Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = Hertz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 750 KB  
Review
Infrasound and Human Health: Mechanisms, Effects, and Applications
by Maryam Dastan, Ellen Dyminski Parente Ribeiro, Ursula Bellut-Staeck, Juan Zhou and Christian Lehmann
Appl. Sci. 2026, 16(3), 1553; https://doi.org/10.3390/app16031553 - 3 Feb 2026
Abstract
Infrasound, physically defined as sound at frequencies below 20 Hertz, can travel long distances with minimal attenuation and permeate biological tissues due to its marked particle displacement and deep penetration. Generated by both natural phenomena and human-made systems, infrasound has drawn increasing scientific [...] Read more.
Infrasound, physically defined as sound at frequencies below 20 Hertz, can travel long distances with minimal attenuation and permeate biological tissues due to its marked particle displacement and deep penetration. Generated by both natural phenomena and human-made systems, infrasound has drawn increasing scientific and public attention regarding its potential physiological and psychological effects. Experimental studies demonstrate that infrasound can modulate mechanosensitive structures at the cellular level, particularly pressure-sensitive ion channels such as PIEZO1 and TRPV4, leading to intracellular calcium influx, oxidative stress, altered intercellular communication, and in some settings, apoptosis. These responses vary according to sound pressure levels, frequencies, exposure duration, and tissue type. In the cardiovascular system, higher sound pressures have been associated with mitochondrial injury and fibrosis, whereas low sound pressures may exert context-dependent protective effects. In animal models, prolonged or intense exposure to infrasound has been shown to induce neuroinflammatory responses and memory impairment. Short-term studies in humans at moderate intensities have reported minimal physiological changes, with psychological and contextual factors influencing symptom perception. Occupational environments such as factories and agricultural settings may contain elevated levels of infrasound, underscoring the importance of systematic measurements and exposure assessments. At the same time, controlled infrasound stimulation has shown potential as an adjunct modality in bone repair and tissue regeneration, highlighting its dual capacity as both a biological stressor and a possible therapeutic tool. Overall, existing data indicate that infrasound may be harmful at chronic exposure depending on intensity and frequency, yet beneficial when precisely regulated. Future research should standardize exposure metrics, refine measurement technologies, and clarify dose–response relationships to better define the health risks and therapeutic applications of infrasound. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
21 pages, 5688 KB  
Article
Investigation of the Mechanical Characteristics of Linear Rolling Guides Considering Multiple Errors
by Cheng Huang, Wentao Zhou, Wanli Liu, Yupeng Yi, Lei Shi, Rulin Xiong, Xiaobing Li and Xing Du
Lubricants 2026, 14(1), 46; https://doi.org/10.3390/lubricants14010046 - 22 Jan 2026
Viewed by 112
Abstract
Existing research on the linear rolling guide has predominantly focused on performance under ideal conditions or isolated error types, while systematic studies concerning multi-error coupling mechanisms and their impact on internal contact parameters remain limited. To address this, a comprehensive static model based [...] Read more.
Existing research on the linear rolling guide has predominantly focused on performance under ideal conditions or isolated error types, while systematic studies concerning multi-error coupling mechanisms and their impact on internal contact parameters remain limited. To address this, a comprehensive static model based on Hertz contact theory is proposed that simultaneously incorporates ball diameter, raceway radius, and raceway curvature center distance errors. This model is validated using finite element analysis (FEA) in ABAQUS, and the numerical results verify the feasibility and effectiveness of the proposed analytical model. Analysis of single, combined, and random errors indicates that geometric errors significantly influence vertical stiffness, load distribution, and critical load-carrying capacity. For example, as the ball diameter error varies from −2.5 to 2.5 μm, the vertical stiffness increases by a factor of 3.8, while a representative negative error combination reduces the critical load by nearly 40%. Additionally, random error analysis reveals that larger manufacturing tolerance ranges lead to increased fluctuation in ball contact forces, raising performance uncertainty. These findings establish the proposed model as a theoretical foundation for the precision design and load-bearing assessment of linear rolling guides under static conditions. Full article
Show Figures

Figure 1

20 pages, 1807 KB  
Article
Kinematic Analysis of the Temporomandibular Joints for Different Head Positions—A Reliability Study
by Gaël Bescond, Céline De Passe, Véronique Feipel, Joe Abi Nader, Fedor Moiseev and Serge Van Sint Jan
Biomechanics 2026, 6(1), 11; https://doi.org/10.3390/biomechanics6010011 - 10 Jan 2026
Viewed by 207
Abstract
Background/Objectives: Considering that the kinematics of the temporomandibular joints (TMJs) is concomitant with head movements and that temporomandibular joint disorders (TMDs) are frequently associated with neck pain in clinics but seldom or never investigated, the aim of this study was to develop [...] Read more.
Background/Objectives: Considering that the kinematics of the temporomandibular joints (TMJs) is concomitant with head movements and that temporomandibular joint disorders (TMDs) are frequently associated with neck pain in clinics but seldom or never investigated, the aim of this study was to develop a reliable in vivo measurement protocol of the simultaneous amplitudes of the mandible and of the skull. The development of such a protocol is part of a project to build an accurate kinematic assessment tool for clinicians in the orofacial field who treat patients suffering from TMD. Methods: Mouth opening, laterotrusion and protrusion movements for three different positions of the head (neutral, slouched and military) on 12 asymptomatic voluntary subjects (5 men and 7 women, mean 33.6 yo +/− 11.1) were recorded using 20 markers palpated and taped and 14 optoelectronic cameras. The acquisition frequency was set at 150 hertz. The inter- and intra-examiner reliability of marker palpation in mm was calculated using standard deviation (SD), mean difference (MD) and standard error (SE). Amplitudes of movement according to axes defined by the International Society of Biomechanics (ISB) are given for the mandible and skull segments. The propagation of error on the amplitudes was calculated with the root mean square propagation error (RMSPE) in degrees. Repeated-measures ANOVA or Friedman tests were used to assess the influence of the position of the head on the amplitudes of the jaw. Power analysis of the sample size was estimated with Cohen’s f3 size effect test. Steady-state plots (SSPs) and normalized motion graphs between the skull and the mandible motion were performed to study the coordination of their maximum amplitude over time. Results: The protocol demonstrated good intra-examiner reliability (1.5 < MD < 5.8; 2.6 < SD < 7.8; 2.0 < SE < 3.8), good inter-examiner reproducibility (0.2 < MD < 4.0; 3.5 < SD < 4.6; 2.0 < SE < 2.5) and small error propagation (0.0 < RMSPE intra < 2.8; 0.0 < RMSPE inter < 1.0). The amplitudes of the jaw and head found during the three types of movements correspond to the values reported in the literature. Head positions did not appear to significantly influence the amplitudes of jaw movements, which could be explained by the power estimation of our sample (Type II error β = 0.692). The participation of head movements in those of the jaw, for all motions and in all positions, was demonstrated and discussed in detail. Conclusions: The accuracy, test–retest reliability, and intra-individual variability of the TMJ kinematic analysis, including head movements, was ensured. The small sample size and the absence of standardized head positions for the subjects limit the scope of the intra- and inter-group analysis results. Given the natural biological and complex coordination of jaw–head movement, the authors consider its evaluation useful in clinical intervention and would like to further develop the present protocol. The next step should be to test the feasibility of its clinical application with a larger group of asymptomatic subjects compared to patients suffering from TMD. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

20 pages, 2092 KB  
Article
Calibration of Snow Particle Contact Parameters for Simulation Analysis of Membrane Structure Snow Removal Robot
by Jiangtao Dong, Fuxiang Zhang, Fengshan Huang and Xiaofei Man
Appl. Sci. 2026, 16(2), 610; https://doi.org/10.3390/app16020610 - 7 Jan 2026
Viewed by 139
Abstract
To enhance the accuracy of discrete element method (DEM) simulation for the snow removal process performed by autonomous robots on membrane structures, this study calibrated the key contact parameters of snow particles used in the simulation. Through literature research, the intrinsic parameters and [...] Read more.
To enhance the accuracy of discrete element method (DEM) simulation for the snow removal process performed by autonomous robots on membrane structures, this study calibrated the key contact parameters of snow particles used in the simulation. Through literature research, the intrinsic parameters and contact parameter ranges for snow particles and membrane structures were determined. A discrete element model of snow particles was established, and the Hertz–Mindlin with Johnson–Kendall–Robert contact model was selected to simulate the formation process of the repose angle. Using the actual repose angle of snow particles as the target, four significant factors were identified through the P-B experiment, and other factors were set at the intermediate level. Through the steepest slope climbing experiment and response surface design, second-order response equations of the four significant factors were obtained. The optimal parameter combination was calculated as follows: the surface energy of snow particles was 0.23 J/m2; the restitution coefficient, static friction coefficient, and rolling friction coefficient of snow–snow were 0.141, 0.05, and 0.03; and the restitution coefficient, static friction coefficient, and rolling friction coefficient of snow–membrane were 0.2, 0.18, and 0.03. The simulated repose angle was 40.62°, and the relative error with the actual repose angle was 0.32%. These calibration results are reliable and can provide a reliable simulation basis and essential data support for the optimal design of a snow removal robot and the dynamic simulation of the operation process. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

16 pages, 3159 KB  
Article
Verification of Contact Models of the Discrete Element Method for Simulating the Drag Resistance of a Plow Body
by Salavat G. Mudarisov, Ildar M. Farkhutdinov, Airat M. Mukhametdinov and Ilnur R. Miftakhov
AgriEngineering 2026, 8(1), 5; https://doi.org/10.3390/agriengineering8010005 - 1 Jan 2026
Viewed by 301
Abstract
This article examines the pressing issue of verifying contact models in the discrete element method (DEM) for modeling soil tillage processes. Due to the lack of a generally accepted methodology for selecting contact models for various soil types, a comprehensive study was conducted [...] Read more.
This article examines the pressing issue of verifying contact models in the discrete element method (DEM) for modeling soil tillage processes. Due to the lack of a generally accepted methodology for selecting contact models for various soil types, a comprehensive study was conducted combining field experiments and numerical modeling. A verification method was developed and tested based on comparing experimental data on the draft resistance of a plow body with the results of calculations in the Rocky DEM 4.4 software package. The study yielded reliable experimental values for the draft resistance components and established the ranges of variation for their parameters. A comparative analysis of 10 promising combinations of contact models identified in previous studies was conducted. It was found that the improved Hertz-Mindlin model with the JKR adhesion model provides the best fit to the experimental results. Particular attention is paid to analyzing the influence of surface energy in the JKR model on changes in the rheological properties of the soil medium, which opens up the possibility of predicting soil behavior at different moisture levels. The results of the work are of practical value for the design and optimization of agricultural implements at the stage of their numerical modeling. The accuracy of predicting the draft resistance of the plow body during modeling for the studied soils at a moisture content of 18–25% ranged from 80 to 95%. Full article
Show Figures

Figure 1

24 pages, 4686 KB  
Article
Parameter Calibration and Experimentation of the Discrete Element Model for Mixed Seeds of Vetch (Vicia villosa) and Oat (Avena sativa) in a Pneumatic Seed Drilling System
by Yu Fu, Dewei Wang, Xufeng Wang, Long Wang, Jianliang Hu, Xingguang Chi and Mao Ji
Appl. Sci. 2025, 15(24), 13048; https://doi.org/10.3390/app152413048 - 11 Dec 2025
Viewed by 262
Abstract
This paper focuses on mixed seeds of Vicia villosa and Avena sativa, with their discrete element model and contact parameters being systematically calibrated and validated to provide reliable theoretical support for the structural design and parameter optimization of the air-assisted seed delivery [...] Read more.
This paper focuses on mixed seeds of Vicia villosa and Avena sativa, with their discrete element model and contact parameters being systematically calibrated and validated to provide reliable theoretical support for the structural design and parameter optimization of the air-assisted seed delivery system. The physical properties of both seed types, including triaxial dimensions, density, moisture content, Poisson’s ratio, and shear modulus, were first measured. The Hertz–Mindlin (no slip) contact model and the multi-sphere aggregation method were employed to construct the discrete element models of Vicia villosa and Avena sativa, with preliminary calibration of the intrinsic model parameters. Poisson’s ratio, elastic modulus, collision restitution coefficient, static friction coefficient, and rolling friction coefficient between the seeds and PLA plastic plate were determined through uniaxial compression, free fall, inclined sliding, and inclined rolling tests. Each test was repeated five times, and the calibration criterion for contact parameters was based on minimizing the relative error between simulation and experimental results. Based on this, experiments on the packing angle of mixed seeds, steepest slope, and a three-factor quadratic rotational orthogonal combination were conducted. The inter-seed collision restitution coefficient, static friction coefficient, and rolling friction coefficient were set as the experimental factors. A total of 23 treatments were designed with repetitions at the center point, and a regression model was established for the relative error of the packing angle with respect to each factor. Based on the measured packing angle of 28.01° for the mixed seeds, the optimal contact parameter combination for the mixed seed pile was determined to be: inter-seed collision restitution coefficient of 0.312, static friction coefficient of 0.328, and rolling friction coefficient of 0.032. The relative error between the simulated packing angle and the measured value was 1.32%. The calibrated inter-seed contact parameters were further coupled into the EDEM–Fluent gas–solid two-phase flow model. Simulations and bench verification tests were carried out under nine treatment combinations, corresponding to three fan speeds (20, 25, and 30 m·s−1) and three total transport efficiencies (12.5, 17.5, and 22.5 g·s−1), with the consistency coefficient of seed distribution in each row being the main evaluation variable. The results showed that the deviation in the consistency coefficient of seed distribution between the simulation and experimental measurements ranged from 1.24% to 3.94%. This indicates that the calibrated discrete element model for mixed seeds and the EDEM–Fluent coupled simulation can effectively reproduce the air-assisted seed delivery process under the conditions of Vicia villosa and Avena sativa mixed sowing, providing reliable parameters and methodological support for the structural design of seeders and DEM-CFD coupled simulations in legume–grass mixed sowing systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

21 pages, 2934 KB  
Article
Tribological Assessment of FFF-Printed TPU Under Dry Sliding Conditions for Sustainable Mobility Components
by Patricia Isabela Brăileanu, Marius-Teodor Mocanu and Nicoleta Elisabeta Pascu
Future Transp. 2025, 5(4), 184; https://doi.org/10.3390/futuretransp5040184 - 2 Dec 2025
Viewed by 462
Abstract
We are witnessing a global commitment to sustainable mobility that requires advanced materials and manufacturing techniques, such as fused filament fabrication (FFF), to create lightweight, durable, and recyclable machine components. Acknowledging that friction and wear significantly contribute to energy loss globally, developing high-performance [...] Read more.
We are witnessing a global commitment to sustainable mobility that requires advanced materials and manufacturing techniques, such as fused filament fabrication (FFF), to create lightweight, durable, and recyclable machine components. Acknowledging that friction and wear significantly contribute to energy loss globally, developing high-performance polymeric materials with customizable properties is essential for greener mechanical systems. FFF inherently drives resource efficiency and offers the geometric freedom necessary to engineer complex internal structures, such as the gyroid pattern, enabling substantial mass reduction. This study evaluates the tribological performance of FFF-printed thermoplastic polyurethane (TPU 82A) specimens fabricated with three distinct gyroid infill densities (10%, 50%, and 100%). Ball-on-disc testing was conducted under dry sliding conditions against a 100Cr6 spherical ball, with a constant normal load of 5 N, resulting in an initial maximum theoretical Hertz contact pressure of 231 MPa, over a total sliding distance of 300 m. Shore A hardness and surface roughness (Ra) were also measured to correlate mechanical and structural characteristics with frictional response. Results reveal a non-monotonic relationship between infill density and friction, with a particular absence of quantifiable mass loss across all samples. The intermediate 50% infill (75.9 ± 1.80 Shore A) exhibited the peak mean friction coefficient of μ¯=1.002 (μmax=1.057), which can be attributed to its balanced structural stiffness that promotes localized surface indentation and an increased real contact area during sliding. By contrast, the rigid 100% infill (86.3 ± 1.92 Shore A) yielded the lowest mean friction (μ¯ = 0.465), while the highly compliant 10% infill (44.3 ± 1.94 Shore A) demonstrated viscoelastic energy damping, stabilizing at μ¯ = 0.504. This work highlights the novelty of using FFF gyroid architectures to precisely tune TPU 82A’s tribological behavior, offering design pathways for sustainable mobility. The ability to tailor components for low-friction operations (e.g., μ ≈ 0.465 for bushings) or high-grip requirements (e.g., μ ≈ 1.002 for anti-slip systems) provides eco-efficient solutions for automotive, railway, and micromobility applications, while the exceptional wear resistance supports extended service life and material circularity. Full article
Show Figures

Figure 1

30 pages, 5250 KB  
Article
Calibration of DEM Model for Root–Soil Breakage in Winter Wheat During the Regreening Stage
by Yalei Han, Lin Ling, Bingxin Yan, Rui Liu, Jianjun Dong, Xiaofei An, Yanxin Yin, Zhijun Meng, Liwei Li and Guangwei Wu
Agriculture 2025, 15(23), 2427; https://doi.org/10.3390/agriculture15232427 - 25 Nov 2025
Viewed by 360
Abstract
A critical challenge in the design optimization of subsoiling and deep-fertilization implements for root pruning during the regreening stage of winter wheat lies in the lack of a validated root–soil discrete element (DEM) model. This study analyzed and measured the geometric morphology of [...] Read more.
A critical challenge in the design optimization of subsoiling and deep-fertilization implements for root pruning during the regreening stage of winter wheat lies in the lack of a validated root–soil discrete element (DEM) model. This study analyzed and measured the geometric morphology of winter wheat root systems in soil during the regreening stage and constructed corresponding geometric models. Based on the DEM framework, a Hertz–Mindlin with bonding model (HMBM) for the wheat root system was developed. The parameters of this model were calibrated using Plackett–Burman (PB) and Box–Behnken design (BBD) methods. Soil particles were simplified to spherical shapes according to particle size distribution analysis, and a discrete element model of soil particles using the Johnson–Kendall–Roberts (JKR) contact model was established. Soil model parameters at three different moisture contents were calibrated with the angle of repose (AOR) as the target response. The accuracy of the root bonding model and parameters, as well as the root–soil contact model and parameters, was verified through pull-out tests and corresponding DEM simulations of single roots in soil. Comparison between experimental and simulated pull-out results confirmed the validity of the developed root–soil DEM model for winter wheat during the regreening stage. This study provides a solid theoretical and experimental basis for future research on root cutting and tillage operations in winter wheat. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

29 pages, 6539 KB  
Article
Optimization of a Low-Loss Peanut Mechanized Shelling Technology Based on Moisture Content, Flexible Materials, and Key Operating Parameters
by Xuan Liao, Tao Liu, Jiannan Wang, Minji Liu, Chenyang Sun, Jiyou An, Huanxiong Xie, Zhichao Hu, Yi Shen and Hai Wei
Agriculture 2025, 15(22), 2365; https://doi.org/10.3390/agriculture15222365 - 14 Nov 2025
Viewed by 583
Abstract
In order to address the problems of high mechanical damage rate (MDR) and poor variety adaptability in mechanical peanut shelling, this paper improves a small, flexible arc-plates drum–circular grid bar concave screen-type peanut-shelling device. Firstly, by combining the Hertz theory and [...] Read more.
In order to address the problems of high mechanical damage rate (MDR) and poor variety adaptability in mechanical peanut shelling, this paper improves a small, flexible arc-plates drum–circular grid bar concave screen-type peanut-shelling device. Firstly, by combining the Hertz theory and the Weibull distribution model, the shelling and separation models of drums of rigid rods and flexible arc-plates were established. Through comparative analysis, it was verified that the latter has a lower MDR and energy consumption and has excellent shelling performance. Then, through single-factor experiments and an Analysis of Variance (ANOVA), the influence laws of peanut moisture content, drum speed, shelling spacing, and hardness of flexible material (silicone) on the MDR and shelling efficiency (SE) were explored. Subsequently, Box–Behnken’s four-factor three-level regression experiments were carried out, and the optimal shelling operation parameters were obtained by using the response surface multi-objective optimization method (RSM) and verified experiments. The results show that when moisture content is 11%, drum speed is 227 rpm, shelling spacing is 24 mm, and silicone hardness is 40 HA, the kernel’s MDR after shelling is 4.73%, which is reduced by 5.51% and the SE is 95.21%, which is increased by 3%. The R2 and the Root Mean Square Error (RMSE) of the actual value versus the predicted value of the model were 0.9921, 0.9624, 7.99 × 10−2, and 3.1 × 10−3, respectively. The relevant research provides references for reducing losses, improving quality, and applying new materials for components in mechanical peanut shelling. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 5332 KB  
Article
Experimental Study and Numerical Simulation of Oscillation Phenomena in a Pressure Swirl Injector
by Juan Liu and Yifan Han
Aerospace 2025, 12(11), 1014; https://doi.org/10.3390/aerospace12111014 - 14 Nov 2025
Viewed by 489
Abstract
In this study, experiments and numerical simulations were conducted to investigate the oscillation phenomena in a pressure swirl injector. The flow field was captured using high-speed photography, and the gray values were analyzed using the Matlab image processing program. The oscillation frequency was [...] Read more.
In this study, experiments and numerical simulations were conducted to investigate the oscillation phenomena in a pressure swirl injector. The flow field was captured using high-speed photography, and the gray values were analyzed using the Matlab image processing program. The oscillation frequency was recorded using FFT transform. Additionally, the flow field of the pressure swirl injector was simulated based on the volume of fluid (VOF) interface-tracking method. Both the experimental and numerical results revealed periodic oscillations in the pressure swirl injector, with a corresponding frequency of several hundred Hertz. The oscillation frequency is closely related to the behavior of the central gas core, which has greater turbulent kinetic energy than the liquid phase. As the mass flow rate increases, the velocity of the gas core is increased. The turbulent kinetic energy of the central gas core increased, which led to an increase in the oscillation frequency. Finally, the relationship between Re and the oscillation frequency was obtained. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

14 pages, 1542 KB  
Article
Analysis of the Hertz Contact Model for Evaluating Mechanical Properties of Polymers Using the Finite Element Method
by Laisvidas Striska, Rokas Astrauskas, Nikolajus Kozulinas, Dainius Udris, Sonata Tolvaisiene, Eugenijus Macerauskas, Inga Morkvenaite and Arunas Ramanavicius
Polymers 2025, 17(22), 3018; https://doi.org/10.3390/polym17223018 - 13 Nov 2025
Cited by 1 | Viewed by 1230
Abstract
Atomic force microscopy (AFM) is widely used to quantify mechanical properties, typically Young’s modulus, by fitting force–indentation data with various mathematical contact models. However, results across laboratories often diverge, and the causes remain unresolved. Here, we interrogate the methodology by which mechanical properties [...] Read more.
Atomic force microscopy (AFM) is widely used to quantify mechanical properties, typically Young’s modulus, by fitting force–indentation data with various mathematical contact models. However, results across laboratories often diverge, and the causes remain unresolved. Here, we interrogate the methodology by which mechanical properties are defined in AFM indentation and identify key limitations of the Hertz model, the standard model for determining mechanical properties, notably that the contact radius is not directly determined, which limits the accuracy of the estimated Young’s modulus. We hypothesize that this inference systematically overestimates the true tip–sample contact, which inflates the contact area and thereby underestimates Young’s modulus. This bias is amplified under large indentation conditions, which are frequently used in soft-material studies. To isolate and clarify the issue, we focus on a well-characterized polymer, polyvinyl chloride (PVC), using it as a controlled testbed for contact radius overestimation. Our analysis is focused on the contact radius and Hertz-based extraction of Young’s modulus. We determined the contact radius and Young’s modulus using AFM with two different probes: a sphere with a 20 nm radius (SPHERE20) and a sphere with a 2 µm radius (SPHERE2000). The results were compared to macroscopic data obtained using a standard measurement (ISO 527-1:2019) of Young’s modulus. The contact was modeled using finite element analysis (FEA). The dependence of the contact radius on the indentation was compared to the Hertz model. The results from FEA fit corrected contact radius values, and it is smaller by 15.46% (SPHERE20) and 57.9% (SPHERE2000) than those calculated by the Hertz model. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 3862 KB  
Article
Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment
by Zhenyu Zhang, Abu Bakar Dawood, Georgios Violakis, Ahmad Abdalwareth, Günter Flachenecker, Panagiotis Polygerinos, Kaspar Althoefer, Martin Angelmahr and Wolfgang Schade
Sensors 2025, 25(22), 6915; https://doi.org/10.3390/s25226915 - 12 Nov 2025
Viewed by 861
Abstract
Minimally Invasive Surgery is often limited by the lack of tactile feedback. Indeed, surgeons have traditionally relied heavily on tactile feedback to estimate tissue stiffness - a critical factor in both diagnostics and treatment. With this in mind we present in this paper [...] Read more.
Minimally Invasive Surgery is often limited by the lack of tactile feedback. Indeed, surgeons have traditionally relied heavily on tactile feedback to estimate tissue stiffness - a critical factor in both diagnostics and treatment. With this in mind we present in this paper a flexible sensor foil, based on polymer optical waveguide. This sensor has been applied for real-time contact force measurement, material stiffness differentiation and surface texture reconstruction. Interrogated by a commercially available optoelectronic device, the sensor foil offers precise and reproducible feedback of contact forces up to 5 N, with a minimal detectable limit of 0.1 N. It also demonstrates distinct optical attenuation responses when indenting silicone samples of varying stiffnesses under controlled displacement. When integrated onto a 3D-printed module resembling an endoscopic camera and manipulated by a robotic arm, the sensor successfully generated spatial stiffness mapsof a phantom. Moreover, by sliding over structures with varying surface textures, the sensor foil was able to reconstruct surface profiles based on the light attenuation responses. The results demonstrate that the presented sensor foil possesses great potential for surgical applications by providing additional haptic information to surgeons. Full article
(This article belongs to the Special Issue Waveguide-Based Sensors and Applications)
Show Figures

Figure 1

29 pages, 5549 KB  
Article
A Graph-Structured, Physics-Informed DeepONet Neural Network for Complex Structural Analysis
by Guangya Zhang, Tie Xu, Jinli Xu and Hu Wang
Mach. Learn. Knowl. Extr. 2025, 7(4), 137; https://doi.org/10.3390/make7040137 - 4 Nov 2025
Viewed by 3278
Abstract
This study introduces the Graph-Structured Physics-Informed DeepONet (GS-PI-DeepONet), a novel neural network framework designed to address the challenges of solving parametric Partial Differential Equations (PDEs) in structural analysis, particularly for problems with complex geometries and dynamic boundary conditions. By integrating Graph Neural Networks [...] Read more.
This study introduces the Graph-Structured Physics-Informed DeepONet (GS-PI-DeepONet), a novel neural network framework designed to address the challenges of solving parametric Partial Differential Equations (PDEs) in structural analysis, particularly for problems with complex geometries and dynamic boundary conditions. By integrating Graph Neural Networks (GNNs), Deep Operator Networks (DeepONets), and Physics-Informed Neural Networks (PINNs), the proposed method employs graph-structured representations to model unstructured Finite Element (FE) meshes. In this framework, nodes encode physical quantities such as displacements and loads, while edges represent geometric or topological relationships. The framework embeds PDE constraints as soft penalties within the loss function, ensuring adherence to physical laws while reducing reliance on large datasets. Extensive experiments have demonstrated the GS-PI-DeepONet’s superiority over traditional Finite Element Methods (FEMs) and standard DeepONets. For benchmark problems, including cantilever beam bending and Hertz contact, the model achieves high accuracy. In practical applications, such as stiffness analysis of a recliner mechanism and strength analysis of a support bracket, the framework achieves a 7–8 speed-up compared to FEMs, while maintaining fidelity comparable to FEM, with R2 values reaching up to 0.9999 for displacement fields. Consequently, the GS-PI-DeepONet offers a resolution-independent, data-efficient, and physics-consistent approach for real-time simulations, making it ideal for rapid parameter sweeps and design optimizations in engineering applications. Full article
Show Figures

Figure 1

22 pages, 2630 KB  
Article
Beyond Hertz: Accurate Analytical Force–Indentation Equations for AFM Nanoindentation with Spherical Tips
by Stylianos-Vasileios Kontomaris, Anna Malamou, Gamal M. Ismail, Anna Katsiki and Andreas Stylianou
Metrology 2025, 5(4), 63; https://doi.org/10.3390/metrology5040063 - 23 Oct 2025
Cited by 1 | Viewed by 1027
Abstract
The Hertz equation is the most widely used equation for data processing in AFM nanoindentation experiments on soft samples when using spherical indenters. Although valid only for small indentation depths relative to the tip radius, it is usually preferred because it directly relates [...] Read more.
The Hertz equation is the most widely used equation for data processing in AFM nanoindentation experiments on soft samples when using spherical indenters. Although valid only for small indentation depths relative to the tip radius, it is usually preferred because it directly relates applied force to indentation depth. Sneddon derived accurate equations relating force and contact radius to indentation depth for shallow and deep indentations, but they are rarely used in practice. This paper presents analytical approaches to solving Sneddon’s nonlinear system. Using Taylor series expansions and a simple equation linking applied force, average contact radius, and indentation depth, we derive a two-term equation that directly relates force to indentation depth. This expression is accurate for h ≤ 1.5 R, where h is the indentation depth and R is the indenter radius, making it applicable to most practical AFM measurements on soft materials. It should be used instead of the Hertzian model for extracting Young’s modulus, thereby enhancing measurement accuracy without increasing the complexity of data processing. In addition, the results are generalized to produce a series solution that is valid for large indentation depths. The newly derived equations proposed in this paper are tested on both simulated and experimental data from cells, demonstrating excellent accuracy. Full article
Show Figures

Figure 1

16 pages, 2763 KB  
Article
Establishment and Parameter Calibration of a DEM-Based Contact Model for Leymus chinensis Seed–Straw Mixtures
by Qihao Wan, Anbin Zhang, Wenxue Dong, Fei Liu, Yingsi Wu, Yin Qi and Yuxing Ren
Appl. Sci. 2025, 15(20), 11163; https://doi.org/10.3390/app152011163 - 17 Oct 2025
Viewed by 492
Abstract
The study of Leymus chinensis seed cleaning has been hindered by the lack of accurate discrete-element contact parameters for seed–straw interactions, thereby limiting, to some extent, the optimization of cleaning equipment. To address this issue, the present study analyzed a mixture of L. [...] Read more.
The study of Leymus chinensis seed cleaning has been hindered by the lack of accurate discrete-element contact parameters for seed–straw interactions, thereby limiting, to some extent, the optimization of cleaning equipment. To address this issue, the present study analyzed a mixture of L. chinensis seeds and straw, and determined their fundamental physical and contact parameters via laboratory experiments. The Hertz–Mindlin (no slip) discrete element simulation model was employed to calibrate the parameters of the seed–straw mixture. A Plackett–Burman test was used to identify key factors significantly affecting the repose angle, including the seed–seed static friction coefficient and the seed–straw static and dynamic friction coefficients. These factors’ optimal ranges were further refined using steepest ascent experiments. A Box–Behnken design was used to optimize contact parameters, resulting in the following values: a seed–seed static friction coefficient of 0.709, a seed–straw static friction coefficient of 0.281, and a seed–straw dynamic friction coefficient of 0.085. Validation experiments demonstrated an error of less than 2.14%, confirming the reliability of the calibrated parameters. This study offers a theoretical foundation for discrete element simulations in L. chinensis seed cleaning applications. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

Back to TopTop