Rising Net Shortwave Radiation and Land Surface Temperature Drive Snow Cover Phenology Shifts Across the Mongolian Plateau During the 2000–2022 Hydrological Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. MODIS Snow Cover Dataset
2.2.2. Temperature, Precipitation, and Snow Depth Datasets
2.2.3. Solar Radiation Dataset
2.2.4. Data Preparation
2.3. Methods
2.3.1. SCP Parameter Detection
2.3.2. Attribution Analysis Method
3. Results
3.1. Climatology of SCP
3.2. Changes in SCP
3.2.1. Spatial Variation
3.2.2. Temporal Variation
3.3. Attribution Analysis
3.3.1. Attribution Analysis of Changes in Do
3.3.2. Attribution Analysis of Changes in De
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MP | Mongolian Plateau |
NH | Northern Hemisphere |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MOD10A1F | MODIS daily cloud-gap-filled snow cover product |
NDSI | Normalized Difference Snow Index |
CGF | Cloud-gap-filled |
CERES | Clouds and the Earth’s Radiant Energy System |
ERA5-Land | European Center for Medium-Range Weather Forecasts Reanalysis v5-Land |
SCP | Snow cover phenology |
Do | Snow onset date |
De | Snow end date |
Dd | Snow duration days |
DOY | Day of Year |
IPO | Pacific Decadal Oscillation |
AMO | Atlantic Multidecadal Oscillation |
Ta | Accumulation-season averaged 2 m air temperature |
Pa | Accumulation-season averaged total precipitation |
SWa | Accumulation-season averaged net shortwave radiation |
SDa | Accumulation-season averaged snow depth |
Tm | Melting-season averaged 2 m air temperature |
SWm | Melting-season averaged net shortwave radiation |
References
- Barnett, T.; Adam, J.; Lettenmaier, D. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Zaremehrjardy, M.; Victor, J.; Park, S.; Smerdon, B.; Alessi, D.S.; Faramarzi, M. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes. J. Hydrol. 2022, 606, 127449. [Google Scholar] [CrossRef]
- Zhang, X.; Sa, C.; Hai, Q.; Meng, F.; Luo, M.; Gao, H.; Zhang, H.; Yin, C.; Zhang, Y.; Sun, H. Quantifying the Effects of Snow on the Beginning of Vegetation Growth in the Mongolian Plateau. Remote Sens. 2023, 15, 1245. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 2020, 15, 034042. [Google Scholar] [CrossRef]
- Miao, L.; Liu, Q.; Fraser, R.; He, B.; Cui, X. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth. 2015, 87-88, 50–59. [Google Scholar] [CrossRef]
- Li, C.; Xu, X.; Du, H.; Du, D.; Leal Filho, W.; Wang, J.; Bao, G.; Ji, X.; Yin, S.; Bao, Y.; et al. Potential impacts of climate extremes on snow under global warming conditions in the Mongolian Plateau. Int. J. Clim. Change Str. 2022, 14, 425–439. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Yin, C. Contribution of Changes in Snow Cover Extent to Shortwave Radiation Perturbations at the Top of the Atmosphere over the Northern Hemisphere during 2000–2019. Remote Sens. 2021, 13, 4938. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Cao, Y. Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013. Environ. Res. Lett. 2016, 11, 084002. [Google Scholar] [CrossRef]
- Wayand, N.; Lundquist, J.; Clark, M. Modeling the influence of hypsometry, vegetation, and storm energy on snowmelt contributions to basins during rain-on-snow floods. Water Resour. Res. 2015, 51, 8551–8569. [Google Scholar] [CrossRef]
- Di Marco, N.; Avesani, D.; Righetti, M.; Zaramella, M.; Majone, B.; Borga, M. Reducing hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution function snowmelt model. J. Hydrol. 2021, 599, 126020. [Google Scholar] [CrossRef]
- Tachiiri, K.; Shinoda, M.; Klinkenberg, B.; Morinaga, Y. Assessing Mongolian snow disaster risk using livestock and satellite data. J. Arid Environ. 2008, 72, 2251–2263. [Google Scholar] [CrossRef]
- Ma, N.; Yu, K.; Zhang, Y.; Zhai, J.; Zhang, Y.; Zhang, H. Ground observed climatology and trend in snow cover phenology across China with consideration of snow-free breaks. Clim. Dynam. 2020, 55, 2867–2887. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere Snow Seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Ma, Y.; Li, H. Distribution and Attribution of Terrestrial Snow Cover Phenology Changes over the Northern Hemisphere during 2001–2020. Remote Sens. 2021, 13, 1843. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 61, 128438. [Google Scholar] [CrossRef]
- Wang, L.; Derksen, C.; Brown, R.; Markus, T. Recent changes in pan-Arctic melt onset from satellite passive microwave measurements. Geophys. Res. Lett. 2013, 40, 522–528. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. 2010, 115, D16111. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Zhou, L.; Wang, T. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 2013, 8, 014008. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Zhou, Y.; Bi, X.; Sun, B.; Xiao, T.; Suo, L.; Zhang, W.; Xiao, Z.; Wang, C. The Influence of Solar Activity on Snow Cover over the Qinghai–Tibet Plateau and Its Mechanism Analysis. Atmosphere 2022, 13, 1499. [Google Scholar] [CrossRef]
- Xia, Y.-Y.; Chun, X.; Dan, D.; Liu, H.-Y.; Zhou, H.-J.; Wan, Z.-Q. Abrupt change of winter temperature over the Mongolian Plateau during 1961–2017. J. Mt. Sci. 2023, 20, 996–1009. [Google Scholar] [CrossRef]
- Li, Y.; Gong, H.; Chen, W.; Wang, L.; Wu, R.; Dong, Z.; Piao, J.; Ma, K. Summer precipitation variability in the Mongolian Plateau and its possible causes. Global Planet. Change 2023, 228, 104189. [Google Scholar] [CrossRef]
- Xia, Y.; Dan, D.; Liu, H.; Zhou, H.; Wan, Z. Spatiotemporal Distribution of Precipitation over the Mongolian Plateau during 1976–2017. Atmosphere 2022, 13, 2132. [Google Scholar] [CrossRef]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef]
- Hall, D.; Riggs, G. MODIS/Terra CGF Snow Cover Daily L3 Global 500m SIN Grid, Version 61. Available online: https://nsidc.org/data/mod10a1/versions/61 (accessed on 15 June 2023).
- Riggs, G.; Hall, D.; Salomonson, V. MODIS Snow Products User Guide Collection 5. Available online: https://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf (accessed on 15 June 2023).
- Riggs, G.; Hall, D.; Román, M. MODIS Snow Products Collection 6.1 User Guide. Available online: https://nsidc.org/data/documentation/modis-snow-products-collection-61-user-guide (accessed on 10 July 2024).
- Wang, X.; Wu, C.; Peng, D.; Gonsamo, A.; Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agr. Forest Meteorol. 2018, 256–257, 61–74. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Nguyen, L.; Henebry, G. Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 2020, 240, 11167. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. One-kilometre monthly air temperature and precipitation product over the Mongolian Plateau for 1950–2020. Int. J. Climatol. 2023, 43, 3877–3891. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. Evaluation of IMERG and ERA5 precipitation products over the Mongolian Plateau. Sci. Rep. 2022, 12, 21776. [Google Scholar] [CrossRef]
- Xiao, L.; Che, T.; Dai, L. Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere during 1980–2016. Remote Sens. 2020, 12, 3253. [Google Scholar] [CrossRef]
- Fukami, H.; Kojima, K.; Aburakawa, H. The Extinction and Absorption of Solar Radiation Within a Snow Cover. Ann. Glaciol. 1985, 6, 118–122. [Google Scholar] [CrossRef]
- Qu, X.; Hall, A. Assessing Snow Albedo Feedback in Simulated Climate Change. J. Clim. 2006, 19, 2617–2630. [Google Scholar] [CrossRef]
- Loeb, N.; Doelling, D.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.; Liang, L.; Mitrescu, C.; Rose, F.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, K.; Wild, M. Impact of geolocations of validation data on the evaluation of surface incident shortwave radiation from Earth System Models. J. Geophys. Res. Atmos. 2015, 120, 6825–6844. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, N.; Jiang, H.; Yao, L. Evaluation of Reanalysis Surface Incident Solar Radiation Data in China. Sci. Rep. 2020, 10, 3494. [Google Scholar] [CrossRef] [PubMed]
- Brutel-Vuilmet, C.; Ménégoz, M.; Krinner, G. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere 2013, 7, 67–80. [Google Scholar] [CrossRef]
- Kreyszig, E. Advanced Engineering Mathematics; Wiley: Jefferson City, MO, USA, 1979; pp. 1014–1015. [Google Scholar]
- He, B.; Tuya, W.; Qinchaoketu, S.; Nanzad, L.; Yong, M.; Kesi, T.; Sun, C. Climate Change Characteristics of Typical Grassland in the Mongolian Plateau from 1978 to 2020. Sustainability 2022, 14, 16529. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, W.; Chen, S.; Xie, S.; Piao, J.; Ma, T.; Lan, X. Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nat. Geosci. 2024, 17, 181–188. [Google Scholar] [CrossRef]
- Na, Y.T.; Qin, F.Y.; Jia, G.S.; Yang, J.; Bao, Y. Change trend and regional differentiation of precipitation over the Mongolian Plateau in recent 54 years. Arid Land Geogr. 2019, 42, 1253–1261. [Google Scholar]
- Brun, E.; Vionnet, V.; Boone, A.; Decharme, B.; Peings, Y.; Valette, R.; Karbou, F.; Morin, S. Simulation of Northern Eurasian Local Snow Depth, Mass, and Density Using a Detailed Snowpack Model and Meteorological Reanalyses. J. Hydrometeor. 2013, 14, 203–219. [Google Scholar] [CrossRef]
- Feld, S.I.; Cristea, N.C.; Lundquist, J.D. Representing atmospheric moisture content along mountain slopes: Examination using distributed sensors in the Sierra Nevada, California. Water Resour. Res. 2013, 49, 4424–4441. [Google Scholar] [CrossRef]
- Zhang, P.; Jeong, J.; Yoon, J.; Kim, H.; Wang, S.; Linderholm, H.; Fang, K.; Wu, X.; Chen, D. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 2020, 370, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Peng, S.; Ottlé, C.; Ciais, P. Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environ. Res. Lett. 2015, 10, 024018. [Google Scholar] [CrossRef]
- Batrak, Y.; Muller, M. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nat. Commun. 2019, 10, 4170. [Google Scholar] [CrossRef]
- Peers, M.; Majchrzak, Y.; Menzies, A.; Studd, E.; Bastille-Rousseau, G.; Boonstra, R.; Humphries, M.; Jung, T.; Kenney, A.; Krebs, C.; et al. Climate change increases predation risk for a keystone species of the boreal forest. Nat. Clim. Change 2020, 10, 1149–1153. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.; Zhang, T.; Liu, Q.; Piao, S. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Chang. Biol. 2018, 24, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Allchin, M.I.; Déry, S.J. Shifting Spatial and Temporal Patterns in the Onset of Seasonally Snow-Dominated Conditions in the Northern Hemisphere, 1972–2017. J. Clim. 2019, 32, 4981–5001. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; DiGirolamo, N.E.; Román, M.O. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sc. 2019, 23, 5227–5241. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, B.; Gao, X.; Liu, W.; Li, Y.; Li, R. Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 5642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Lin, S. Rising Net Shortwave Radiation and Land Surface Temperature Drive Snow Cover Phenology Shifts Across the Mongolian Plateau During the 2000–2022 Hydrological Years. Remote Sens. 2025, 17, 2221. https://doi.org/10.3390/rs17132221
Chen X, Lin S. Rising Net Shortwave Radiation and Land Surface Temperature Drive Snow Cover Phenology Shifts Across the Mongolian Plateau During the 2000–2022 Hydrological Years. Remote Sensing. 2025; 17(13):2221. https://doi.org/10.3390/rs17132221
Chicago/Turabian StyleChen, Xiaona, and Shiqiu Lin. 2025. "Rising Net Shortwave Radiation and Land Surface Temperature Drive Snow Cover Phenology Shifts Across the Mongolian Plateau During the 2000–2022 Hydrological Years" Remote Sensing 17, no. 13: 2221. https://doi.org/10.3390/rs17132221
APA StyleChen, X., & Lin, S. (2025). Rising Net Shortwave Radiation and Land Surface Temperature Drive Snow Cover Phenology Shifts Across the Mongolian Plateau During the 2000–2022 Hydrological Years. Remote Sensing, 17(13), 2221. https://doi.org/10.3390/rs17132221