Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = HVDC-LCC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3905 KiB  
Review
Advances in HVDC Systems: Aspects, Principles, and a Comprehensive Review of Signal Processing Techniques for Fault Detection
by Leyla Zafari, Yuan Liu, Abhisek Ukil and Nirmal-Kumar C. Nair
Energies 2025, 18(12), 3106; https://doi.org/10.3390/en18123106 - 12 Jun 2025
Viewed by 652
Abstract
This paper presents a comprehensive review of High-Voltage Direct-Current (HVDC) systems, focusing on their technological evolution, fault characteristics, and advanced signal processing techniques for fault detection. The paper traces the development of HVDC links globally, highlighting the transition from mercury-arc valves to Insulated [...] Read more.
This paper presents a comprehensive review of High-Voltage Direct-Current (HVDC) systems, focusing on their technological evolution, fault characteristics, and advanced signal processing techniques for fault detection. The paper traces the development of HVDC links globally, highlighting the transition from mercury-arc valves to Insulated Gate Bipolar Transistor (IGBT)-based converters and showcasing operational projects in technologically advanced countries. A detailed comparison of converter technologies including line-commutated converters (LCCs), Voltage-Source Converters (VSCs), and Modular Multilevel Converters (MMCs) and pole configurations (monopolar, bipolar, homopolar, and MMC) is provided. The paper categorizes HVDC faults into AC, converter, and DC types, focusing on their primary locations and fault characteristics. Signal processing methods, including time-domain, frequency-domain, and time–frequency-domain approaches, are systematically compared, supported by relevant case studies. The review identifies critical research gaps in enhancing the reliability of fault detection, classification, and protection under diverse fault conditions, offering insights into future advancements in HVDC system resilience. Full article
Show Figures

Figure 1

18 pages, 2913 KiB  
Article
Transient Overvoltage Prediction Method for Renewable Energy Stations via Knowledge-Embedded Enhanced Deep Neural Network
by Guangyao Wang, Jun Liu, Jiacheng Liu, Yuting Li, Tianxiao Mo and Sheng Ju
Energies 2025, 18(5), 1090; https://doi.org/10.3390/en18051090 - 24 Feb 2025
Cited by 1 | Viewed by 526
Abstract
When a line-commutated converter–high-voltage direct current (LCC-HVDC) transmission system with large-scale integration of renewable energy encounters HVDC-blocking events, the sending-end power system is prone to transient overvoltage (TOV) risks. Renewable energy units that are connected via power electronic devices are susceptible to large-scale [...] Read more.
When a line-commutated converter–high-voltage direct current (LCC-HVDC) transmission system with large-scale integration of renewable energy encounters HVDC-blocking events, the sending-end power system is prone to transient overvoltage (TOV) risks. Renewable energy units that are connected via power electronic devices are susceptible to large-scale cascading disconnections due to electrical endurance and insulation limitations when subjected to an excessively high TOV, which poses a serious threat to the safe and stable operation of the system. Therefore, the prediction of TOV at renewable energy stations (RES) under DC blocking (DCB) scenarios is crucial for developing strategies for the high-voltage ride-through of renewable energy sources and ensuring system stability. In this paper, an approximate analytical expression for the TOV at RES under DCB fault conditions is firstly derived, based on a simplified equivalent circuit of the sending-end system that includes multiple DC transmission lines and RES, which can take into consideration the multiple renewable station short-circuit ratio (MRSCR). Building on this, a knowledge-embedded enhanced deep neural network (KEDNN) approach is proposed for predicting the RES’s TOV for complex power systems. By incorporating theoretical calculation values of the TOV into the input features, the task of the deep neural network (DNN) shifts from mining relationships within large datasets to revealing the correlation patterns between theoretical calculations and real values, thereby improving the robustness of the prediction model in cases of insufficient training data and irrational feature construction. Finally, the proposed method is tested on a real-world regional power system in China, and the results validate the effectiveness of the proposed method. The approximate analytical expression for the TOV at RES and the KEDNN-based TOV prediction method proposed in this paper can provide valuable references for scholars and engineers working in the field of power system operation and control, particularly in the areas of overvoltage theoretical calculation and mitigation. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

21 pages, 6063 KiB  
Article
Characteristics and Protection Methods for Double-Circuit HVDC Transmission Lines on the Same Tower Considering DC Line-Touching Faults
by Yan Tao, Junchao Zheng, Xiangping Kong, Lei Gao, Jinjiao Lin and Chenqing Wang
Electronics 2024, 13(24), 4924; https://doi.org/10.3390/electronics13244924 - 13 Dec 2024
Viewed by 1292
Abstract
In heavily loaded regional power grids, some AC transmission lines are confronting escalating pressures due to excessive short-circuit currents. To optimize AC channels, most research advocates for retrofitting existing AC lines into multi-line-commutated converter-based high-voltage direct current (LCC-HVDC) lines. However, there is a [...] Read more.
In heavily loaded regional power grids, some AC transmission lines are confronting escalating pressures due to excessive short-circuit currents. To optimize AC channels, most research advocates for retrofitting existing AC lines into multi-line-commutated converter-based high-voltage direct current (LCC-HVDC) lines. However, there is a contradiction between limited land area for AC stations and the relatively large footprint of passive filters in LCC-HVDC; this paper introduces self-adapted LCC (SLCC) by replacing passive filter groups with a static var generator (SVG). Secondly, the reactive power compensation, harmonic filtering control methods of SVGs, and operation characteristics of the SLCC system are explored, and the harmonics of the grid-side current are reduced by nearly 14.6%. Then, to fill the gap of previous studies on solely AC or AC-DC line touching, inspired by emerging DC line-touching risks in double-circuit (LCC and SLCC) lines on the same tower, the equivalent models are formulated to elucidate the evolution mechanisms of voltage/current and extract fault features in various line-touching faults; it finds that the longitudinal differential current during line-touching faults can be capitalized. Based on the current feature, an effective protection algorithm tailored for the identification of DC line-touching faults is proposed. Finally, simulations are conducted to validate the efficacy of proposed control and protect methods, demonstrating the potential to enhance the reliability of AC to DC conversion projects. Full article
Show Figures

Figure 1

18 pages, 8680 KiB  
Article
An Improved Prevention Strategy Based on Fault Probability Detection for Commutation Failure in Line-Commutated Converter-Based High-Voltage Direct Current Transmission Systems
by Ying Xu, Yi Zou, Lei Liu, Xiaopeng Li, Yufei Teng and Zijian Gao
Electronics 2024, 13(19), 3804; https://doi.org/10.3390/electronics13193804 - 25 Sep 2024
Viewed by 1252
Abstract
Commutation failure (CF) is one of the most prevalent events in line-commutated converter-based high-voltage direct current (LCC–HVDC) systems. The frequent occurrence of CF poses a significant threat to the safe and stable operation of power grids. The commutation failure prevention control (CFPREV) is [...] Read more.
Commutation failure (CF) is one of the most prevalent events in line-commutated converter-based high-voltage direct current (LCC–HVDC) systems. The frequent occurrence of CF poses a significant threat to the safe and stable operation of power grids. The commutation failure prevention control (CFPREV) is the main method to prevent the initial CF, which relies on the detection of a drop in AC voltage. However, its slow fault detection hinders the rapid response of post-fault control, thereby affecting the effectiveness of CF suppression. Therefore, this paper proposes a fast fault detection method based on Bayesian theory. This algorithm can calculate the conditional probability of each variable in a given dataset, effectively mitigating the impact of noise and errors in data to yield precise and dependable results. By processing the collected continuous data and calculating the probability of the existence of a fault point, it determines whether a fault occurs. Based on this method, an improved prevention strategy is proposed, which can effectively enhance the CF resilience of LCC–HVDC systems under AC faults. Finally, using the power systems computer-aided design (PSCAD) platform, the accuracy of the fault probability detection algorithm was verified based on actual engineering data. The effectiveness of the proposed strategy was further validated under three typical fault scenarios, leading to significant improvements: a 64.12% reduction in detection time for three-phase grounding faults, a 69.88% decrease for single line-to-ground faults, and a 36.84% improvement in phase-to-phase fault detection. Additionally, the overall performance of the strategy was thoroughly assessed through extensive simulations covering various fault cases within a selected range of typical faults. The simulations demonstrated the superiority of the proposed strategy in CF mitigation, with a significant reduction in incidents from 89 to 34 out of 150 tested scenarios. This highlights the robustness and reliability of the proposed strategy. Full article
(This article belongs to the Special Issue Control of Power Quality and System Stability)
Show Figures

Figure 1

16 pages, 5380 KiB  
Article
Research on the Power Coordinate Control Strategy between a CLCC-HVDC and a VSC-HVDC during the AC Fault Period
by Jingbo Zhao, Ke Xu and Wenbo Li
Energies 2024, 17(17), 4478; https://doi.org/10.3390/en17174478 - 6 Sep 2024
Viewed by 1013
Abstract
The underlying cause of commutation failures in traditional line-commutated converter (LCC) high-voltage direct-current (HVDC) transmission technology lies in the sensitivity of the thyristor devices, which are prone to turning off, thereby restoring the forward circuit breaker capability. This paper presents a coordination strategy [...] Read more.
The underlying cause of commutation failures in traditional line-commutated converter (LCC) high-voltage direct-current (HVDC) transmission technology lies in the sensitivity of the thyristor devices, which are prone to turning off, thereby restoring the forward circuit breaker capability. This paper presents a coordination strategy between a controllable line-commutated converter (CLCC) and a voltage-sourced converter (VSC) and delves into the fault characteristics specific to CLCC damage. Our research focuses on CLCC topology, where fully controlled devices are incorporated to manage the thyristor’s turn-off time, ensuring its successful deactivation. This approach serves as a fundamental preventative measure against commutation faults. Furthermore, we employ a coordination strategy between the VSC and the CLCC to enhance the recovery time efficiency of the AC system. This strategy is simulated and validated using PSCAD software, and the results confirm its effectiveness in fault tolerance and AC system recovery. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 2657 KiB  
Article
Evaluation Approach and Controller Design Guidelines for Subsequent Commutation Failure in Hybrid Multi-Infeed HVDC System
by Hui Fang, Hongji Xiang, Zhiwei Lei, Junpeng Ma, Zhongyi Wen and Shunliang Wang
Electronics 2024, 13(17), 3456; https://doi.org/10.3390/electronics13173456 - 30 Aug 2024
Viewed by 862
Abstract
Due to the difference in output characteristics between the line-commutated converter-based high-voltage direct current (LCC-HVDC) and voltage-source converter-based high-voltage direct current (VSC-HVDC), the hybrid multi-infeed high-voltage direct current (HMIDC) presents complex coupling characteristics. As the AC side is disturbed, the commutation failure (CF) [...] Read more.
Due to the difference in output characteristics between the line-commutated converter-based high-voltage direct current (LCC-HVDC) and voltage-source converter-based high-voltage direct current (VSC-HVDC), the hybrid multi-infeed high-voltage direct current (HMIDC) presents complex coupling characteristics. As the AC side is disturbed, the commutation failure (CF) occurring on the LCC side is the main factor threatening the safe operation of the system. In this paper, the simplified equivalent network model of HMIDC is established by analyzing the output characteristics of VSC and LCC. Hereafter, based on the derived model and the control system of LCC-HVDC, the dynamic equations of the extinction angle are deduced. Consequently, by applying the phase portrait method, the causes of CF occurring in the HMIDC system as well as the impacts of control parameters on the transient stability are revealed. Furthermore, the stabilization boundaries for the reference value of the DC voltage are obtained via the above analysis. Finally, the theoretical analysis is verified by the simulations in the PSCAD/EMTDC. Full article
Show Figures

Figure 1

15 pages, 1980 KiB  
Article
Optimal Multiple Wind Power Transmission Schemes Based on a Life Cycle Cost Analysis Model
by Xiaotong Ji, Dan Liu, Heng Luo, Ping Xiong, Daojun Tan, Pan Hu, Hengrui Ma and Bo Wang
Processes 2024, 12(8), 1594; https://doi.org/10.3390/pr12081594 - 30 Jul 2024
Viewed by 1768
Abstract
Due to the high cost and complex challenges faced by offshore wind power transmission, economic research into offshore wind power transmission can provide a scientific basis for optimal decision-making on offshore wind power projects. Based on the analysis of the topology structure and [...] Read more.
Due to the high cost and complex challenges faced by offshore wind power transmission, economic research into offshore wind power transmission can provide a scientific basis for optimal decision-making on offshore wind power projects. Based on the analysis of the topology structure and characteristics of typical wind power transmission schemes, this paper compares the economic benefits of five different transmission schemes with a 3.6 GW sizeable onshore wind farm as the primary case. Research includes traditional high voltage alternating current (HVAC), voltage source converter high voltage direct current transmission (VSC-HVDC), a fractional frequency transmission system (FFTS), and two hybrid DC (MMC-LCC and DR-MMC) transmission scenarios. The entire life cycle cost analysis model (LCCA) is employed to thoroughly assess the cumulative impact of initial investment costs, operational expenses, and eventual scrap costs on top of the overall transmission scheme’s total cost. This comprehensive evaluation ensures a nuanced understanding of the financial implications across the project’s entire lifespan. In this example, HVAC has an economic advantage over VSC-HVDC in the transmission distance range of 78 km, and the financial range of a FFTS is 78–117 km. DR-MMC is better than the flexible DC delivery scheme in terms of transmission capacity, scalability, and offshore working platform construction costs in the DC delivery scheme. Therefore, the hybrid DC delivery scheme of offshore wind power composed of multi-type converters has excellent application prospects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 11984 KiB  
Article
Stability Analysis via Impedance Modelling of a Real-World Wind Generation System with AC Collector and LCC-Based HVDC Transmission Grid
by Muhammad Arshad, Omid Beik, Muhammad Owais Manzoor and Mahzad Gholamian
Electronics 2024, 13(10), 1917; https://doi.org/10.3390/electronics13101917 - 14 May 2024
Cited by 5 | Viewed by 1619
Abstract
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission [...] Read more.
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission grid rated at ±250 kV. The HVDC line transfers a total power of 0.5 GW, while both the HVDC rectifier and inverter substations use line-commuted converters (LCCs). The LCC-based rectifier adopts constant DC current control to regulate HVDC current, while the inverter operates in constant extinction angle control mode to maintain a fixed HVDC voltage. This paper proposes a frequency scan-based approach to obtain the d–q impedance model of (i) BWGS AC collector grids with Type 4 wind turbines that use permanent magnet synchronous generators (PMSGs) and two fully rated converters, and (ii) an LCC-HVDC system. The impedance frequency response of the BWGS is acquired by exciting the AC collector grid and LCC-HVDC with multi-sine voltage perturbations during its steady-state operation. The resulting voltage and current signals are subjected to a fast Fourier transform (FFT) to extract frequency components. By analyzing the impedance frequency response measurement of BWGS, a linear time–invariant (LTI) representation of its dynamics is obtained using the vector fitting (VF) technique. Finally, a Bode plot is applied, considering the impedance of the BWGS and grid to perform stability analyses. This study examines the influence of the short circuit ratio (SCR) of the grid and the phase lock loop (PLL) frequency bandwidth on the stability of the overall system. The findings provide valuable insights for the design and verification of an AC collector and LCC-based HVDC transmission systems. The findings suggest that the extraction of the impedance model of a real-world wind farm, achieved through frequency scanning and subsequent representation as an LTI system using VF, is regarded as a robust, suitable, and accurate methodology for investigating the dynamics, unstable operating conditions, and control interaction of the wind farm and LCC-HVDC system with the AC grid. Full article
(This article belongs to the Special Issue A Mass Adoption of Power Electronics in Wind Power System)
Show Figures

Figure 1

17 pages, 7586 KiB  
Article
Experimental and Simulation Studies on Stable Polarity Reversal in Aged HVDC Mass-Impregnated Cables
by Sun-Jin Kim, Seol Lee, Woo-Sung Choi and Bang-Wook Lee
Energies 2024, 17(10), 2352; https://doi.org/10.3390/en17102352 - 13 May 2024
Cited by 1 | Viewed by 1423
Abstract
Mass-impregnated (MI) cables have been used for many years as cables in high-voltage direct current (HVDC) systems. In line commutated converter (LCC) HVDC systems, polarity reversal for power flow control can induce significant electrical stress on MI cables. Furthermore, the mass oil and [...] Read more.
Mass-impregnated (MI) cables have been used for many years as cables in high-voltage direct current (HVDC) systems. In line commutated converter (LCC) HVDC systems, polarity reversal for power flow control can induce significant electrical stress on MI cables. Furthermore, the mass oil and kraft paper comprising the impregnated insulation have significantly different coefficients of thermal expansion. Load fluctuations in the cable lead to expansion and contraction of the mass, creating pressure within the insulation and causing redistribution of the impregnant. During this process, shrinkage cavities can form within the butt gaps. Since the dielectric strength of the cavities is lower than that of the surrounding impregnation, cavitation phenomena in impregnated paper insulation are considered a factor in degrading insulation performance. Consequently, this study analyzes the electrical conductivity of thermally aged materials and investigates the transient electric field characteristics within the cable. Additionally, it closely analyzes the formation and dissolution of cavities in MI cables during polarity reversal based on a numerical model of pressure behavior in porous media. The conductivity of the impregnated paper indicates that it has excellent resistance to thermal degradation. Simulation results for various load conditions highlight that the interval of load-off time and the magnitude of internal pressure significantly influence the cavitation phenomenon. Lastly, the study proposes stable system operation methods to prevent cavitation in MI cables. Full article
(This article belongs to the Collection Featured Papers in Electrical Power and Energy System)
Show Figures

Figure 1

20 pages, 2614 KiB  
Article
Power Flow Calculation for AC/DC Power Systems with Line-Commutated Converter–Modular Multilevel Converter (LCC-MMC) Hybrid High-Voltage Direct Current (HVDC) Based on the Holomorphic Embedding Method
by Yongjian Luo, Chengxi Liu, Zaiyu He, Youjin Jiang and Qi Chen
Electronics 2024, 13(10), 1877; https://doi.org/10.3390/electronics13101877 - 10 May 2024
Cited by 2 | Viewed by 1598
Abstract
To harness the strengths and mitigate the limitations of line-commutated converter (LCC) and modular multilevel converter (MMC) HVDC systems, the LCC-MMC hybrid HVDC system has been developed. This paper proposes a holomorphic embedding (HE)-based power flow calculation method for AC/DC power systems with [...] Read more.
To harness the strengths and mitigate the limitations of line-commutated converter (LCC) and modular multilevel converter (MMC) HVDC systems, the LCC-MMC hybrid HVDC system has been developed. This paper proposes a holomorphic embedding (HE)-based power flow calculation method for AC/DC power systems with the LCC-MMC hybrid HVDC system. Firstly, the methodology involves establishing the mathematical model of the LCC-MMC hybrid HVDC system and its control modes. Subsequently, the HE formulation for the constructed LCC-MMC model is derived using the HE method. The proposed method simplifies the HE formulation using substitute variables, making it adaptable to various control modes. The designed HE formulation facilitates the derivation of the germ solution and the calculation of high-order power series coefficients. A sequential solution flow chart compatible with AC power flow algorithms is constructed to enhance the practicality of the HE method for real-world large-scale systems. The accuracy and effectiveness of the proposed method are verified through numerical tests on the modified IEEE 14-bus, IEEE 57-bus, and large 2383-bus system. The proposed method provides a reliable and efficient solution for power flow analysis in hybrid HVDC systems. Full article
Show Figures

Figure 1

16 pages, 2022 KiB  
Article
An Improved Suppression Method of AC Transient Overvoltage for Line Commuted Converter Based High Voltage Direct Current Considering AC-DC System Coupling
by Jinxin Ouyang, Yujie Chen, Xinyu Pan and Yanbo Diao
Electronics 2024, 13(10), 1844; https://doi.org/10.3390/electronics13101844 - 9 May 2024
Cited by 2 | Viewed by 1230
Abstract
Commutation failures in line commuted converter-based high voltage direct current (LCC-HVDC) transmission systems leads to an increase in the converter bus voltage of the rectifier station, thus resulting in AC transient overvoltage in the sending-end grid. The transient overvoltage could lead to the [...] Read more.
Commutation failures in line commuted converter-based high voltage direct current (LCC-HVDC) transmission systems leads to an increase in the converter bus voltage of the rectifier station, thus resulting in AC transient overvoltage in the sending-end grid. The transient overvoltage could lead to the disconnection of renewable energy generation and threaten the stable operation of the sending-end grid. However, the influences of the coupling between AC and DC systems caused by the interaction between the active and reactive power of the sending-end grid, the AC bus voltage of the rectifier station, and the DC current are ignored. The AC transient overvoltage cannot be accurately suppressed. Therefore, in this study, the transient voltage characteristics of the rectifier station under a commutation failure of the inverter station are analyzed. The influence of LCC-HVDC control on the AC bus voltage of a rectifier station through the active and reactive power of the rectifier station is analyzed. A dynamic model of the AC bus voltage of a rectifier station under an AC-DC system coupling is established. The calculation method of the command value of the DC current of the rectifier station is proposed by a predictive control model, and an improved suppression method for AC transient overvoltage is proposed. The case studies show that the accuracy and effectiveness of the suppression of AC transient overvoltage are improved by considering the coupling between AC and DC systems. Full article
Show Figures

Figure 1

17 pages, 3753 KiB  
Article
Research on Fault Identification of Hybrid Multi-Feed High-Voltage Direct Current System Based on Line Commutated Converter and Voltage Source Converter
by Ting Wang, Kun Chen, Long’en Zhang, Xingyang Hu, Hengxuan Li and Pangqi Ye
Energies 2024, 17(9), 2215; https://doi.org/10.3390/en17092215 - 4 May 2024
Cited by 2 | Viewed by 1483
Abstract
With the rapid development of voltage source converter (VSC) and line commutated converter (LCC) technology and the relative concentration of power and load, the inverter station of the flexible DC system is fed into the same AC bus with the conventional DC rectifier [...] Read more.
With the rapid development of voltage source converter (VSC) and line commutated converter (LCC) technology and the relative concentration of power and load, the inverter station of the flexible DC system is fed into the same AC bus with the conventional DC rectifier station, and the high-voltage direct current (HVDC) parallel hybrid feed system is formed in structure. As the electrical distance between the converter stations is very close, when a fault occurs in the near area, the current on the AC wiring on the VSC side will fluctuate greatly, resulting in the misoperation of the AC wiring protection. For this reason, this paper proposes a fault identification method based on VSC/LCC hybrid multi-fed HVDC system, which discriminates the fault and outputs the protection signal according to the protection criterion, and logically judges the combination of the output protection signal to identify the fault type. The simulation results show that the method can identify all kinds of faults of hybrid multi-feed DC system and solve the problem of protection misoperation of the hybrid multi-feed DC system. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

15 pages, 1999 KiB  
Article
Overvoltage Suppression Strategy of LCC-HVDC Delivery System Based on Hydropower Phase Control Participation
by Xiaorong Wu, Bin Cao, Huabo Shi, Peng Shi, Yuhong Wang, Jianquan Liao, Yuanqi Li and Weigang Zeng
Electronics 2024, 13(7), 1223; https://doi.org/10.3390/electronics13071223 - 26 Mar 2024
Cited by 1 | Viewed by 1005
Abstract
In a high-voltage direct current (HVDC) transmission system, commutation failure at the receiving end may lead to transient overvoltage at the sending end converter bus of the weak alterative current (AC) system. Firstly, the principle calculation method of overvoltage generation at the sending [...] Read more.
In a high-voltage direct current (HVDC) transmission system, commutation failure at the receiving end may lead to transient overvoltage at the sending end converter bus of the weak alterative current (AC) system. Firstly, the principle calculation method of overvoltage generation at the sending end after commutation failure is analyzed. Combined with the output characteristics of the hydroelectric excitation system, a coordinated control strategy for hydroelectric and DC systems is proposed. Since the voltage and current values at the DC outlet of the rectifier side change first after a fault occurs at the receiving end, the relationship equation between DC voltage and AC bus voltage is derived and it is used as an input signal to construct additional excitation control for hydropower stations. The proposed strategy is verified by establishing a simulation hydrogen–wind–solar model bundled via a DC sending system in PSCAD/EMTDC. The simulation results illustrate that the transient overvoltage suppression rates are all more than 35%, and the maximum is 38.53%. The proposed strategy can reduce the overvoltage by 0.126 p.u. compared with the International Council on Large Electric Systems (CIGRE) standard control strategy. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

20 pages, 3317 KiB  
Article
The Strategy of Continuous Commutation Failure Suppression by Combining Turn-off Angle Compensation and Dynamic Nonlinear VDCOL
by Hewei Liu and Guobin Jin
Sustainability 2024, 16(5), 2145; https://doi.org/10.3390/su16052145 - 5 Mar 2024
Viewed by 1301
Abstract
In recent years, with the continuous growth in China’s economy, the continuous advancement of urbanization and industrialization, the contradiction between rapid economic development and the continuous reduction in traditional fossil energy reserves such as coal, oil, and natural gas, the continuous aggravation of [...] Read more.
In recent years, with the continuous growth in China’s economy, the continuous advancement of urbanization and industrialization, the contradiction between rapid economic development and the continuous reduction in traditional fossil energy reserves such as coal, oil, and natural gas, the continuous aggravation of environmental pollution has become increasingly prominent. In this era, clean energy power generation technologies such as hydropower, wind power, and solar power generation, which have the advantages of renewability, environmental protection, and economy, have developed rapidly. However, wind and photovoltaic power plants are often located in remote areas, which means significant losses in the transmission process. High-voltage direct current (HVDC) transmission technology becomes the best choice to solve this problem. The HVDC transmission system based on a grid commutator is widely used in China’s AC-DC hybrid power grid. When an AC fault occurs on the inverter side, the line-commutated converter high-voltage direct current (LCC-HVDC) system is more prone to continuous commutation failure, which brings serious harm to system operation. To better suppress the problem of continuous commutation failure on the contravariant side, this paper analyzes the mechanism of continuous commutation failure from multiple angles. The DC current command sensitivity of a voltage-dependent current order limiter (VDCOL) in the LCC-HVDC system is low, which will lead to different degrees of continuous commutation failure. In addition, the rapid rise in DC current and the drop in commutation voltage during the fault will cause the turn-off angle to drop, and the probability of continuous commutation failure of the system will increase significantly. Based on the above theoretical analysis, a new control strategy combining the dynamic compensation of the turn-off angle of a virtual inductor and the suppression of continuous commutation failure by dynamic nonlinear VDCOL is proposed. A dynamic nonlinear VDCOL control strategy is proposed for the low sensitivity of current command adjustment under conventional VDCOL control. Secondly, two concepts of virtual inductance and DC current change rate are introduced, and a control strategy based on virtual inductance is proposed to comprehensively ensure that the switching angle has sufficient commutation margin during fault recovery. Finally, based on the CIGRE standard test model in PSCAD/EMTDC, the accuracy of the correlation mechanism analysis and the effectiveness of the suppression method are verified. Full article
Show Figures

Figure 1

16 pages, 2863 KiB  
Article
LCC-HVDC Frequency Robust Control Strategy Based on System Parameter Identification in Islanded Operation Mode
by Chao Xing, Mingqun Liu, Junzhen Peng, Yuhong Wang, Jianquan Liao, Zongsheng Zheng, Shilin Gao and Chunsheng Guo
Electronics 2024, 13(5), 951; https://doi.org/10.3390/electronics13050951 - 1 Mar 2024
Cited by 2 | Viewed by 1436
Abstract
To enhance the stability of the frequency at the sending terminal of the HVDC island during operation, a novel DC supplemental frequency robust controller is proposed in this paper. The proposed controller utilizes the fast controllability of a DC power supply to maintain [...] Read more.
To enhance the stability of the frequency at the sending terminal of the HVDC island during operation, a novel DC supplemental frequency robust controller is proposed in this paper. The proposed controller utilizes the fast controllability of a DC power supply to maintain system frequency stability. The identification of a low-order linearized model of the system can be obtained from a high-precision Prony algorithm based on the second derivative method (SDM). Subsequently, utilizing a robust design methodology based on linear matrix inequalities, an additional frequency robust controller is devised, striking a balance between optimal performance and robustness. This supplementary frequency robust controller exhibits a straightforward control structure with a modest order, making it readily implementable. Simulation experiments conducted within the PSCAD/EMTDC framework substantiate that the designed supplemental frequency robust controller significantly enhances the frequency stability of the sending terminal system. Furthermore, when compared with traditional proportional integral (PI) controllers, it demonstrates superior control efficacy and robustness against various types of faults under different operational modes. Even in interconnected operational modes, it continues to operate effectively. The research findings offer valuable insights for practical applications in islanded power systems. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

Back to TopTop