Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources Information and Processing
2.3. U. prolifera Extraction Process
2.4. Drift Path and Influence Area
2.5. Investigation of the Consistency between High-Resolution Images
3. Results
3.1. Consistency Models between High-Resolution Images
3.2. Spatio-Temporal Distribution of U. prolifera
3.2.1. Influence Area
3.2.2. Drift Path
4. Discussion
5. Conclusions
- (1)
- The feasibility of China’s first ocean water color operational satellite HY-1C for U. prolifera monitoring is reliable, with excellent spectral ranges, which were examined using the consistency models MHS and MHG, with R2 of 0.966 and 0.991, respectively.
- (2)
- In 2020, U. prolifera was detected for the first and final times on 21 May and 20 July, a period of 61 days. In 2021, U. prolifera was observed on 22 May for the first time and 17 August for the last time, a span of 88 days. In 2022, U. prolifera was initially discovered on 22 May and disappeared after 2 August, a 73-day duration.
- (3)
- In terms of the influence area, the trends were essentially identical in 2020 and 2022, with the maximum influence area occurring during the early stages, followed by a general decline. In 2021, the influence area generally increased and then decreased.
- (4)
- Regarding the drift path in 2020, the general pattern saw an initial move northwest before turning southwest. In 2021, the overall trend of the drift path was the northward accumulation, development, and extension. Additionally, the general trend for the drift path in 2022 began with movement in a northward direction before turning south.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, R.L. The Occurrence of “Green Tides”—A Review; Springer: Berlin, Germany, 1996; pp. 7–43. [Google Scholar] [CrossRef]
- Smetacek, V.; Zingone, A. Green and golden seaweed tides on the rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.B.; Hu, C.M.; He, M.X. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 192, 217–227. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; He, P.M.; Li, H.M.; Li, G.; Liu, J.H.; Jiao, F.L.; Zhang, J.H.; Huo, Y.Z.; Shi, X.Y.; Su, R.G.; et al. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Natl. Sci. Rev. 2019, 6, 825–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Y.; Fang, Z.X.; Liang, J.F.; Song, X. Assessment of global habitat suitability and risk of ocean green tides. Harmful Algae 2022, 119, 102324. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, R.C.; Zhou, M.J. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species. Harmful Algae 2012, 16, 12–19. [Google Scholar] [CrossRef]
- Liu, D.Y.; Keesing, J.K.; He, P.M.; Wang, Z.L.; Shi, Y.J.; Wang, Y.J. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Sun, X.; Wu, M.Q.; Xing, Q.G.; Song, X.D.; Zhao, D.H.; Han, Q.Q.; Zhang, G.Z. Spatio-temporal patterns of Ulva prolifera blooms and the corresponding influence on chlorophyll-a concentration in the Southern Yellow Sea, China. Sci. Total Environ. 2018, 640–641, 807–820. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Yuan, H.Q.; Liu, J.L.; Sun, Y.Q.; Tong, Y.C.; Zhao, S.; Xia, J.; Li, S.; Hu, M.J.; Cao, J.X.; et al. A review of physical, chemical, and biological green tide prevention methods in the Southern Yellow Sea. Mar. Pollut. Bull. 2022, 180, 113772. [Google Scholar] [CrossRef]
- Wasson, K.; Jeppesen, R.; Endris, C.; Perry, D.C.; Woolfolk, A.; Beheshti, K.; Rodriguez, M.; Eby, R.; Watson, E.B.; Rahman, F.; et al. Eutrophication decreases salt marsh resilience through proliferation of algal mats. Biol. Conserv. 2017, 212, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.H.; Huo, Y.Z.; Zhang, Z.L.; Yu, K.F.; He, Q.; Zhang, L.H.; Yang, L.L.; Xu, R.; He, P.M. Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea. Mar. Environ. Res. 2013, 92, 35–42. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Yao, L.L.; Liu, J.L.; Tong, Y.C.; Xia, J.; Zhao, X.H.; Zhao, S.; Fu, M.L.; Zhuang, M.M.; He, P.M.; et al. Prevention strategies for green tides at source in the Southern Yellow Sea. Mar. Pollut. Bull. 2022, 178, 113646. [Google Scholar] [CrossRef]
- Li, D.X.; Gao, Z.Q.; Wang, Z.C. Analysis of the reasons for the outbreak of Yellow Sea green tide in 2021 based on long-term multi-source data. Mar. Environ. Res. 2022, 178, 105649. [Google Scholar] [CrossRef]
- Guo, X.N.; Zhu, A.; Chen, R.S. China’ s algal bloom suffocates marine life. Science 2021, 373, 751. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, L.; Bao, X.; Zhao, L.D. Economic cost of an algae bloom cleanup in China’s 2008 Olympic sailing venue. Eos Trans. Am. Geophys. Union 2009, 90, 238–239. [Google Scholar] [CrossRef]
- Liu, J.L.; Xia, J.; Zhuang, M.M.; Zhang, J.H.; Yu, K.F.; Zhao, S.; Sun, Y.Q.; Tong, Y.C.; Xia, L.H.; Qin, Y.T.; et al. Controlling the source of green tides in the Yellow Sea: NaClO treatment of Ulva attached on Pyropia aquaculture rafts. Aquaculture 2021, 535, 736378. [Google Scholar] [CrossRef]
- Shi, X.Y.; Qi, M.Y.; Tang, H.J.; Han, X.R. Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms. Estuar. Coast. Shelf Sci. 2015, 163, 36–43. [Google Scholar] [CrossRef]
- Xing, Q.G.; Tosi, L.G.; Braga, F.; Gao, X.L.; Gao, M. Interpreting the progressive eutrophication behind the world’s largest macroalgal blooms with water quality and ocean color data. Nat. Hazards 2015, 78, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.J.; Liu, F.; Shan, T.F.; Xu, N.; Zhang, Z.H.; Gao, S.Q.; Chopin, T.; Sun, S. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar. Environ. Res. 2010, 69, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, F.; Liu, X.F.; Shi, S.T.; Bi, Y.P.; Moejes, F.W. Comparative transcriptome analysis of four co-occurring Ulva species for understanding the dominance of Ulva prolifera in the Yellow Sea green tides. J. Appl. Phycol. 2019, 31, 3303–3316. [Google Scholar] [CrossRef]
- Fan, X.; Xu, D.; Wang, Y.T.; Zhang, X.W.; Cao, S.N.; Mou, S.L.; Ye, N.H. The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera: Implications for the explosion in green tides. J. Appl. Phycol. 2014, 26, 537–544. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhu, L.; Zhou, B.; Tang, X.X. Comparative studies on the ecophysiological differences of two green tide macroalgae under controlled laboratory conditions. PLoS ONE 2012, 7, e38245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, X.X.; Xiao, J.; Pang, M.; Zhang, X.L.; Wang, Z.L.; Miao, J.W.; Li, Y. Effect of the large-scale green tide on the species succession of green macroalgal micro-propagules in the coastal waters of Qingdao, China. Mar. Pollut. Bull. 2018, 126, 549–556. [Google Scholar] [CrossRef]
- Keesing, J.K.; Liu, D.Y.; Fearns, P.; Garcia, R. Inter- and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Pollut. Bull. 2011, 62, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.G.; An, D.Y.; Zheng, X.Y.; Wei, Z.N.; Wang, X.H.; Li, L.; Tian, L.Q.; Chen, J. Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for managing the disaster of macroalgal blooms. Remote Sens. Environ. 2019, 231, 111279. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, H.Y.; Cheng, Y.C.; Zhang, S.S.; Zhang, W. Monitoring and tracking the green tide in the Yellow Sea with satellite imagery and trajectory model. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 5172–5181. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Fang, Z.X.; Wu, Y.C.; Liang, J.F.; Song, X. Multi-source evidence data fusion approach to detect daily distribution and coverage of Ulva prolifera in the Yellow Sea, China. IEEE Access 2019, 7, 115214–115228. [Google Scholar] [CrossRef]
- Xing, Q.G.; Hu, C.M.; Tang, D.L.; Tian, L.Q.; Tang, S.L.; Wang, X.H.; Lou, M.J.; Gao, X.L. World’s largest macroalgal blooms altered phytoplankton biomass in Summer in the Yellow Sea: Satellite observations. Remote Sens. 2015, 7, 12297–12313. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yu, D.F.; Cheng, W.T.; Gai, Y.Y.; Yao, H.P.; Yang, L. Monitoring multi-temporal and spatial variations of water transparency in the Jiaozhou Bay using GOCI data. Mar. Pollut. Bull. 2022, 180, 113815. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Zhang, J.; Cui, T.W.; Gong, J.L.; Liu, R.J.; Chen, X.Y.; Liang, X.J. Remote sensing estimation of the biomass of floating Ulva prolifera and analysis of the main factors driving the interannual variability of the biomass in the Yellow Sea. Mar. Pollut. Bull. 2019, 140, 330–340. [Google Scholar] [CrossRef]
- Xing, Q.G.; Wu, L.L.; Tian, L.Q.; Cui, T.W.; Li, L.; Kong, F.Z.; Gao, X.L.; Wu, M.Q. Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign. Mar. Pollut. Bull. 2018, 133, 150–156. [Google Scholar] [CrossRef]
- Liang, T.T.; Ke, L.N.; Fan, J.C.; Zhao, J.H. Green tide information extraction based on multi-source remote sensing data. In Proceedings of the 2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, 14–16 August 2020; pp. 460–465. [Google Scholar] [CrossRef]
- Jin, X.F.; Wan, J.H.; Hu, W.; Song, Y.; Lu, B. Retrieval of green tide concentration and interannual variation analysis in Yellow Sea based on multi-source remote sensing monitoring. In Proceedings of the 2020 Global OCEANS Singapore—U.S. Gulf Coast Conference, Biloxi, MS, USA, 5–30 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, W.T.; Ma, Q.; Huang, J.X.; Feng, Q.L.; Zhao, Y.Y.; Guo, H.; Chen, B.A.; Li, C.X.; Zhang, Y.X. Remote sensing monitoring of grasslands based on adaptive feature fusion with multi-source data. Remote Sens. 2022, 14, 750. [Google Scholar] [CrossRef]
- Wang, X.H.; Xing, Q.G.; An, D.Y.; Meng, L.; Zhang, X.Y.; Jiang, B.; Liu, H.L. Effects of spatial resolution on the satellite observation of floating macroalgae blooms. Water 2021, 13, 1761. [Google Scholar] [CrossRef]
- Liu, J.C.; Liu, J.Q.; Ding, J.; Lu, Y.C. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements. Haiyang Xuebao 2022, 44, 1–11. (In Chinese) [Google Scholar]
- Gao, L.; Li, X.F.; Kong, F.Z.; Yu, R.C.; Guo, Y.; Ren, Y.B. AlgaeNet: A deep-learning framework to detect floating green algae from optical and SAR imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 2782–2796. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Fang, Z.X.; Zhang, Y.; Song, Z.L. Bidirectional spatio-temporal association between the observed results of Ulva prolifera green tides in the Yellow Sea and the social response in Sina Weibo. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5988–6008. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L. Numerical study on the massive outbreak of the Ulva prolifera green tides in the southwestern Yellow Sea in 2021. J. Mar. Sci. Eng. 2021, 9, 1167. [Google Scholar] [CrossRef]
- Yu, H.F.; Wang, C.Y.; Li, J.H.; Sui, Y. Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 10598–10613. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chu, J.L.; Tan, M.; Shao, F.J.; Sui, Y.; Li, S.J. An automatic detection of green tide using multi-windows with their adaptive threshold from landsat TM/ETM plus image. Acta Oceanol. Sin. 2017, 36, 106–114. [Google Scholar] [CrossRef]
- Ji, H.R.; Tian, L.Q.; Li, J.; Tong, R.Q.; Guo, Y.L.; Zeng, Q. Spatial–spectral fusion of HY-1C COCTS/CZI data for coastal water remote sensing using deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 1693–1704. [Google Scholar] [CrossRef]
- Lou, P.Q.; Fu, B.L.; He, H.C.; Chen, J.J.; Wu, T.H.; Lin, X.C.; Liu, L.L.; Fan, D.L.; Deng, T.F. An effective method for canopy chlorophyll content estimation of marsh vegetation based on multiscale remote sensing data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5311–5325. [Google Scholar] [CrossRef]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.G.; Bai, Y.; Chen, P.P.; Ding, Z.H.; Xu, L. Research of spectrum characteristics of enteromorpha in Qingdao offshore. Mar. Sci. 2015, 37, 87–91. (In Chinese) [Google Scholar]
- An, D.Y.; Yu, D.F.; Zheng, X.Y.; Zhou, Y.; Meng, L.; Xing, Q.G. Monitoring the dissipation of the floating green macroalgae blooms in the Yellow Sea (2007–2020) on the basis of satellite remote sensing. Remote Sens. 2021, 13, 3811. [Google Scholar] [CrossRef]
- Li, L.; Zheng, X.Y.; Wei, Z.N.; Zou, J.Q.; Xing, Q.G. A spectral-mixing model for estimating sub-pixel coverage of sea-surface floating macroalgae. Atmos. Ocean 2018, 56, 296–302. [Google Scholar] [CrossRef]
- Cui, T.W.; Liang, X.J.; Gong, J.L.; Tong, C.; Xiao, Y.F.; Liu, R.J.; Zhang, X.; Zhang, J. Assessing and refining the satellite-derived massive green macro-algal coverage in the Yellow Sea with high resolution images. ISPRS J. Photogramm. Remote Sens. 2018, 144, 315–324. [Google Scholar] [CrossRef]
- An, D.Y.; Xing, Q.G.; Yu, D.F.; Pan, S.Q. A simple method for estimating macroalgae area under clouds on MODIS imagery. Front. Mar. Sci. 2022, 9, 995731. [Google Scholar] [CrossRef]
- Song, D.B.; Gao, Z.Q.; Xu, F.X.; Zheng, X.Y.; Ai, J.Q.; Chen, M.S. Remote sensing of the Yellow Sea green tide in 2014 based on GOCI. In Proceedings of the 2017 Conference on Remote Sensing and Modeling of Ecosystems for Sustainability XIV, San Diego, CA, USA, 9 August 2017; p. 104050R. [Google Scholar] [CrossRef]
- Ma, Y.F.; Wong, K.P.; Tsou, J.Y.; Zhang, Y.Z. Investigating spatial distribution of green-tide in the Yellow Sea in 2021 using combined optical and SAR images. J. Mar. Sci. Eng. 2022, 10, 127. [Google Scholar] [CrossRef]
- Li, D.X.; Gao, Z.Q.; Xu, F.X. Research on the dissipation of green tide and its influencing factors in the Yellow Sea based on Google Earth Engine. Mar. Pollut. Bull. 2021, 172, 112801. [Google Scholar] [CrossRef]
- Zheng, L.X.; Wu, M.Q.; Cui, Y.T.; Tian, L.; Yang, P.S.; Zhao, L.J.; Xue, M.Y.; Liu, J.Y. What causes the great green tide disaster in the South Yellow Sea of China in 2021? Ecol. Indic. 2022, 140, 108988. [Google Scholar] [CrossRef]
Satellite | Sensor | Year | Date |
---|---|---|---|
HY-1C | CZI | 2020 | 21 May, 27 May, 8 June, 20 July |
2021 | 22 May, 25 May, 28 May, 6 June, 20 June, 21 June, 2 July, 9 July, 17 July, 18 July, 21 July, 5 August, 8 August, 11 August, 17 August | ||
2022 | 15 June, 18 June, 24 June, 15 July, 24 July, 2 August | ||
GF-1 | WFV | 2020 | 26 May, 4 June, 15 July |
2021 | 25 May, 20 June, 21 June | ||
2022 | 22 May, 18 July | ||
Sentinel-2A/B | MSI | 2020 | 22 June |
2021 | 2 July, 17 July, 1 August, 11 August | ||
2022 | 7 June |
Sensor | Acquisition Time (UTC) | Resolution/m | ||
---|---|---|---|---|
Date | Sensing Start | Sensing Stop | ||
Sentinel-2 MSI | 2/7/2021 | 02:35:49 | 02:35:49 | 10 |
17/7/2021 | 02:35:51 | 02:35:51 | ||
11/8/2021 | 02:35:49 | 02:35:49 | ||
HY-1C CZI | 2/7/2021 | 03:12:21 | 03:14:49 | 50 |
17/7/2021 | 03:11:37 | 03:13:18 | ||
11/8/2021 | 02:37:55 | 02:40:24 |
Sensor | Acquisition Time (UTC) | Resolution/m | ||
---|---|---|---|---|
Date | Sensing Start | Sensing Stop | ||
GF-1 WFV | 25/5/2021 | 02:15:51 | 02:16:18 | 16 |
20/6/2021 | 02:46:56 | 02:47:24 | ||
21/6/2021 | 03:10:18 | 03:10:36 | ||
HY-1C CZI | 25/5/2021 | 02:41:31 | 02:43:59 | 50 |
20/6/2021 | 03:13:43 | 03:15:23 | ||
21/6/2021 | 02:40:23 | 02:42:52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Fan, B.; Yu, D.; Fan, Y.; An, D.; Pan, S. Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing. Remote Sens. 2023, 15, 157. https://doi.org/10.3390/rs15010157
Wang Z, Fan B, Yu D, Fan Y, An D, Pan S. Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing. Remote Sensing. 2023; 15(1):157. https://doi.org/10.3390/rs15010157
Chicago/Turabian StyleWang, Zhuyi, Bowen Fan, Dingfeng Yu, Yanguo Fan, Deyu An, and Shunqi Pan. 2023. "Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing" Remote Sensing 15, no. 1: 157. https://doi.org/10.3390/rs15010157
APA StyleWang, Z., Fan, B., Yu, D., Fan, Y., An, D., & Pan, S. (2023). Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing. Remote Sensing, 15(1), 157. https://doi.org/10.3390/rs15010157