Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Hantzsch’s synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1898 KiB  
Article
Crystal Structure of 4′-Phenyl-1′,4′-Dihydro-2,2′:6′,2″-Terpyridine: An Intermediate from the Synthesis of Phenylterpyridine
by Alexander Sedykh, Maksim Zhernakov, Mariia Becker, Dirk G. Kurth and Klaus Müller-Buschbaum
Crystals 2025, 15(7), 619; https://doi.org/10.3390/cryst15070619 - 1 Jul 2025
Viewed by 499
Abstract
The intermediate compound 4′-phenyl-1′,4′-dihydro-2,2′:6′,2″-terpyridine (pdhtpy) was isolated for the first time during the synthesis of 4′-phenyl-2,2′:6′,2″-terpyridine (ptpy) and characterised by single-crystal X-ray diffraction. Pdhtpy crystallises in the triclinic crystal system with space group P1 with the following [...] Read more.
The intermediate compound 4′-phenyl-1′,4′-dihydro-2,2′:6′,2″-terpyridine (pdhtpy) was isolated for the first time during the synthesis of 4′-phenyl-2,2′:6′,2″-terpyridine (ptpy) and characterised by single-crystal X-ray diffraction. Pdhtpy crystallises in the triclinic crystal system with space group P1 with the following unit cell parameters at 100 K: a = 6.1325(4) Å; b = 8.2667(5) Å; c = 16.052(2) Å; α = 86.829(2)°; β = 82.507(2)°; γ = 84.603(2)°; V = 802.49(9) Å3. The absence of stabilising electron-withdrawing groups renders pdhtpy prone to oxidative conditions. Pdhtpy was obtained as a mixture with ptpy, confirmed by Rietveld refinement of the powder X-ray diffraction pattern. Notably, pdhtpy is the first solid-state 1,4-dihydropyridine lacking electron-withdrawing groups at both positions 3 and 5, distinguishing it from Hantzsch esters and related compounds. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

24 pages, 3339 KiB  
Article
Mesostructured Silica–Zirconia–Tungstophosphoric Acid Composites as Catalyst in Calcium Channel Blocker Nifedipine Synthesis
by Edna X. Aguilera, Ángel G. Sathicq, Alexis Sosa, Marcelo C. Murguía, José J. Martínez, Luis R. Pizzio and Gustavo P. Romanelli
Catalysts 2025, 15(6), 537; https://doi.org/10.3390/catal15060537 - 28 May 2025
Viewed by 601
Abstract
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending [...] Read more.
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending on the reaction conditions. The materials were synthesized via the sol–gel method and characterized by N2 adsorption–desorption isotherms, infrared spectroscopy (FT-IR), 31P solid-state nuclear magnetic resonance (NMR-MAS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), and potentiometric titration. The characterization results from the XPS spectra showed that as the Si/Zr ratio drops, the Si-O-Si signal size decreases, while the Zr-O signal size increases. Characterization by titration indicated that an increase in the total acidity of the material, resulting from support modification with tungstophosphoric acid (H3PW12O40, TPA), enhances the reaction yield. The catalytic activity in the solvent-free Hantzsch reaction was evaluated under thermal heating and microwave irradiation. The experiments conducted at 80 °C achieved a maximum yield of 57% after 4 h of reaction using the Si20Zr80TPA30 catalyst (50 mg), while by microwave heating, the yield significantly improved, reaching 77% in only 1 h of reaction. This catalyst exhibited stability and reusability without significant loss of activity up to the third cycle. Depending on the type of material and the reaction conditions, it is possible to modify the selectivity of the reaction, obtaining a 1,2-dihydropyridine isomeric to nifedipine. Reaction intermediates and other minor secondary products that may be formed in the process were also evaluated. Full article
Show Figures

Graphical abstract

15 pages, 792 KiB  
Article
β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives
by Sonali Garg, Manvinder Kaur, Pradip K. Bhowmik, Harvinder Singh Sohal, Fohad Mabood Husain and Haesook Han
Molecules 2024, 29(19), 4655; https://doi.org/10.3390/molecules29194655 - 30 Sep 2024
Cited by 1 | Viewed by 1164
Abstract
In the present report, we have described the synthesis of N-aminopolyhydroquinoline (N-PHQ) derivatives using highly efficient β-cyclodextrin (β-CD) as a catalyst by the Hantzsch condensation of substituted aromatic aldehydes, dimedone, and hydrazine hydrate in one pot. The reactions were completed [...] Read more.
In the present report, we have described the synthesis of N-aminopolyhydroquinoline (N-PHQ) derivatives using highly efficient β-cyclodextrin (β-CD) as a catalyst by the Hantzsch condensation of substituted aromatic aldehydes, dimedone, and hydrazine hydrate in one pot. The reactions were completed in a shorter time without the generation of any other byproduct. The synthesized N-PHQs were washed thoroughly with distilled water and recrystallized with ethanol to get highly purified products (as crystals). The structure of the synthesized N-PHQs was established by using advanced spectroscopic techniques like FT-IR, NMR (1H, 13C, DEPT, COSY, and HSQC), ESI-MS, and Elemental Analyzer. The N-PHQs derivatives demonstrated moderate to excellent resistance against the tested strains (both fungal as well as bacterial). The presence of polar groups, which are able to form H-bonds, attached to the phenyl ring like -NO2 (4b and 4c), and -OMe (4i, 4j, and 4k) exhibits excellent activity, which is comparable to standard drugs, amoxicillin and fluconazole. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

26 pages, 5655 KiB  
Article
Novel Biopolymer-Based Catalyst for the Multicomponent Synthesis of N-aryl-4-aryl-Substituted Dihydropyridines Derived from Simple and Complex Anilines
by Giovanna Bosica and Roderick Abdilla
Molecules 2024, 29(8), 1884; https://doi.org/10.3390/molecules29081884 - 20 Apr 2024
Cited by 1 | Viewed by 2502
Abstract
Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such [...] Read more.
Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such a reaction, N-aryl-4-aryldihydropyridines (DHPs), have significant anticancer activity. In this study, we successfully managed to synthesize a wide range of DHPs (18 examples, 8 of which were novel) using a metal-free, mild, inexpensive, recoverable, and biopolymer-based heterogeneous catalyst, known as piperazine, which was supported in agar–agar gel. In addition, 8 further examples (3 novel) of such dihydropyridines were synthesized using isatin instead of aldehyde as a reactant, producing spiro-linked structures. Lastly, this catalyst managed to afford an unprecedented product that was derived using an innovative technique—a combination of multicomponent reactions. Essentially, the product of our previously reported aza-Friedel–Crafts multicomponent reaction could itself be used as a reactant instead of aniline in the synthesis of more complex dihydropyridines. Full article
(This article belongs to the Special Issue Multicomponent Reactions in Organic Synthesis)
Show Figures

Graphical abstract

14 pages, 1286 KiB  
Article
Design and Synthesis of Multi-Functional Ligands through Hantzsch Reaction: Targeting Ca2+ Channels, Activating Nrf2 and Possessing Cathepsin S Inhibitory, and Antioxidant Properties
by Irene Pachón-Angona, Paul J. Bernard, Alexey Simakov, Maciej Maj, Krzysztof Jozwiak, Anna Novotna, Carina Lemke, Michael Gütschow, Helene Martin, María-Jesús Oset-Gasque, José-Marco Contelles and Lhassane Ismaili
Pharmaceutics 2024, 16(1), 121; https://doi.org/10.3390/pharmaceutics16010121 - 17 Jan 2024
Cited by 3 | Viewed by 1975
Abstract
This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4al, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference [...] Read more.
This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4al, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference with Nrf2 transcriptional activation. Of these MTDLs, 4i emerged as a promising compound, demonstrating robust antioxidant activity, the ability to activate Nrf2-ARE pathways, as well as calcium channel blockade and cathepsin S inhibition. Dihydropyridine 4i represents the first example of an MTDL that combines these biological activities. Full article
Show Figures

Figure 1

19 pages, 1163 KiB  
Article
Development of Self-Assembling bis-1,4-Dihydropyridines: Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution
by Martins Kaukulis, Martins Rucins, Davis Lacis, Aiva Plotniece and Arkadij Sobolev
Molecules 2024, 29(1), 161; https://doi.org/10.3390/molecules29010161 - 27 Dec 2023
Viewed by 1784
Abstract
One of the most important steps in the synthesis of 1,4-dihydropyridine (1,4-DHP) amphiphiles is the bromination of methyl groups in positions 2 and 6 of the entire ring. However, up to now, only N-bromosuccinimide was mainly used for bromination 1,4-DHPs. In this work, [...] Read more.
One of the most important steps in the synthesis of 1,4-dihydropyridine (1,4-DHP) amphiphiles is the bromination of methyl groups in positions 2 and 6 of the entire ring. However, up to now, only N-bromosuccinimide was mainly used for bromination 1,4-DHPs. In this work, the synthesis of bis-1,4-DHP derivatives with ethyl and dodecyl ester groups attached to 1,4-DHP ring at positions 3 and 5 was performed by Hantzsch synthesis. The experimental studies were carried out to find out the best conditions and the agent for the tetra bromination of bis-1,4-DHP methyl groups at positions 2 and 6. Four different brominating agents were screened. The use of pyridinium bromide–perbromide in ethyl acetate was found to be optimal for the bromination of methyl groups. The bromination reaction was followed by the synthesis of cationic pyridine moiety containing amphiphilic bis-1,4-DHP derivatives. By nucleophilic substitution of bromine with various substituted pyridines, 12 new amphiphilic bis-1,4-DHP derivatives were obtained. Evaluation of self-assembling properties of tetracationic bis-1,4-dihydropyridine derivatives by dynamic light scattering (DLS) measurements was also performed. Full article
Show Figures

Graphical abstract

22 pages, 4689 KiB  
Article
In Silico and In Vitro Study towards the Rational Design of 4,4′-Disarylbisthiazoles as a Selective α-Synucleinopathy Biomarker
by Bright C. Uzuegbunam, Junhao Li, Wojciech Paslawski, Wolfgang Weber, Per Svenningsson, Hans Ågren and Behrooz Hooshyar Yousefi
Int. J. Mol. Sci. 2023, 24(22), 16445; https://doi.org/10.3390/ijms242216445 - 17 Nov 2023
Cited by 4 | Viewed by 1574
Abstract
The α-synucleinopathies are a group of neurodegenerative diseases characterized by the deposition of α-synuclein aggregates (α-syn) in the brain. Currently, there is no suitable tracer to enable a definitive early diagnosis of these diseases. We reported candidates based on 4,4′-disarylbisthiazole (DABTA) scaffold with [...] Read more.
The α-synucleinopathies are a group of neurodegenerative diseases characterized by the deposition of α-synuclein aggregates (α-syn) in the brain. Currently, there is no suitable tracer to enable a definitive early diagnosis of these diseases. We reported candidates based on 4,4′-disarylbisthiazole (DABTA) scaffold with a high affinity towards α-syn and excellent selectivity over Aβ and tau fibrils. Based on prior in silico studies, a focused library of 23 halogen-containing and O-methylated DABTAs was prepared. The DABTAs were synthesized via a modified two-step Hantzsch thiazole synthesis, characterized, and used in competitive binding assays against [3H]PiB and [3H]DCVJ. The DABTAs were obtained with an overall chemical yield of 15–71%, and showed a calculated lipophilicity of 2.5–5.7. The ligands demonstrated an excellent affinity to α-syn with both [3H]PiB and [3H]DCVJ: Ki 0.1–4.9 nM and up to 20–3900-fold selectivity over Aβ and tau fibrils. It could be concluded that in silico simulation is useful for the rational design of a new generation of DABTAs. Further investigation of the leads in the next step is encouraged: radiolabeling of the ligands with radioisotopes such as fluorine-18 or carbon-11 for in vivo, ex vivo, and translational research and for further in vitro experiments on human-derived protein aggregates. Full article
(This article belongs to the Special Issue Diagnostic Tools for Neuropsychological Disorders)
Show Figures

Figure 1

8 pages, 1723 KiB  
Proceeding Paper
Oxidative Aromatization of Some 1,4-Dihydropyridine Derivatives Using Pyritic Ash in Eco-Sustainable Conditions
by Juan Enrique Tacoronte Morales, Carla Bernal Villavicencio, Xavier Leopoldo Gracia Cervantes, Maria Elizabeth Canchingre and Maria Teresa Cabrera Pedroso
Chem. Proc. 2023, 14(1), 61; https://doi.org/10.3390/ecsoc-27-16066 - 14 Nov 2023
Viewed by 1446
Abstract
Hantzsch 1,4-dihydropyridines (Hantzsch 1,4-DHP), have been utilized as starting material in organic synthesis. In addition, several 1,4-DHP based drugs (Nifedipine, Niguldipine, Amlodepine besylate) have been recognized for the treatment of cardiovascular diseases. During the redox processes, 1,4-DHP systems are oxidatively transformed into the [...] Read more.
Hantzsch 1,4-dihydropyridines (Hantzsch 1,4-DHP), have been utilized as starting material in organic synthesis. In addition, several 1,4-DHP based drugs (Nifedipine, Niguldipine, Amlodepine besylate) have been recognized for the treatment of cardiovascular diseases. During the redox processes, 1,4-DHP systems are oxidatively transformed into the corresponding pyridine derivatives. Furthermore, the oxidation of Hantzsch 1,4-DHP constitutes the more accessible method to obtain pyridine derivatives with a great spectrum of important properties. Pyritic ashes, a waste material from the metallurgical industry, has shown catalytic activity in redox processes, and its use can facilitate the obtaining of derivatives from dihydropyridines under sustainable conditions. Full article
Show Figures

Figure 1

25 pages, 12011 KiB  
Review
Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis
by Ana Maria Faisca Phillips and Armando J. L. Pombeiro
Catalysts 2023, 13(2), 419; https://doi.org/10.3390/catal13020419 - 16 Feb 2023
Cited by 20 | Viewed by 9488
Abstract
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents [...] Read more.
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents for the dearomatization of heteroaromatic substances, and participate readily in cascade processes. In the last few years, they have also become useful reagents for photoredox reactions. They can participate as sacrificial electron and hydrogen donors and when 4-alkyl or 4-acyl-substituted, they can act as alkyl or acyl radical transfer agents. These last reactions may take place in the presence or absence of a photocatalyst. This review surveys the literature published in this area in the last five years. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

12 pages, 1235 KiB  
Article
Multicomponent Synthesis of Unsymmetrical Derivatives of 4-Methyl-Substituted 5-Nitropyridines
by Daria M. Turgunalieva, Alena L. Stalinskaya, Ilya I. Kulakov, Galina P. Sagitullina, Victor V. Atuchin, Andrey V. Elyshev and Ivan V. Kulakov
Processes 2023, 11(2), 576; https://doi.org/10.3390/pr11020576 - 14 Feb 2023
Cited by 7 | Viewed by 2559
Abstract
The multicomponent reaction of 2-nitroacetophenone (or nitroacetone), acetaldehyde diethyl acetal, β-dicarbonyl compound, and ammonium acetate in an acetic acid solution allowed the acquisition of previously undescribed 4-methyl-substituted derivatives of 5-nitro-1,4-dihydropyridine in satisfactory yields. The oxidation of the obtained 5-nitro-1,4-dihydropyridine derivatives resulted in the [...] Read more.
The multicomponent reaction of 2-nitroacetophenone (or nitroacetone), acetaldehyde diethyl acetal, β-dicarbonyl compound, and ammonium acetate in an acetic acid solution allowed the acquisition of previously undescribed 4-methyl-substituted derivatives of 5-nitro-1,4-dihydropyridine in satisfactory yields. The oxidation of the obtained 5-nitro-1,4-dihydropyridine derivatives resulted in the corresponding 2,4-dimethyl-5-nitropyridines. In addition, for the first time in the synthesis of unsymmetrical 1,4-dihydropyridines by the Hantzsch reaction acetaldehyde, diethyl acetal was used as a source of acetaldehyde. The use of more volatile and sufficiently reactive acetaldehyde in this reaction did not lead to a controlled synthesis of unsymmetrical 5-nitro-1,4-dihydropyridines. The proposed multicomponent approach to the synthesis of 4-methyl-substituted 5-nitro-1,4-dihydropyridines and their subsequent aromatization into pyridines made it possible to obtain previously undescribed and hardly accessible substituted 5(3)-nitropyridines. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

7 pages, 694 KiB  
Short Note
Methyl 5-Imino-2-methyl-1,10a-dihydro-5H-chromeno[2,3-b]pyridine-3-carboxylate
by Joana Pinto, Artur M. S. Silva and Vera L. M. Silva
Molbank 2022, 2022(4), M1453; https://doi.org/10.3390/M1453 - 23 Sep 2022
Cited by 2 | Viewed by 1851
Abstract
Multicomponent reactions are valuable synthetic tools to deliver highly functionalized motifs starting from simple building blocks in only one step and in an atom-economical way. Herein we disclose the structure of a new and unexpected compound, the methyl 5-imino-2-methyl-1,10a-dihydro-5H-chromeno[2,3-b]pyridine-3-carboxylate, [...] Read more.
Multicomponent reactions are valuable synthetic tools to deliver highly functionalized motifs starting from simple building blocks in only one step and in an atom-economical way. Herein we disclose the structure of a new and unexpected compound, the methyl 5-imino-2-methyl-1,10a-dihydro-5H-chromeno[2,3-b]pyridine-3-carboxylate, which was formed in the ohmic-heating-assisted multicomponent Hantzsch reaction of 3-formylchromone with methyl acetoacetate and ammonium acetate, in aqueous medium, in the presence of tetrabutylammonium bromide as phase transfer catalyst. The title compound was isolated with no need of chromatographic separation and was analyzed by nuclear magnetic resonance (1H and 13C-NMR, HSQC and HMBC) spectroscopy, mass spectrometry (MS) and high-resolution mass spectrometry (HRMS). Its formation as the main reaction product was observed when the reaction was performed using ohmic heating, which may lead to some speculations about the possible existence of specific effects of ohmic heating in the reactivity pathway because of the passage of an alternating electric current of high frequency within the reaction media, opening new opportunities for further investigations of the potential of this thermal processing method in organic synthesis and reactivity optimization. Full article
Show Figures

Graphical abstract

9 pages, 612 KiB  
Short Note
1,1′-{[3,5-Bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] Dibromide
by Reinis Ozolins, Mara Plotniece, Karlis Pajuste, Reinis Putralis, Nadiia Pikun, Arkadij Sobolev, Aiva Plotniece and Martins Rucins
Molbank 2022, 2022(3), M1438; https://doi.org/10.3390/M1438 - 2 Sep 2022
Cited by 3 | Viewed by 2504
Abstract
A synthesis of a cationic moiety and fluorescent moieties containing amphiphilic 1,4-dihydropyridine (1,4-DHP) derivatives was performed starting with the Hantzsch-type cyclization of dodecyl acetoacetate, phenylaldehyde and ammonium acetate. Bromination of the 2,6-dimethyl groups of a parent 1,4-DHP compound, followed by nucleophilic substitution of [...] Read more.
A synthesis of a cationic moiety and fluorescent moieties containing amphiphilic 1,4-dihydropyridine (1,4-DHP) derivatives was performed starting with the Hantzsch-type cyclization of dodecyl acetoacetate, phenylaldehyde and ammonium acetate. Bromination of the 2,6-dimethyl groups of a parent 1,4-DHP compound, followed by nucleophilic substitution of bromine with 4-(anthracen-9-yl)pyridine, produced the desired 1,1′-{[3,5-bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] dibromide. The obtained target compound was fully characterized by the IR, 1H NMR, 13C NMR and HRMS data. Studies of the self-assembling properties and characterization of the nanoparticles obtained by the ethanol injection method were performed using dynamic light scattering (DLS) measurements. DLS measurement data showed that 1,1′-{[3,5-bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] dibromide produced liposomes that had average diameters of 200 nm when the samples were freshly prepared, and 140 nm after 7 days or 1 month storage. The PDI values of the samples were approximately 0.50 and their zeta-potential values were approximately 41 mV when the samples were freshly prepared, and 33 mV after storage. The obtained nanoparticles were stored at room temperature for one month and remained stable during that period. The mean molecular area of the cationic 1,4-DHP-anthracene hybrid 4 was 118 Å2, while the mean molecular area of the cationic 1,4-DHP 5 without anthracene substituents was only 83 Å2. The photoluminescence quantum yield (PLQY) value for the EtOH solution of the 1,4-DHP derivative 4 was 10.8%, but for the 1,4-DHP derivative 5 it was only 1.8%. These types of compounds could be used as synthetic lipids in the further development of prospective theranostic delivery systems. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Figure 1

42 pages, 13456 KiB  
Review
Multicomponent Reactions for the Synthesis of Active Pharmaceutical Ingredients
by Ángel Cores, José Clerigué, Emmanuel Orocio-Rodríguez and J. Carlos Menéndez
Pharmaceuticals 2022, 15(8), 1009; https://doi.org/10.3390/ph15081009 - 17 Aug 2022
Cited by 48 | Viewed by 9228
Abstract
Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis. While relatively less [...] Read more.
Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis. While relatively less exploited, their use in target-oriented synthesis offers significant advantages in terms of synthetic efficiency. This review provides a critical summary of the use of multicomponent reactions for the preparation of active pharmaceutical principles. Full article
(This article belongs to the Special Issue Multicomponent and Domino Reactions in Drug Discovery)
Show Figures

Graphical abstract

8 pages, 1544 KiB  
Article
Preparation of Substituted Pyridines via a Coupling of β-Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines
by Yung-Yuan Lee and Shiuh-Tzung Liu
Reactions 2022, 3(3), 415-422; https://doi.org/10.3390/reactions3030029 - 16 Aug 2022
Cited by 5 | Viewed by 2895
Abstract
A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method [...] Read more.
A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method for the preparation of substituted pyridine derivatives with a broad functional group tolerance. In particular, this method allows us to prepare terpyridine derivatives, which are important ligands or structural fragments for catalysts and 3D metal–organic frameworks. Full article
Show Figures

Scheme 1

8 pages, 477 KiB  
Short Note
1,1′-{[3,5-Bis(dodecyloxycarbonyl)-4-(naphthalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium}dibromide
by Martins Rucins, Martins Kaukulis, Aiva Plotniece, Karlis Pajuste, Nadiia Pikun and Arkadij Sobolev
Molbank 2022, 2022(3), M1396; https://doi.org/10.3390/M1396 - 27 Jun 2022
Cited by 4 | Viewed by 1859
Abstract
Synthesis of a double-charged cationic amphiphilic 1,4-dihydropyridine derivative with dodecyl ester groups at positions 3 and 5 of the 1,4-DHP ring was performed starting from Hantzsch type cyclization of dodecyl acetoacetate, 2-naphthaldehyde and ammonium acetate. Bromination of this compound followed by nucleophilic substitution [...] Read more.
Synthesis of a double-charged cationic amphiphilic 1,4-dihydropyridine derivative with dodecyl ester groups at positions 3 and 5 of the 1,4-DHP ring was performed starting from Hantzsch type cyclization of dodecyl acetoacetate, 2-naphthaldehyde and ammonium acetate. Bromination of this compound followed by nucleophilic substitution of bromine with (E)-4-(2-(naphthalen-2-yl)vinyl)pyridine gave the desired cationic amphiphilic 1,1′-{[3,5-bis(dodecyloxycarbonyl)-4-(naphthalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium}dibromide. The obtained target compound was fully characterized by IR, UV, 1H-NMR, 13C-NMR, HRMS and microanalysis. The characterization of the cationic 1,4-DHP nanoparticles in an aqueous solution was performed by DLS measurements. The obtained results showed that the compound formed nanoparticles with an average diameter of around 300 nm, a PDI value of around 490 and a zeta-potential of around 20 mV for freshly prepared samples. However, after one week of storage at room temperature, an aggregation of nanoparticles was detected. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

Back to TopTop