Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Haiyang-1C (HY-1C)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6221 KiB  
Article
Evaluation of HY-2B SMR Sea Surface Temperature Products from 2019 to 2024
by Ping Liu, Yili Zhao, Wu Zhou and Shishuai Wang
Remote Sens. 2025, 17(2), 300; https://doi.org/10.3390/rs17020300 - 16 Jan 2025
Viewed by 883
Abstract
Haiyang 2B (HY-2B), the second Chinese ocean dynamic environment monitoring satellite, has been operational for nearly six years. The scanning microwave radiometer (SMR) onboard HY-2B provides global sea surface temperature (SST) observations. Comprehensive validation of these data is essential before they can be [...] Read more.
Haiyang 2B (HY-2B), the second Chinese ocean dynamic environment monitoring satellite, has been operational for nearly six years. The scanning microwave radiometer (SMR) onboard HY-2B provides global sea surface temperature (SST) observations. Comprehensive validation of these data is essential before they can be effectively applied. This study evaluates the operational SST product from the SMR, covering the period from 1 January 2019 to 31 August 2024, using direct comparison and extended triple collocation (ETC) methods. The direct comparison assesses bias and root mean square error (RMSE), while ETC analysis estimates the random error of the SST measurement systems and evaluates their ability to detect SST variations. Additionally, the spatial and temporal variations in error characteristics, as well as the crosstalk effects of sea surface wind speed, columnar water vapor, and columnar cloud liquid water, are analyzed. Compared with iQuam SST, the total RMSE of SMR SST for ascending and descending passes are 0.88 °C and 0.85 °C, with total biases of 0.1 °C and −0.08 °C, respectively. ETC analysis indicates that the random errors for ascending and descending passes are 0.87 °C and 0.80 °C, respectively. The SMR’s ability to detect SST variations decreases significantly at high latitudes and near 10°N latitude. Error analysis reveals that the uncertainty in SMR SSTs has increased over time, and the presence of crosstalk effects in SMR SST retrieval has been confirmed. Full article
Show Figures

Figure 1

17 pages, 16284 KiB  
Article
NRCS Recalibration and Wind Speed Retrieval for SWOT KaRIn Radar Data
by Lin Ren, Xiao Dong, Limin Cui, Jingsong Yang, Yi Zhang, Peng Chen, Gang Zheng and Lizhang Zhou
Remote Sens. 2024, 16(16), 3103; https://doi.org/10.3390/rs16163103 - 22 Aug 2024
Viewed by 1099
Abstract
In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by [...] Read more.
In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by comparing the KaRIn NRCS with collocated simulations from a model developed using Global Precipitation Measurement (GPM) satellite Dual-frequency Precipitation Radar (DPR) data. To recalibrate the bias, the correlation coefficient between the KaRIn data and the simulations was estimated, and the data with the corresponding top 10% correlation coefficients were used to estimate the recalibration coefficients. After recalibration, a Ka-band NRCS model was developed from the KaRIn data to retrieve ocean surface wind speeds. Finally, wind speed retrievals were evaluated using the collocated European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis winds, Haiyang-2C scatterometer (HY2C-SCAT) winds and National Data Buoy Center (NDBC) and Tropical Atmosphere Ocean (TAO) buoy winds. Evaluation results show that the Root Mean Square Error (RMSE) at both polarizations is less than 1.52 m/s, 1.34 m/s and 1.57 m/s, respectively, when compared to ECMWF, HY2C-SCAT and buoy collocated winds. Moreover, both the bias and RMSE were constant with the incidence angles and polarizations. This indicates that the winds from the SWOT KaRIn data are capable of correcting the sea state bias for sea surface height products. Full article
Show Figures

Figure 1

15 pages, 3261 KiB  
Article
Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters
by Jingwei Xu, Huanping Wu, Xiefei Zhi, Nikolay V. Koldunov, Xiuzhi Zhang, Ying Xu, Yangyang Zhang, Maohua Guo, Lisha Kong and Klaus Fraedrich
Remote Sens. 2024, 16(12), 2162; https://doi.org/10.3390/rs16122162 - 14 Jun 2024
Cited by 1 | Viewed by 1531
Abstract
Climate data derived from long-term, multisource altimeter significant wave height (SWH) measurements are more valuable than those obtained from a single altimeter source. Such data facilitate exploration of long-term air–sea momentum transfer and more comprehensive investigation of weather system dynamics processes over the [...] Read more.
Climate data derived from long-term, multisource altimeter significant wave height (SWH) measurements are more valuable than those obtained from a single altimeter source. Such data facilitate exploration of long-term air–sea momentum transfer and more comprehensive investigation of weather system dynamics processes over the ocean. Despite the deployment of the first satellite in the Chinese Haiyang-2 (HY-2) series more than 12 years ago, validation and integration of SWH data from China’s offshore waters, derived using Chinese altimeters, have been limited. This study constructed a high-resolution, long-term, multisource gridded SWH climate dataset using along-track data from the HY-2 series, CFOSAT, Jason-2, Jason-3, and Cryosat-2 altimeters. Validation against observations from 31 buoys covering China’s offshore waters indicated that the SWH variances from HY-2A, HY-2B, HY-2C, CFOSAT, and Jason-3 altimeters correlated well with observations, with a temporal correlation coefficient of approximately 0.95 (except HY-2A, correlation: 0.89). These SWH measurements generally showed a robust linear relationship with the buoy data. Additionally, cross-calibration between Jason-3 and the HY-2A, HY-2B, HY-2C, and CFOSAT altimeters also demonstrated a typically linear relationship for SWH > 6.0 m. Using this relationship, the SWH data were linearly corrected and integrated into a 10 d mean, long-term, multisource altimeter gridded SWH dataset. Compared with in situ observations, the merged 10 d mean SWHs are more accurate and closely match the observations, with temporal correlation coefficients improving from 0.87 to 0.90 and bias decreasing from 0.28 to 0.03 m. The merged gridded SWHs effectively represent the local spatial distribution of SWH. This study revealed the importance of observational data in the process of merging and recalibrating long-term multisource altimeter SWH datasets, particularly before their application in specific ocean regions. Full article
Show Figures

Figure 1

24 pages, 35825 KiB  
Article
The Respondence of Wave on Sea Surface Temperature in the Context of Global Change
by Ru Yao, Weizeng Shao, Mengyu Hao, Juncheng Zuo and Song Hu
Remote Sens. 2023, 15(7), 1948; https://doi.org/10.3390/rs15071948 - 6 Apr 2023
Cited by 17 | Viewed by 2741
Abstract
Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over [...] Read more.
Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over global seas from 1993–2020. The European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus Marine Environment Monitoring Service (CMEMS), current and sea level were used as the forcing fields in the WW3 model. The validation of modelling simulations against the measurements from the National Data Buoy Center (NDBC) buoys and Haiyang-2B (HY-2B) altimeter yielded a root mean square error (RMSE) of 0.49 m and 0.63 m, with a correlation (COR) of 0.89 and 0.90, respectively. The terms calculated by WW3-simulated waves, i.e., breaking waves, nonbreaking waves, radiation stress, and Stokes drift, were included in the water temperature simulation by a numerical circulation model named the Stony Brook Parallel Ocean Model (sbPOM). The water temperature was simulated in 2005–2015 using the high-quality Simple Ocean Data Assimilation (SODA) data. The validation of sbPOM-simulated results against the measurements obtained from the Array for Real-time Geostrophic Oceanography (Argo) buoys yielded a RMSE of 1.12 °C and a COR of 0.99. By the seasonal variation, the interrelation of the currents, sea level anomaly, and significant wave heights (SWHs) were strong in the Indian Ocean. In the strong current areas, the distribution of the sea level was consistent with the SWHs. The monthly variation of SWHs, currents, sea surface elevation, and sea level anomalies revealed that the upward trends of SWHs and sea level anomalies were consistent from 1993–2015 over the global ocean. In the Indian Ocean, the SWHs were obviously influenced by the SST and sea surface wind stress. The rise of wind stress intensity and sea level enlarges the growth of waves, and the wave-induced terms strengthen the heat exchange at the air–sea layer. It was assumed that the SST oscillation had a negative response to the SWHs in the global ocean from 2005–2015. This feedback indicates that the growth of waves could slow down the amplitude of water warming. Full article
Show Figures

Figure 1

17 pages, 1775 KiB  
Article
Estimation of Geopotential Value W0 for the Geoid and Local Vertical Datum Parameters
by Xinyu Liu, Shanshan Li, Jiajia Yuan, Diao Fan and Xuli Tan
Remote Sens. 2023, 15(4), 912; https://doi.org/10.3390/rs15040912 - 7 Feb 2023
Cited by 3 | Viewed by 2350
Abstract
Unification of the global vertical datum has been a key problem to be solved for geodesy over a long period, and the main challenge for unifying the global vertical datum system is to determine the geopotential value W0 of the geoid and [...] Read more.
Unification of the global vertical datum has been a key problem to be solved for geodesy over a long period, and the main challenge for unifying the global vertical datum system is to determine the geopotential value W0 of the geoid and to calculate the vertical offset between the local vertical datum and the global vertical datum W0. The geopotential value W0 can be calculated using the grid mean sea surface (GMSS) data and the global geopotential model (GGM). In this study, this GMSS data was measured with adjustment methods and 24 years of merged multi-satellite altimetry data. The data of HaiYang-2A (HY-2A) and Jason-3 were first used to calculate W0. The geopotential value W0 was determined to be 62,636,856.82 m2s−2 by combining the EIGEN-6C4 (European Improved Gravity Model of the Earth by New Techniques) and the GMSS data. Then, the geopotential difference approach and geodetic boundary value problem (GBVP) approach were used to determine the vertical datum parameters in this study. To compensate for the omission error of the GGM, this study utilized the remove–compute–restore (RCR) technique and the residual terrain model (RTM)-recovered high-frequency gravity signals. Finally, as a result of the GBVP solution, the geopotential value of the Australian Height Datum (AHD) was 62,636,851.935 m2s−2, and the vertical offset of the AHD relative to the global vertical datum W0 was 0.4885 m. As a result of the geopotential difference approach, the geopotential value of the Chinese Height datum was 62636861.412 m2s−2, and the vertical offset of the Chinese Height datum was −0.4592 m. Full article
(This article belongs to the Special Issue Satellite Altimetry: Technology and Application in Geodesy)
Show Figures

Figure 1

22 pages, 8610 KiB  
Article
Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing
by Zhuyi Wang, Bowen Fan, Dingfeng Yu, Yanguo Fan, Deyu An and Shunqi Pan
Remote Sens. 2023, 15(1), 157; https://doi.org/10.3390/rs15010157 - 27 Dec 2022
Cited by 9 | Viewed by 3022
Abstract
The green tide caused by Ulva prolifera (U. prolifera) is becoming more severe as climate change and human activity accelerate, endangering tourism, aquaculture, and urban landscapes in coastal cities. In order to understand the spatio-temporal distribution of U. prolifera in response [...] Read more.
The green tide caused by Ulva prolifera (U. prolifera) is becoming more severe as climate change and human activity accelerate, endangering tourism, aquaculture, and urban landscapes in coastal cities. In order to understand the spatio-temporal distribution of U. prolifera in response to the green tide disaster, this study used the Haiyang-1C (HY-1C) satellite accompanied by the Sentinel-2 and GaoFen-1 (GF-1) satellites to systematically monitor U. prolifera between 2020 and 2022. The consistency of U. prolifera distribution between the HY-1C and Sentinel-2 satellites, as well as the HY-1C and GF-1 satellites, was first investigated and the determination coefficients (R2) were 0.966 and 0.991, respectively, which supports the feasibility of China’s first ocean water color operational satellite, HY-1C, for U. prolifera monitoring. Therefore, the spatio-temporal distribution of U. prolifera is studied herein, along with the influence range, influence area, and drift paths. From 2020 to 2022, U. prolifera appeared in late May and lasted for 61, 88, and 73 days. Additionally, the in influence area continuously decreased in 2020 and 2022, while it generally increased and then decreased in 2021. It is an interesting phenomenon that when the maximum influence area occurred at the early stage of U. prolifera in both 2020 and 2022, the drift paths tended to move southward after traveling northward. The overall trend of the drift path in 2021 was to head northward. Thus, the study of the dynamic evolution, influence range, influence area, and drift paths of U. prolifera is helpful to promote the systematic development of emergency response mechanisms for U. prolifera. Full article
(This article belongs to the Special Issue Remote Sensing for Monitoring Harmful Algal Blooms)
Show Figures

Figure 1

17 pages, 23871 KiB  
Article
Performance of Haiyang-2 Derived Gravity Field Products in Bathymetry Inversion
by Xiaoyun Wan, Huaibing Wang, Yongjun Jia and Wenjie Ma
Remote Sens. 2023, 15(1), 32; https://doi.org/10.3390/rs15010032 - 21 Dec 2022
Cited by 7 | Viewed by 2206
Abstract
Haiyang-2A (HY-2A), China’s first altimetry satellite mission, was launched more than ten years ago, and its follow-up satellites, HY-2B, HY-2C, and HY-2D, have also been launched. More attention has been paid to the evaluation of these satellite observations in marine gravity field inversion. [...] Read more.
Haiyang-2A (HY-2A), China’s first altimetry satellite mission, was launched more than ten years ago, and its follow-up satellites, HY-2B, HY-2C, and HY-2D, have also been launched. More attention has been paid to the evaluation of these satellite observations in marine gravity field inversion. However, this is not the case for bathymetry inversion. This study is aimed at evaluating the performance of HY-2 gravity field products in bathymetry recovery. Not only gravity anomaly, but also deflection of the vertical from the HY-2 series’ observations is also used. The results show that the bathymetry derived from the deflection of the vertical from HY-2A has a precision of around 128~130 m, and the north-south component performs better than the east-west component. Three versions of the gravity anomaly are used in bathymetry inversion, i.e., HY2ONLY_GRA, WHU16_GRA, and NSOASS22_GRA, and three bathymetry models are derived correspondingly, named as HY2ONLY_BAT, NSOASS22_BAT, and WHU16_BAT, respectively. The results show that HY2ONLY_BAT has a precision of 82.93 m, which is a little poorer than WHU16_BAT; NSOAS22_BAT has the best performance in bathymetry inversion among the three versions of the gravity anomaly. It indicates that HY-2 observations can also contribute to bathymetry inversion compared to current altimetry datasets, since the main difference between WHU16_GRA and NSOASS22_GRA is the use of HY-2 observations. According to spatial analysis results, considerable improvements appear in the west of the Pacific and Indian oceans, and most of the improvements are within 20 m. Meanwhile, the improvements are stronger in the regions with depths ranging between 2600~5500 m. Correlation analysis demonstrates that NSOASS22_BAT is very close to SIO V19.1 and DTU21BAT, which once again indicates the excellent performance of NSOASS22_BAT. Full article
Show Figures

Graphical abstract

20 pages, 10846 KiB  
Article
The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites
by Zhihua Mao, Yiwei Zhang, Bangyi Tao, Jianyu Chen, Zengzhou Hao, Qiankun Zhu and Haiqing Huang
Remote Sens. 2022, 14(24), 6372; https://doi.org/10.3390/rs14246372 - 16 Dec 2022
Cited by 2 | Viewed by 2142
Abstract
The data quality of the remote sensing reflectance (Rrs) from the two ocean color satellites HaiYang-1C (HY-1C) and HaiYang-1D (HY-1D) and the consistency with other satellites are critical for the products. The Layer Removal Scheme for Atmospheric Correction (LRSAC) has [...] Read more.
The data quality of the remote sensing reflectance (Rrs) from the two ocean color satellites HaiYang-1C (HY-1C) and HaiYang-1D (HY-1D) and the consistency with other satellites are critical for the products. The Layer Removal Scheme for Atmospheric Correction (LRSAC) has been applied to process the data of the Chinese Ocean Color and Temperature Scanner (COCTS) on HY-1C/1D. The accuracy of the Rrs products was evaluated by the in situ dataset from the Marine Optical BuoY (MOBY) with a mean relative error (MRE) of −1.56% and a mean absolute relative error (MAE) of 17.31% for HY-1C. The MRE and MAE of HY-1D are 1.05% and 15.68%, respectively. The comparisons of the global daily Rrs imagery with the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra show an MRE of 10.94% and an MAE of 21.38%. The comparisons between HY-1D and Aqua exhibit similar results, with an MRE of 13.31% and an MAE of 21.46%. The percentages of valid pixels of the global daily images of HY-1C and HY-1D are 32.3% and 32.6%, much higher than that of Terra (11.9%) and Aqua (11.9%). The gaps in the 8-day composite images have been significantly reduced, with 83.9% of valid pixels for HY-1C and 85.4% for HY-1D, which are also much higher than that of Terra (52.9%) and Aqua (50.9%). The gaps due to the contamination of sun glint have been almost removed from the 3-day composite imagery, with valid pixels of 63.5% for HY-1C and 65.6% for HY-1D, which are higher than that of the 8-day imagery of Terra and Aqua. The patterns of HY-1C imagery exhibit a similarity with those of HY-1D, but they are different on a pixel scale, mainly due to the changes in the ocean dynamic features within 3 h. The evaluations of the COCTS indicate that the imagery of HY-1C/1D can be used as a kind of standard product. Full article
(This article belongs to the Special Issue Validation and Evaluation of Global Ocean Satellite Products)
Show Figures

Graphical abstract

19 pages, 5754 KiB  
Article
GNSS Data Processing and Validation of the Altimeter Zenith Wet Delay around the Wanshan Calibration Site
by Wanlin Zhai, Jianhua Zhu, Mingsen Lin, Chaofei Ma, Chuntao Chen, Xiaoqi Huang, Yufei Zhang, Wu Zhou, He Wang and Longhao Yan
Remote Sens. 2022, 14(24), 6235; https://doi.org/10.3390/rs14246235 - 9 Dec 2022
Cited by 4 | Viewed by 1813
Abstract
The Wanshan calibration site (WSCS) is the first in-situ field for calibration and validation (Cal/Val) of HY-2 satellite series in China. It was built in December, 2018 and began business operation in 2020. In order to define an accurate datum for Cal/Val of [...] Read more.
The Wanshan calibration site (WSCS) is the first in-situ field for calibration and validation (Cal/Val) of HY-2 satellite series in China. It was built in December, 2018 and began business operation in 2020. In order to define an accurate datum for Cal/Val of altimeters, the permanent GNSS station (PGS) data of the WSCS observed on Zhiwan (ZWAN) and Wailingding (WLDD) islands were processed using GAMIT/GLOBK software in a regional solution, combined with 61 GNSS stations distributed nearby, collected from the GNSS Research Center, Wuhan University (GRC). The Hector software was used to analyze the trend of North (N), East (E), and Up (U) directions using six different noise models with criteria of maximum likelihood estimation (MLE), Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC). We found that the favorite noise models were white noise plus generalized Gauss–Markov noise (WN + GGM), followed by generalized Gauss–Markov noise (GGM). Then, we compared the PGS velocities of each direction with the Scripps Orbit and Permanent Array Center (SOPAC) output parameters and found that there was good agreement between them. The PGSs in the WSCS had velocities in the N, E, and U directions of −10.20 ± 0.39 mm/year, 31.09 ± 0.36 mm/year, and −2.24 ± 0.66 mm/year for WLDD, and −10.85 ± 0.38 mm/year, 30.67 ± 0.30 mm/year, and −3.81 ± 0.66 mm/year for ZWAN, respectively. The accurate datum was defined for Cal/Val of altimeters for WSCS as a professional in-situ site. Moreover, the zenith wet delay (ZWD) of the coastal PGSs in the regional and sub-regional solutions was calculated and used to validate the microwave radiometers (MWRs) of Jason-3, Haiyang-2B (HY-2B), and Haiyang-2C (HY-2C). A sub-regional PGS solution was processed using 19 continuous operational reference stations (CORS) of Hong Kong Geodetic Survey Services to derive the ZWD and validate the MWRs of the altimeters. The ZWD of the PGSs were compared with the radiosonde-derived data in the regional and sub-regional solutions. The difference between them was −7.72~2.79 mm with an RMS of 14.53~18.62 mm, which showed good consistency between the two. Then, the PGSs’ ZWD was used to validate the MWRs. To reduce the land contamination of the MWR, we determined validation distances of 6~30 km, 16~28 km, and 18~30 km for Jason-3, HY-2B, and HY-2C, respectively. The ZWD differences between PGSs and the Jason-3, HY-2B, and HY-2C altimeters were −2.30 ± 16.13 mm, 9.22 ± 22.73 mm, and −3.02 ± 22.07 mm, respectively. Full article
Show Figures

Graphical abstract

19 pages, 17809 KiB  
Article
Evaluation and Calibration of Remotely Sensed High Winds from the HY-2B/C/D Scatterometer in Tropical Cyclones
by Xiaohui Li, Jingsong Yang, Jiuke Wang and Guoqi Han
Remote Sens. 2022, 14(18), 4654; https://doi.org/10.3390/rs14184654 - 17 Sep 2022
Cited by 12 | Viewed by 2751
Abstract
Haiyang-2 scatterometers (HY-2A/B/C/D) have limitations in high wind speed retrieval due to the complexity of the remote sensing mechanism and the influence of rainfall on the radar cross section under the conditions of tropical cyclones. In this study, we focus on the evaluation [...] Read more.
Haiyang-2 scatterometers (HY-2A/B/C/D) have limitations in high wind speed retrieval due to the complexity of the remote sensing mechanism and the influence of rainfall on the radar cross section under the conditions of tropical cyclones. In this study, we focus on the evaluation of Chinese scatterometer operational wind products from HY-2B/C/D over the period from July 2019 to December 2021. HY-2B/C/D scatterometer wind products are collocated with SMAP (Soil Moisture Active Passive) L-band radiometer remotely sensed measurements. The results show that the underestimation of high wind speed occurs in the HY-2B/C/D wind speed products. The machine learning algorithms are explored to improve this underestimation issue, including the back propagation neural network (BP-NN), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and Bayesian ridge (BR) regression algorithms. Comparisons show that the BP-NN algorithm shows the best performance with a small RMSE (root-mean-square error) of 3.40 m/s, and high correlation coefficient of 0.88, demonstrating an improvement of 20.4% in RMSE (root-mean-square error) compared with the HY-2B/C/D wind speed products. In addition, the revised high winds are in good agreement with the ground truth measurements from the SFMR (Stepped Frequency Microwave Radiometer), which are useful for tropical cyclone disaster prevention and mitigation and are of vital importance in the numerical simulation of storm surges. Full article
Show Figures

Graphical abstract

25 pages, 7085 KiB  
Article
Performance of HaiYang-2 Altimetric Data in Marine Gravity Research and a New Global Marine Gravity Model NSOAS22
by Shengjun Zhang, Runsheng Zhou, Yongjun Jia, Taoyong Jin and Xiangxue Kong
Remote Sens. 2022, 14(17), 4322; https://doi.org/10.3390/rs14174322 - 1 Sep 2022
Cited by 20 | Viewed by 2743
Abstract
Haiyang-2 (HY-2) missions have accumulated sea surface height (SSH) observations on a global scale for more than 10 years. Four satellites, HY-2A, HY-2B, HY-2C and HY-2D, provide even but differently distributed data, which play a complementary role in marine gravity studies with other [...] Read more.
Haiyang-2 (HY-2) missions have accumulated sea surface height (SSH) observations on a global scale for more than 10 years. Four satellites, HY-2A, HY-2B, HY-2C and HY-2D, provide even but differently distributed data, which play a complementary role in marine gravity studies with other missions. Therefore, this paper evaluates the performances of HY-2 altimetric data in marine gravity modeling from the following four perspectives: SSH accuracy, geoid signal resolution ability, vertical deflections and gravity anomaly. First, the centimeter-magnitude accuracy level of HY-2 data is proved by analyzing SSH discrepancies at crossover points within a certain time limit. Second, the spectral analysis of repetitive along-track data sequences in a time domain shows a geoid resolution range from 18 to 24 km. Taking HY-2 exact repeat missions (ERM), for example, the resolution could be remarkably enhanced by stacking repetitive cycles. Third, validation with an XGM2019 model showed that vertical deflections were reliably computed for all HY-2 missions, but HY-2A performed slightly worse than the other HY-2 missions. Meanwhile, HY-2C and HY-2D with a ~66° orbital inclination obviously had an improved ability to capture east–west signals compared to HY-2A and HY-2B. Finally, we constructed global marine gravity results based on three input datasets, HY-2 dataset only, multi-satellite dataset without HY-2 and multi-satellite dataset with HY-2. Validations were performed using published models and shipborne gravimetric data. The results showed that the HY-2 dataset is capable of improving marine gravity anomaly recoveries and that the accuracy of NSOAS22 with incorporated HY-2 data is comparable to DTU21 and SS V31.1. Furthermore, HY-2 observations should not be the only input dataset to construct a 1’ × 1’ resolution marine gravity model. Full article
Show Figures

Figure 1

11 pages, 17433 KiB  
Communication
Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning
by Jichao Wang, Ting Yu, Fangyu Deng, Zongli Ruan and Yongjun Jia
Remote Sens. 2021, 13(21), 4425; https://doi.org/10.3390/rs13214425 - 3 Nov 2021
Cited by 7 | Viewed by 2639
Abstract
Significant wave height (SWH) is of great importance in industries such as ocean engineering, marine resource development, shipping and transportation. Haiyang-2C (HY-2C), the second operational satellite in China’s ocean dynamics exploration series, can provide all-weather, all-day, global observations of wave height, wind, and [...] Read more.
Significant wave height (SWH) is of great importance in industries such as ocean engineering, marine resource development, shipping and transportation. Haiyang-2C (HY-2C), the second operational satellite in China’s ocean dynamics exploration series, can provide all-weather, all-day, global observations of wave height, wind, and temperature. An altimeter can only measure the nadir wave height and other information, and a scatterometer can obtain the wind field with a wide swath. In this paper, a deep learning approach is applied to produce wide swath SWH data through the wind field using a scatterometer and the nadir wave height taken from an altimeter. Two test sets, 1-month data at 6 min intervals and 1-day data with an interval of 10 s, are fed into the trained model. Experiments indicate that the extending nadir SWH yields using a real-time wide swath grid product along a track, which can support oceanographic study, is superior for taking the swell characteristics of ERA5 into account as the input of the wide swath SWH model. In conclusion, the results demonstrate the effectiveness and feasibility of the wide swath SWH model. Full article
Show Figures

Figure 1

22 pages, 5340 KiB  
Article
On Satellite-Borne GPS Data Quality and Reduced-Dynamic Precise Orbit Determination of HY-2C: A Case of Orbit Validation with Onboard DORIS Data
by Hengyang Guo, Jinyun Guo, Zhouming Yang, Guangzhe Wang, Linhu Qi, Mingsen Lin, Hailong Peng and Bing Ji
Remote Sens. 2021, 13(21), 4329; https://doi.org/10.3390/rs13214329 - 28 Oct 2021
Cited by 7 | Viewed by 3327
Abstract
Haiyang-2C (HY-2C) is a dynamic, marine-monitoring satellite that was launched by China and is equipped with an onboard dual-frequency GPS receiver named HY2_Receiver, which was independently developed in China. HY-2C was successfully launched on 21 September 2020. Its precise orbit is an important [...] Read more.
Haiyang-2C (HY-2C) is a dynamic, marine-monitoring satellite that was launched by China and is equipped with an onboard dual-frequency GPS receiver named HY2_Receiver, which was independently developed in China. HY-2C was successfully launched on 21 September 2020. Its precise orbit is an important factor for scientific research applications, especially for marine altimetry missions. The performance of the HY2_Receiver is assessed based on indicators such as the multipath effect, ionospheric delay, cycle slip and data utilization, and assessments have suggested that the receiver can be used in precise orbit determination (POD) missions involving low-Earth-orbit (LEO) satellites. In this study, satellite-borne GPS data are used for POD with a reduced-dynamic (RD) method. Phase centre offset (PCO) and phase centre variation (PCV) models of the GPS antenna are established during POD, and their influence on the accuracy of orbit determination is analysed. After using the PCO and PCV models in POD, the root mean square (RMS) of the carrier-phase residuals is around 0.008 m and the orbit overlap validation accuracy in each direction reaches approximately 0.01 m. Compared with the precise science orbit (PSO) provided by the Centre National d’Etudes Spatiales (CNES), the RD orbit accuracy of HY-2C in the radial (R) direction reaches 0.01 m. The accuracy of satellite laser ranging (SLR) range validation is better than 0.03 m. Additionally, a new method is proposed to verify the accuracy of the RD orbit of HY-2C by using space-borne Doppler orbitography and radiopositioning integrated by satellite (DORIS) data directly. DORIS data are directly compared to the result calculated using the accurate coordinates of beacons and the RD orbit, and the results indicate that the external validation of HY-2C RD orbit has a range rate accuracy of within 0.0063 m/s. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques)
Show Figures

Figure 1

23 pages, 6702 KiB  
Article
Evaluation of Remote-Sensing Reflectance Products from Multiple Ocean Color Missions in Highly Turbid Water (Hangzhou Bay)
by Yuzhuang Xu, Xianqiang He, Yan Bai, Difeng Wang, Qiankun Zhu and Xiaosong Ding
Remote Sens. 2021, 13(21), 4267; https://doi.org/10.3390/rs13214267 - 23 Oct 2021
Cited by 11 | Viewed by 3472
Abstract
Validation of remote-sensing reflectance (Rrs) products is necessary for the quantitative application of ocean color satellite data. While validation of Rrs products has been performed in low to moderate turbidity waters, their performance in highly turbid water remains poorly known. Here, we used [...] Read more.
Validation of remote-sensing reflectance (Rrs) products is necessary for the quantitative application of ocean color satellite data. While validation of Rrs products has been performed in low to moderate turbidity waters, their performance in highly turbid water remains poorly known. Here, we used in situ Rrs data from Hangzhou Bay (HZB), one of the world’s most turbid estuaries, to evaluate agency-distributed Rrs products for multiple ocean color sensors, including the Geostationary Ocean Color Imager (GOCI), Chinese Ocean Color and Temperature Scanner aboard HaiYang-1C (COCTS/HY1C), Ocean and Land Color Instrument aboard Sentinel-3A and Sentinel-3B, respectively (OLCI/S3A and OLCI/S3B), Second-Generation Global Imager aboard Global Change Observation Mission-Climate (SGLI/GCOM-C), and Visible Infrared Imaging Radiometer Suite aboard the Suomi National Polar-orbiting Partnership satellite (VIIRS/SNPP). Results showed that GOCI and SGLI/GCOM-C had almost no effective Rrs products in the HZB. Among the others four sensors (COCTS/HY1C, OLCI/S3A, OLCI/S3B, and VIIRS/SNPP), VIIRS/SNPP obtained the largest correlation coefficient (R) with a value of 0.7, while OLCI/S3A obtained the best mean percentage differences (PD) with a value of −13.30%. The average absolute percentage difference (APD) values of the four remote sensors are close, all around 45%. In situ Rrs data from the AERONET-OC ARIAKE site were also used to evaluate the satellite-derived Rrs products in moderately turbid coastal water for comparison. Compared with the validation results at HZB, the performances of Rrs from GOCI, OLCI/S3A, OLCI/S3B, and VIIRS/SNPP were much better at the ARIAKE site with the smallest R (0.77) and largest APD (35.38%) for GOCI, and the worst PD for these four sensors was only −13.15%, indicating that the satellite-retrieved Rrs exhibited better performance. In contrast, Rrs from COCTS/HY1C and SGLI/GCOM-C at ARIAKE site was still significantly underestimated, and the R values of the two satellites were not greater than 0.7, and the APD values were greater than 50%. Therefore, the performance of satellite Rrs products degrades significantly in highly turbid waters and needs to be improved for further retrieval of ocean color components. Full article
(This article belongs to the Special Issue Atmospheric Correction for Remotely Sensed Ocean Color Data)
Show Figures

Graphical abstract

20 pages, 36695 KiB  
Article
First Assessment of HY-1C COCTS Thermal Infrared Calibration Using MetOp-B IASI
by Mingkun Liu, Lei Guan, Jianqiang Liu, Qingjun Song, Chaofei Ma and Ninghui Li
Remote Sens. 2021, 13(4), 635; https://doi.org/10.3390/rs13040635 - 10 Feb 2021
Cited by 12 | Viewed by 2664
Abstract
The Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C (HY-1C) satellite was launched in September 2018. Accurate and stable calibration is one of the important factors when deriving geophysical parameters with high quality. The first assessment of HY-1C COCTS thermal infrared [...] Read more.
The Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C (HY-1C) satellite was launched in September 2018. Accurate and stable calibration is one of the important factors when deriving geophysical parameters with high quality. The first assessment of HY-1C COCTS thermal infrared calibration is conducted in this research. We choose the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-B satellite as the reference instrument, mainly due to its hyper-spectral characteristic and accurate calibration superiority. The brightness temperatures (BTs) from the two HY-1C COCTS thermal infrared bands centered near 11 and 12 µm are collocated with the IASI in the spatial window of 0.12° × 0.12° and temporal window of half an hour. The homogeneity filtering of matchups is also carried out by setting the relative standard deviation (RSD) thresholds on each collocated grid and its neighboring grids. Based on the filtered matchups, the HY-1C COCTS BTs from the 11 and 12 µm channels are compared with IASI. The mean differences of COCTS minus IASI are 2.68 and 3.18 K for the 11 and 12 μm channels, respectively. The corresponding standard deviations (SDs) are also 0.29 and 0.28 K, respectively. In addition, the BT differences show latitude-dependence and BT-dependence. In order to correct the HY-1C COCTS thermal infrared BTs, the latitude-dependent coefficients are obtained to express the relationship between the BT differences and IASI BTs using the linear robust regression. After the BT correction, the biases and BT-dependence of the COCTS original BT minus IASI differences are removed. Further, the SDs decrease to 0.21 K for the 11 and 12 μm channels. Overall, the calibration of the HY-1C COCTS thermal infrared channels remains stable and the accuracy is around 0.2 K after inter-calibration. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop