Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = HVDC transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1494 KiB  
Article
Advanced and Robust Numerical Framework for Transient Electrohydrodynamic Discharges in Gas Insulation Systems
by Philipp Huber, Julian Hanusrichter, Paul Freden and Frank Jenau
Eng 2025, 6(8), 194; https://doi.org/10.3390/eng6080194 - 6 Aug 2025
Abstract
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable [...] Read more.
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable and consistent modeling of the space charge density under realistic conditions. The core component of the framework is a discontinuous Galerkin method that ensures the conservative properties of the underlying hyperbolic problem. The space charge density at the electrode surface is imposed as a dynamic boundary condition via Lagrange multipliers. To increase the numerical stability and convergence rate, a homotopy approach is also integrated. For the experimental validation, a measurement concept was realised that uses a subtraction method to specifically remove the displacement current component in the signal and thus enables an isolated recording of the transient ion current with superimposed voltage stresses. The experimental results on a small scale agree with the numerical predictions and prove the quality of the model. On this basis, the framework is transferred to hybrid HVDC overhead line systems with a bipolar design. In the event of a fault, significant transient space charge densities can be seen there, especially when superimposed with new types of voltage waveforms. The framework thus provides a reliable contribution to insulation coordination in complex HVDC systems and enables the realistic analysis of electrohydrodynamic coupling effects on an industrial scale. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 291
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 284
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

21 pages, 6897 KiB  
Article
Performance Analysis of HVDC Operational Control Strategies for Supplying Offshore Oil Platforms
by Alex Reis, José Carlos Oliveira, Carlos Alberto Villegas Guerrero, Johnny Orozco Nivelo, Lúcio José da Motta, Marcos Rogério de Paula Júnior, José Maria de Carvalho Filho, Vinicius Zimmermann Silva, Carlos Andre Carreiro Cavaliere and José Mauro Teixeira Marinho
Energies 2025, 18(14), 3733; https://doi.org/10.3390/en18143733 - 15 Jul 2025
Viewed by 220
Abstract
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage [...] Read more.
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage Direct Current (HVDC) transmission systems has emerged as a promising solution, offering both economic and operational advantages. In addition to reliably meeting the electrical demand of offshore facilities, this approach enables enhanced operational flexibility due to the advanced control and regulation capabilities inherent to HVDC converter stations. Based on the use of interconnection through an HVDC link, aiming to evaluate the operation of the electrical system as a whole, this study focuses on evaluating dynamic events using the PSCAD software version 5.0.2 to analyze the direct online starting of a large induction motor and the sudden loss of a local synchronous generating unit. The simulation results are then analyzed to assess the effectiveness of both Grid-Following (GFL) and Grid-Forming (GFM) control strategies for the converters, while the synchronous generators are evaluated under both voltage regulation and constant power factor control operation, with a particular focus on system stability and restoration of normal operating conditions in the sequence of events. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

20 pages, 2412 KiB  
Article
Influence of Ion Flow Field on the Design of Hybrid HVAC and HVDC Transmission Lines with Different Configurations
by Jinyuan Xing, Chenze Han, Jun Tian, Hao Wu and Tiebing Lu
Energies 2025, 18(14), 3657; https://doi.org/10.3390/en18143657 - 10 Jul 2025
Viewed by 269
Abstract
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid [...] Read more.
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid transmission lines, the Krylov subspace methods with pre-conditioning treatment are used to solve the discretization equations. By optimizing the coefficient matrix, the calculation efficiency of the iterative process of the electric field in the time domain is greatly increased. Based on the limit of electric field, radio interference and audible noise applied in China, the main factor influencing the design of hybrid transmission lines is determined in terms of electromagnetic environment. After the ground-level electric field of transmission lines with different configurations is analyzed, the minimum height and corridor width of double-circuit 500 kV HVAC lines and one-circuit ±800 kV HVDC lines in the same corridor are obtained. The research provides valuable practical recommendations for optimal tower configurations, minimum heights, and corridor widths under various electromagnetic constraints. Full article
Show Figures

Figure 1

28 pages, 3540 KiB  
Article
Dynamic Analysis of the Interconnection of a Set of FPSO Units to an Onshore System via HVDC
by Johnny Orozco Nivelo, Carlos A. Villegas Guerrero, Lúcio José da Motta, Marcos R. de Paula Júnior, José M.d. Carvalho Filho, Alex Reis, José Carlos Oliveira, José Mauro T. Marinho, Vinicius Z. Silva and Carlos A. C. Cavaliere
Energies 2025, 18(14), 3637; https://doi.org/10.3390/en18143637 - 9 Jul 2025
Viewed by 360
Abstract
In an effort to restrict further increases in climate change, governments and companies are exploring ways to reduce greenhouse gas (GHG) emissions. In this context, the oil industry, which contributes to indirect GHG emissions, is seeking ways to develop solutions to this issue. [...] Read more.
In an effort to restrict further increases in climate change, governments and companies are exploring ways to reduce greenhouse gas (GHG) emissions. In this context, the oil industry, which contributes to indirect GHG emissions, is seeking ways to develop solutions to this issue. One such approach focuses on the connection of offshore oil production platforms to the onshore power grid via high-voltage direct current (HVDC), enabling a total or partial reduction in the number of local generators, which are generally powered by gas turbines. Therefore, this work aims to determine the technical feasibility, based on transient and dynamic stability analyses, of electrifying a system composed of six floating production storage and offloading (FPSO) units connected to a hub, which is powered by the onshore grid through submarine cables using HVDC technology. The analysis includes significant contingencies that could lead the system to undesirable operating conditions, allowing for the identification of appropriate remedial control actions. The analysis, based on real data and parameters, was carried out using PSCAD software. The results show that the modeled system is technically viable and could be adopted by oil companies. In addition to aligning with global warming mitigation goals, the proposal includes a complex system modeling approach, with the aim of enabling further study. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 980 KiB  
Article
Non-Contact Current Measurement Method Based on Field-Source Inversion for DC Rectangular Busbars
by Qishuai Liang, Zhongchen Xia, Jiang Ye, Yufeng Wu, Jie Li, Zhao Zhang, Xiaohu Liu and Shisong Li
Energies 2025, 18(14), 3606; https://doi.org/10.3390/en18143606 - 8 Jul 2025
Viewed by 271
Abstract
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints [...] Read more.
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints make the deployment of conventional sensors challenging, highlighting the urgent need for miniaturized, non-contact current measurement technologies to meet the integration requirements of smart distribution systems. This paper proposes a field-source inversion-based contactless DC measurement method for rectangular busbars. The mathematical model of the magnetic field near the surface of the DC rectangular busbar is first established, incorporating the busbar eccentricity, rotation, and geomagnetic interference into the model framework. Subsequently, a magnetic field–current inversion model is constructed, and the DC measurement of the rectangular busbar is achieved by performing an inverse calculation. The effectiveness of the proposed method is validated by both simulation studies and physical experiments. Full article
(This article belongs to the Special Issue Electrical Equipment State Measurement and Intelligent Calculation)
Show Figures

Figure 1

6 pages, 426 KiB  
Editorial
The Tyrrhenian Link: A Next-Generation Electrical Infrastructure for the Mediterranean Grid
by Antony Vasile, Davide Astolfi, Marco Pasetti, Rossano Musca, Gaetano Zizzo and Salvatore Favuzza
Energies 2025, 18(13), 3469; https://doi.org/10.3390/en18133469 - 1 Jul 2025
Viewed by 353
Abstract
The evolution of transmission systems towards decarbonized and renewable energy-based generation has brought HVDC (High Voltage Direct Current) systems to the attention of stakeholders involved in infrastructure development, planning, and component manufacturing [...] Full article
Show Figures

Figure 1

24 pages, 3715 KiB  
Article
Analysis of Renewable Energy Absorption Potential via Security-Constrained Power System Production Simulation
by Zhihui Feng, Yaozhong Zhang, Jiaqi Liu, Tao Wang, Ping Cai and Lixiong Xu
Energies 2025, 18(11), 2994; https://doi.org/10.3390/en18112994 - 5 Jun 2025
Viewed by 365
Abstract
The increasing penetration of renewable energy sources presents significant challenges for power system stability and operation. Accurately assessing renewable energy absorption capacity is essential to ensuring grid reliability while maximizing renewable integration. This paper proposes a security-constrained sequential production simulation (SPS) framework, which [...] Read more.
The increasing penetration of renewable energy sources presents significant challenges for power system stability and operation. Accurately assessing renewable energy absorption capacity is essential to ensuring grid reliability while maximizing renewable integration. This paper proposes a security-constrained sequential production simulation (SPS) framework, which incorporates grid voltage and frequency support constraints to provide a more realistic evaluation of renewable energy absorption capability. Additionally, hierarchical clustering (HC) based on dynamic time warping (DTW) and min-max linkage is employed for temporal aggregation (TA), significantly reducing computational complexity while preserving key system characteristics. A case study on the IEEE 39-bus system, integrating wind and photovoltaic generation alongside high-voltage direct current (HVDC) transmission, demonstrates the effectiveness of the proposed approach. The results show that the security-constrained SPS successfully prevents overvoltage and frequency deviations by bringing additional conventional units online. The study also highlights that increasing grid demand, both locally and through HVDC export, enhances renewable energy absorption, though adequate grid support remains crucial. Full article
Show Figures

Figure 1

25 pages, 2792 KiB  
Article
Coupling Characteristic Analysis and Coordinated Planning Strategies for AC/DC Hybrid Transmission Systems with Multi-Infeed HVDC
by Hui Cai, Mingxin Yan, Song Gao, Ting Zhou, Guoteng Wang and Ying Huang
Electronics 2025, 14(11), 2294; https://doi.org/10.3390/electronics14112294 - 4 Jun 2025
Viewed by 425
Abstract
With the increasing penetration of renewable energy, the scale of AC/DC hybrid transmission systems continues to grow, intensifying risks such as line overloads under N-1 contingencies, short-circuit current violations, and operational stability challenges arising from multi-DC coupling. This paper explores the complex coupling [...] Read more.
With the increasing penetration of renewable energy, the scale of AC/DC hybrid transmission systems continues to grow, intensifying risks such as line overloads under N-1 contingencies, short-circuit current violations, and operational stability challenges arising from multi-DC coupling. This paper explores the complex coupling characteristics between AC/DC and multi-DC systems in hybrid configurations, proposing innovative evaluation indicators for coupling properties and a comprehensive assessment scheme for multi-DC coupling degrees. To enhance system stability, coordinated planning strategies are proposed for AC/DC hybrid transmission systems with multi-infeed High-voltage direct-current (HVDC) based on the AC/DC strong–weak balance principle. Specifically, planning schemes are developed for determining the locations, capacities, and converter configurations of newly added DC lines. Furthermore, to mitigate multi-DC simultaneous commutation failure risks, we propose an AC-to-DC conversion planning scheme and a strategy for adjusting the DC system technology route based on a through comprehensive multi-DC coupling strength assessment, yielding coordinated planning strategies applicable to the AC/DC hybrid transmission systems with multi-infeed HVDC. Finally, simulation studies on the IEEE two-area four-machine system validate the feasibility of the proposed hybrid transmission grid planning strategies. The results demonstrate its effectiveness in coordinating multi-DC coupling interactions, providing critical technical support for future hybrid grid development under scenarios with high renewable energy penetration. Full article
Show Figures

Figure 1

20 pages, 5574 KiB  
Article
Corona-Generated Space Charge Characteristic in an Indoor HVDC Corona Cage Under Atmospheric Temperature Conditions
by Jules Simplice Djeumen, Hendrick Musawenkosi Langa and Trudy Sutherland
Energies 2025, 18(11), 2872; https://doi.org/10.3390/en18112872 - 30 May 2025
Viewed by 477
Abstract
This study conducted experiments and simulations to examine the DC corona-generated space charge characteristics and understand the performance of high-voltage direct current (HVDC) transmission lines. In experimental studies, various gradient temperatures are tested on a standard model of the potential HVDC transmission line [...] Read more.
This study conducted experiments and simulations to examine the DC corona-generated space charge characteristics and understand the performance of high-voltage direct current (HVDC) transmission lines. In experimental studies, various gradient temperatures are tested on a standard model of the potential HVDC transmission line in Southern Africa using an indoor corona cage. Initial tests on the single-line model of aluminium TERN conductors measured the DC corona inception voltages (CIVs) as the ambient temperature increased from 25 °C to 42 °C. A daylight ultraviolet corona camera (CoroCam8) has been used for measurements and visualisation; the measurements record temperatures for positive and negative direct current (DC) voltages. Experimental investigations are supplemented by simulations utilising the finite element method (FEM)-based software COMSOL Multiphysics. Following the creation of 3D models of the corona cage and potential conductor arrangement, the electric field distribution on the surfaces of the conductors was examined. The CIV observations and modelling findings determine the setups’ corona inception electric field strengths. The study effectively integrated experimental data from a corona cage with FEM models to assess DC corona properties across different air temperatures thoroughly. The inception voltage levels of corona are significantly influenced by ambient temperature and the space charge generated by corona. The outcomes of the discussion will inform the design of the proposed HVDC transmission line in Southern Africa. Full article
Show Figures

Figure 1

17 pages, 25383 KiB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 860
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

21 pages, 4241 KiB  
Article
Research on High-Speed Modeling Method of Modular Multilevel Converter Valve Based on Data Derivation
by Jun Zhang, Shuhong Wang, Youpeng Huangfu and Ruting Tang
Appl. Sci. 2025, 15(8), 4500; https://doi.org/10.3390/app15084500 - 18 Apr 2025
Viewed by 399
Abstract
Due to the highly demanding operating conditions of the Modular Multilevel Converter (MMC), as well as its inherently complex structure, electric field analysis of the MMC valve is crucial for the safe and stable operation of MMC-HVDC (MMC high voltage direct current) transmission [...] Read more.
Due to the highly demanding operating conditions of the Modular Multilevel Converter (MMC), as well as its inherently complex structure, electric field analysis of the MMC valve is crucial for the safe and stable operation of MMC-HVDC (MMC high voltage direct current) transmission systems. In this paper, a high-speed modeling method for an MMC valve based on data derivation is proposed. Firstly, the relationship between the MMC valve electric field calculation model parameters and the MMC-HVDC transmission system parameters was studied. Based on this, the data derivation system for the electric field calculation model parameters of all components of the MMC valve was established. A modeling parameters database based on empirical knowledge is also used in the calculation process of the data derivation system. The output model parameter matrix includes the geometric parameters, position parameters, and electrical parameters of the components. Based on the output matrix, the electric field calculation model of the converter valve can be quickly generated. Furthermore, to improve the accuracy of the calculations and reduce computation time, a discrete modeling method that combines mesh optimization was proposed. In the process of discretized electric field modeling, a mesh division influence factor based on the accuracy of electric field calculation is proposed. By adjusting the mesh division influence factor during the electric field calculation, the accuracy of the electric field calculation can be optimized rapidly. Finally, the effectiveness and practicality of the high-speed modeling method for the MMC valve are verified through comprehensive case studies conducted on the ±320 kV onshore MMC-HVDC valve. It is demonstrated that the high-speed modeling method proposed in this paper can significantly reduce the modeling time of the converter valve and greatly improve the accuracy of electric field calculation. Full article
Show Figures

Figure 1

17 pages, 5295 KiB  
Article
High-Frequency Oscillation Suppression Strategy for Renewable Energy Integration via Modular Multilevel Converter—High-Voltage Direct Current Transmission System Under Weak Grid Conditions
by Ruofeng Dang and Guobin Jin
Electronics 2025, 14(8), 1622; https://doi.org/10.3390/electronics14081622 - 17 Apr 2025
Cited by 1 | Viewed by 376
Abstract
To address the high-frequency resonance issues in renewable energy systems integrated via MMC-HVDC transmission under weak grid conditions, this paper establishes a wide-frequency sequence impedance model for renewable energy grid-side converters and MMC-HVDC sending-end converters. The impedance characteristics of the MMC-HVDC transmission system [...] Read more.
To address the high-frequency resonance issues in renewable energy systems integrated via MMC-HVDC transmission under weak grid conditions, this paper establishes a wide-frequency sequence impedance model for renewable energy grid-side converters and MMC-HVDC sending-end converters. The impedance characteristics of the MMC-HVDC transmission system under two distinct control modes are compared, and the constant power control mode is selected for detailed analysis to better evaluate the effectiveness of suppression strategies. Based on this framework, the superposition theorem is employed to analyze the interaction mechanism between the impedance characteristics of the MMC-HVDC sending-end converter and the renewable energy grid-connected system. Since the aim of this study is to propose suppression strategies for the MMC-HVDC transmission system, a sensitivity analysis of its control parameters is conducted. The results identify the current loop and voltage feedforward control as the dominant factors influencing high-frequency oscillations. Accordingly, a coordinated control strategy combining current loop regulation and voltage feedforward compensation is proposed. An electromagnetic transient simulation model is developed in MATLAB/Simulink. The simulations demonstrate that the proposed strategy effectively suppresses oscillations in the MMC-HVDC system across high-frequency ranges. Furthermore, it avoids negative damping characteristics within a broad frequency band, significantly enhancing the steady-state performance of renewable energy systems integrated via MMC-HVDC transmission. Full article
Show Figures

Figure 1

19 pages, 1658 KiB  
Review
The Progress and Prospect of Gap Breakdown Characteristics and Discharge Mechanisms of Overhead Transmission Lines Under Vegetation Fire Conditions
by Haohua Hu, Peng Li and Daochun Huang
Energies 2025, 18(8), 1946; https://doi.org/10.3390/en18081946 - 10 Apr 2025
Viewed by 424
Abstract
Wildfires frequently occur, posing a significant threat to the operational stability of transmission lines across mountainous forest areas. Therefore, this paper reviews numerous studies conducted by domestic and international scholars on the gap breakdown tests and discharge mechanisms of transmission lines under simulated [...] Read more.
Wildfires frequently occur, posing a significant threat to the operational stability of transmission lines across mountainous forest areas. Therefore, this paper reviews numerous studies conducted by domestic and international scholars on the gap breakdown tests and discharge mechanisms of transmission lines under simulated wildfire conditions. It analyses and summarizes the physical parameter measurement methods commonly used in current experiments. Combining the results of existing experiments, this study analyzes the discharge mechanisms, including the research progress made in numerical simulations. The conclusion is that existing tests are limited in their measurement methods of the physical quantities related to breakdown characteristics, and it is not easy to strictly control experimental variables when considering complex factors. Numerical simulations mainly focus on multi-physical field simulations, which consider the characteristics of vegetation fires in short gaps. The synergistic mechanism of environmental factors on gap breakdown characteristics remains unclear. This paper points out the breakdown characteristics and discharge mechanisms derived from existing experiments and numerical simulations under various influencing factors, highlighting their applicability and limitations, which differ from complex actual transmission lines in the environment. Then, we look forward to the future development of simulation test platforms that could better reflect the actual transmission line corridor environment, incorporating multi-parameter measurement and in-depth numerical simulation works that consider climate and terrain factors. Full article
Show Figures

Figure 1

Back to TopTop