing on Microscale and Macroscale Properties
by Makenzie Adamson and Babak Eslami
Polymers 2025, 17(6), 744; https://doi.org/10.3390/polym17060744 - 12 Mar 2025
Cited by 2 | Viewed by 1283
Abstract
Polyether ether ketone (PEEK) is a high-performance thermoplastic polymer known for its unique combination of properties that make it suitable for a wide range of applications. Despite significant advancements in the characterization of PEEK, its high melting point (343 °C) presents challenges in [...] Read more.
Polyether ether ketone (PEEK) is a high-performance thermoplastic polymer known for its unique combination of properties that make it suitable for a wide range of applications. Despite significant advancements in the characterization of PEEK, its high melting point (343 °C) presents challenges in both sample preparation and post-processing treatments such as annealing. Due to the high melting temperature of PEEK, there is a large change in temperature that occurs during the deposition of each layer during the print, causing a lack of strong adhesion between each filament layer. Therefore, annealing becomes a necessary post-processing step to ensure strong bonding within the parts. Hence, there is a need to establish precise post-processing parameters to enhance the material’s structural integrity and performance. This study aims to characterize PEEK at both the nanoscale and the macroscale by utilizing Atomic Force Microscopy (AFM) and mechanical testing methods such as tensile and three-point bending tests. AFM imaging, which offers high-resolution surface analysis, was used to assess PEEK’s surface morphology before and after annealing, providing insights into roughness, mechanical properties, and structural integrity at the nanoscale. Tensile and bending tests evaluated PEEK’s mechanical performance under macroscale conditions. Microscale AFM revealed that annealing at higher temperatures and for longer durations enhances polymer chain mobility. This promotes structural reorganization, recrystallization, and a reduction in surface roughness. These findings correlate to the macroscale properties where the tensile strength of the sample with the longest annealing duration and highest temperature increased 6.0 MPa from the sample that was not annealed. Three-point bending tests showed a 16 MPa increase from the unannealed sample to the sample annealed at 360 °C for 6 h. The findings from this research will help optimize post-processing parameters for PEEK, improving material quality while contributing to the broader understanding of its surface and mechanical properties. This work provides valuable data for future studies and applications involving high-performance polymers, especially within engineering and biomedical fields. Full article
(This article belongs to the Special Issue 3D and 4D Printing of Polymers: Modeling and Experimental Approaches)
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Development of a Multi-Locus Real-Time PCR with a High-Resolution Melting Assay to Differentiate Wild-Type, Asian Recombinant, and Vaccine Strains of Lumpy Skin Disease Virus
by Kultyarat Bhakha, Yuto Matsui, Natchaya Buakhao, Saruda Wanganurakkul, Taweewat Deemagarn, Mami Oba, Hitoshi Takemae, Tetsuya Mizutani, Naoaki Misawa, Lerdchai Chintapitaksakul, Kentaro Yamada and Nutthakarn Suwankitwat
Vet. Sci. 2025, 12(3), 213; https://doi.org/10.3390/vetsci12030213 - 1 Mar 2025
Viewed by 1240
Abstract
Lumpy skin disease virus (LSDV) affects cattle and causes significant economic damage. The live vaccine derived from an attenuated strain is effective but is associated with mild disease and skin lesions in some vaccinated cattle. Moreover, recombinant LSDV strains, particularly one with wild-type [...] Read more.
Lumpy skin disease virus (LSDV) affects cattle and causes significant economic damage. The live vaccine derived from an attenuated strain is effective but is associated with mild disease and skin lesions in some vaccinated cattle. Moreover, recombinant LSDV strains, particularly one with wild-type field and vaccine strains, have recently emerged and spread throughout Asian countries. A cost-effective LSDV typing method is required. We developed a multi-locus real-time PCR with a high-resolution melting (HRM) assay to differentiate between the wild-type, vaccine, and dominant Asian recombinant strains. Based on a multiple alignment analysis, we selected three target genes for the HRM assay, ORF095, ORF126, and ORF145, in which there are insertions/deletions and nucleotide substitutions between wild-type and vaccine strains, and designed primer sets for the assay. Using the synthetic DNA encoding these genes for the two strains, it was shown that the PCR amplicons intercalated with a saturating fluorescent dye could clearly differentiate between wild-type and vaccine strains in the HRM analysis for all three target genes. Further, using clinical samples, our method was able to identify recombinant strains harboring the wild-type ORF095 and ORF145 and the vaccine strain ORF126 genes. Thus, our HRM assay may provide rapid LSDV typing. Full article
Show Figures

Figure 1

17 pages, 6427 KiB  
Article
Authentication of EU-Authorized Edible Insect Species in Food Products by DNA Barcoding and High-Resolution Melting (HRM) Analysis
by Michaela Wildbacher, Julia Andronache, Katharina Pühringer, Stefanie Dobrovolny, Rupert Hochegger and Margit Cichna-Markl
Foods 2025, 14(5), 751; https://doi.org/10.3390/foods14050751 - 22 Feb 2025
Viewed by 1081
Abstract
The consumption of edible insects is a promising approach to meet the increasing global demand for food. Commercialization of edible insects in the EU is regulated by the Novel Food regulation. To date, the yellow mealworm (Tenebrio molitor larva), the migratory locust [...] Read more.
The consumption of edible insects is a promising approach to meet the increasing global demand for food. Commercialization of edible insects in the EU is regulated by the Novel Food regulation. To date, the yellow mealworm (Tenebrio molitor larva), the migratory locust (Locusta migratoria), the house cricket (Acheta domesticus), and the buffalo worm (Alphitobius diaperinus larva) have been authorized in the EU for human consumption. We aimed to develop a method based on DNA barcoding and high-resolution melting (HRM) analysis for the identification and differentiation of these four EU-authorized edible insect species in food. A primer pair previously designed for DNA metabarcoding, targeting a ~200 bp sequence of mitochondrial 16S rDNA, allowed discrimination between the four insect species in highly processed food. However, house cricket and migratory locust could not unambiguously be differentiated from tropical house cricket, desert locust, superworm, cowpea weevil, and sago worm, respectively. This problem could be solved by designing primers specific for house cricket and migratory locust. By combining these primers with the insect primers, additional polymerase chain reaction (PCR) products for house cricket and migratory locust were obtained, resulting in more complex melt curves compared to the unauthorized insect species. The optimized PCR-HRM assay is a very cost-efficient screening tool for authentication of EU-authorized edible insect species in food. Full article
Show Figures

Figure 1

22 pages, 7781 KiB  
Article
Rapid Detection of Epinephelus Species Substitution in the Greek Market Using High-Resolution Melting Analysis
by Evanthia Chatzoglou, Nefeli Tsaousi, Ariadni Spetsieri, Emmanouil E. Malandrakis and Helen Miliou
Genes 2025, 16(3), 255; https://doi.org/10.3390/genes16030255 - 22 Feb 2025
Viewed by 725
Abstract
Background/Objectives: Fish are vital in the Mediterranean diet, offering protein, nutrients, and ω-3 fatty acids. Greek consumers favor wild-caught, high-value fish like the dusky grouper (Epinephelus marginatus) classified as “vulnerable” and the white grouper (Epinephelus aeneus) classified as [...] Read more.
Background/Objectives: Fish are vital in the Mediterranean diet, offering protein, nutrients, and ω-3 fatty acids. Greek consumers favor wild-caught, high-value fish like the dusky grouper (Epinephelus marginatus) classified as “vulnerable” and the white grouper (Epinephelus aeneus) classified as “near threatened” species, according to the IUCN Red List. Due to their premium prices and complex supply chains, these species are susceptible to fraud, especially through mislabeling. This practice not only deceives consumers but also poses health risks and encourages illegal fishing. DNA-based methods have shown effectiveness in accurately identifying species, even in processed samples. The aim of this study is to apply high-resolution melting analysis (HRM) as a rapid, effective method for monitoring the appropriate labeling of the two Epinephelus species in the Greek market. Methods: In this study, fresh fish from Greek catches as well as cooked, frozen, and filleted samples collected from the Greek market were identified using DNA barcoding. HRM analysis based on single nucleotide polymorphisms (SNPs) was used to differentiate between locally sourced E. marginatus and E. aeneus from their imported counterparts or from other species available in the Greek market that could be used in substitution incidents. Results: Using HRM analysis, cases of species mislabeling were identified and were also confirmed using sequencing. Conclusions: HRM analysis proved to be an accurate and cost-effective method for rapidly processing a large number of samples; therefore, it could serve as a valuable tool in extensive market controls as well as for bio-diversity conservation monitoring. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 7510 KiB  
Article
Identifying the Key Controlling Factors of Icings in Permafrost Regions: A Case Study of Eruu, Sakha Republic, Russia
by Ruotong Li, Miao Yu, Minghui Jia, Zijun Wang, Hao Yao and Yunhu Shang
Water 2025, 17(5), 607; https://doi.org/10.3390/w17050607 - 20 Feb 2025
Viewed by 722
Abstract
Icings, a significant hydrogeological phenomenon in permafrost regions, form when groundwater flows to the surface or through river crevices and freezes under low temperatures. These formations pose serious threats to infrastructure, including roads, railways, and bridges, while also serving as vital freshwater resources. [...] Read more.
Icings, a significant hydrogeological phenomenon in permafrost regions, form when groundwater flows to the surface or through river crevices and freezes under low temperatures. These formations pose serious threats to infrastructure, including roads, railways, and bridges, while also serving as vital freshwater resources. Despite their importance, the mechanisms governing icing formation and the quantitative relationships between groundwater-controlling factors—such as freeze–thaw processes and precipitation—and icing distribution remain poorly understood. This knowledge gap hinders disaster prevention efforts and the sustainable utilization of water resources in cold regions. This study investigates the development patterns and influencing factors of icings in Eruu, a high-latitude permafrost region, using Landsat 4–5 TM, Landsat 7 ETM+, Landsat 8 OLI, and Landsat 9 OLI imagery with a 30 m resolution (2005–2024) and meteorological and geothermal data. By combining NDSI and MDII, the differentiation accuracy of water bodies was improved, and the K-Means clustering algorithm was applied to extract the icing region. The results revealed that the annual icing surface area ranged from 208,800 to 459,000 m2, with a minimum in 2009 and a maximum in 2011. The average annual increase was approximately 4304.5 m2 (p = 0.0255). Icings began freezing in October, radiating outward from the center, and melted by late May or early June. The Pearson correlation analysis showed (1) a strong negative correlation between snowfall and icing area (r = −0.544); (2) a positive correlation between freezing duration and icing area (r = 0.471); and (3) over the study period, annual average temperature and total precipitation exhibited no obvious change trend, with weak positive correlations between icing area and total precipitation (r = 0.290) and annual average temperature (r = 0.248). The observations of icing areas will be further applied to disaster prevention efforts. Additionally, the source of icings is clean and can be extracted for drinking purposes. Therefore, these findings enhance the understanding of icing mechanisms, support the prediction of icing development, and inform disaster prevention and resource management in permafrost regions. Full article
Show Figures

Figure 1

15 pages, 739 KiB  
Article
COI Metabarcoding as a Novel Approach for Assessing the Honey Bee Source of European Honey
by Mónica Honrado, Andreia Quaresma, Dora Henriques, M. Alice Pinto and Joana S. Amaral
Foods 2025, 14(3), 419; https://doi.org/10.3390/foods14030419 - 27 Jan 2025
Viewed by 1176
Abstract
Honey is a widely consumed food product frequently subjected to adulteration, with the mislabeling of its botanical or geographical origin being one of the most common practices. Determining the entomological origin of honey is particularly challenging but of high relevance for ensuring its [...] Read more.
Honey is a widely consumed food product frequently subjected to adulteration, with the mislabeling of its botanical or geographical origin being one of the most common practices. Determining the entomological origin of honey is particularly challenging but of high relevance for ensuring its authenticity, especially for products with protected designation of origin (PDO) labels. This study presents a novel DNA metabarcoding approach targeting a highly informative 406 bp fragment of the cytochrome c oxidase I (COI) gene to differentiate among the three major mitochondrial lineages (A, M, and C) of honey bees (Apis mellifera L.) native to Europe. The target region was selected based on the calculated fixation index (FST), which is frequently used in Population Genetics as a measure of differentiation between populations. The approach was validated with 11 honey samples of known entomological origin and applied to 44 commercial honeys from 13 countries. The approach demonstrated high sensitivity, accurately identifying the entomological origin of honey, including samples produced by honey bees of varying ancestries, which could not be resolved by previous methods based on real-time PCR coupled with high-resolution melting (PCR-HRM) analysis. The results demonstrate the effectiveness of COI metabarcoding in verifying honey authenticity and highlight the predominance of C-lineage honey bees in the production of commercial honeys from northwestern Europe. This finding suggests a limited presence of the native M-lineage ancestry, underscoring the need for conservation efforts. Full article
Show Figures

Figure 1

Back to TopTop