Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = HRXRD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1716 KiB  
Article
Internal Stress of Titanium-Based Nitride with Penetration Depth and Surface Roughness by sin2ψ Method Using HR-XRD
by Sungju Yoo, Eunpyo Hong, Youngkue Choi and Heesoo Lee
Nanomaterials 2025, 15(11), 813; https://doi.org/10.3390/nano15110813 - 28 May 2025
Viewed by 348
Abstract
The test method for internal stress of titanium-based nitride was optimized via penetration depth and surface roughness. Through the test method, the variations in the mechanical properties due to the ratio of the carbon gradient layer were investigated in terms of internal stress. [...] Read more.
The test method for internal stress of titanium-based nitride was optimized via penetration depth and surface roughness. Through the test method, the variations in the mechanical properties due to the ratio of the carbon gradient layer were investigated in terms of internal stress. TiN coatings were deposited on SUS 304 using RF/DC magnetron sputtering, and the penetration depth was adjusted by varying the X-ray power of HR-XRD for test specimens with the same coating thickness of 1 μm. The gradient of diagram for internal stress remained constant regardless of the penetration depth, and this was attributed to the analysis of internal stress focusing on the preferred growth orientation of the coating and excluding the influence of the substrate. In addition, we tested different surface roughness values (0.01 Sa, 0.02 Sa, and 0.03 Sa) to observe the effect on internal stress measurement. The results showed negligible difference in internal stress, confirming that this measurement method is valid for coatings with a surface roughness of 0.03 Sa or less. The test method was applied to analyze the carbon-doped TiZrN coating. TiZrN coatings were deposited on SUS 304, and coating thicknesses of 0.5 μm, 1 μm, and 2 μm were used to control the ratio of the carbon gradient layer. After applying the carbon paste for carbon doping, the TiZrN coating was irradiated with a pulsed laser. The compressive internal stress increased from −1263 MPa to −1687 MPa at a coating thickness of 0.5 μm, where the ratio of the carbon gradient layer was the highest. It was confirmed that the increase in internal stress with the ratio of the carbon gradient layer improved the mechanical properties of the carbon-doped TiZrN coating by laser carburization. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

17 pages, 5590 KiB  
Article
A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings
by Saqib Rashid, Edoardo Rossi, Spyros Diplas, Patricia Almeida Carvalho, Damian Pucicki, Rafal Kuna and Marco Sebastiani
Int. J. Mol. Sci. 2025, 26(7), 3296; https://doi.org/10.3390/ijms26073296 - 2 Apr 2025
Cited by 1 | Viewed by 733
Abstract
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth [...] Read more.
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth mechanism, as well as process parameters and environmental conditions. A multiscale approach to residual stress measurement is essential for a comprehensive understanding of stress distribution in such systems. To investigate this, two AlGaN/GaN multilayer coatings with distinct layer architectures were deposited on sapphire substrates using metalorganic vapor phase epitaxy (MOVPE). High-resolution X-ray diffraction (HRXRD) was employed to confirm their epitaxial growth and structural characteristics. Focused ion beam (FIB) cross-sectioning and transmission electron microscopy (TEM) lamella preparation were performed to analyze the coating structure and determine layer thickness. Residual stresses within the multilayer coatings were evaluated using two complementary techniques: High-Resolution Scanning Transmission Electron Microscopy—Graphical Phase Analysis (HRSTEM-GPA) and Focused Ion Beam—Digital Image Correlation (FIB-DIC). HRSTEM-GPA enables atomic-resolution strain mapping, making it particularly suited for investigating interface-related stresses, while FIB-DIC facilitates microscale stress evaluation. The residual strain values obtained using the FIB-DIC and HRSTEM-GPA methods were −3.2 × 10⁻3 and −4.55 × 10⁻3, respectively. This study confirms that residual stress measurements at different spatial resolutions are both reliable and comparable at the required coating depths and locations, provided that a critical assessment of the characteristic scale of each method is performed. Full article
(This article belongs to the Special Issue Nanomaterials in Novel Thin Films and Coatings)
Show Figures

Graphical abstract

10 pages, 3325 KiB  
Communication
Research on the Micromorphology of the Native Surface of 2-Inch Aluminum Nitride Single Crystals
by Ruixian Yu, Gang Zhao, Kai Jiang, Wenjing Tang, Lei Zhang and Wei Xia
Materials 2025, 18(5), 1147; https://doi.org/10.3390/ma18051147 - 4 Mar 2025
Viewed by 690
Abstract
High-quality 2-inch aluminum nitride (AlN) crystals were grown using a double-zone resistance heating system, and the growth mechanism of AlN bulk crystals was further investigated. It was found that during the growth process, the vapor pressure at the growth interface, as well as [...] Read more.
High-quality 2-inch aluminum nitride (AlN) crystals were grown using a double-zone resistance heating system, and the growth mechanism of AlN bulk crystals was further investigated. It was found that during the growth process, the vapor pressure at the growth interface, as well as the quality and structure of the seed crystal, was closely related to the growth conditions. The 2-inch AlN crystals were characterized using high-resolution X-ray diffraction (HRXRD) and optical microscopy. Optical microscopy observations of different regions on the native surface of the crystals revealed several morphologies, including regular step flow, irregular step flow, and domain-like structures. Comparisons showed that areas of the crystal surface with regular step-flow morphology exhibited high crystal quality, whereas the crystal quality decreased progressively as the step-flow morphology diminished. Therefore, the crystal quality can be preliminarily assessed through the surface morphology, providing guidance for improving the crystal growth process. Full article
Show Figures

Figure 1

20 pages, 14049 KiB  
Article
The Formation of an Interface and Its Energy Levels Inside a Band Gap in InAs/GaSb/AlSb/GaSb M-Structures
by Paweł Śliż, Dawid Jarosz, Marta Pasternak and Michał Marchewka
Materials 2025, 18(5), 991; https://doi.org/10.3390/ma18050991 - 24 Feb 2025
Viewed by 530
Abstract
We studied specially designed InAs/GaSb/AlSb/GaSb M-structures, a type-II superlattice (T2SL), that can serve as active materials for short-wavelength infrared (SWIR) applications. To obtain the dispersion relation of the investigated M-structures, k·p perturbation theory based on the eight-band model implemented in the nextnano++ v1.18.1 [...] Read more.
We studied specially designed InAs/GaSb/AlSb/GaSb M-structures, a type-II superlattice (T2SL), that can serve as active materials for short-wavelength infrared (SWIR) applications. To obtain the dispersion relation of the investigated M-structures, k·p perturbation theory based on the eight-band model implemented in the nextnano++ v1.18.1 (nextnano GmbH, Munich, Germany) software was used. Numerical band-gap engineering and dispersion calculations for the investigated M-structures (composed of 6/1/5/1 monolayers, with InSb interfaces included) revealed the presence of an additional energy level within the energy gap. This energy level originates from the InSb-like interfaces and does not appear in structures with different layer or interface thicknesses. Its properties strongly depend on interface thickness, temperature, and strain. Numerical calculations of the probability density function |Ψ|2, absorption coefficients, and optical absorption spectra at varying temperatures demonstrate that, under specific conditions, such as an optimised interface thickness and temperature, optical absorption increases significantly. These theoretical results are based on structures fabricated using molecular-beam epitaxy (MBE) technology. High-resolution X-ray diffraction (HRXRD) measurements confirm the high crystallographic quality of these M-structures. Full article
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles
by J. Laifi, M. F. Hasaneen, H. Bouazizi, Fatimah Hafiz Alsahli, T. A. Lafford and A. Bchetnia
Crystals 2025, 15(1), 97; https://doi.org/10.3390/cryst15010097 - 20 Jan 2025
Viewed by 1284
Abstract
A GaN layer with a thickness of 2 µm was grown on a sapphire substrate using atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD). Subsequently, the layer was annealed under a nitrogen atmosphere at temperatures ranging from 1000 °C to 1120 °C. High-resolution X-ray [...] Read more.
A GaN layer with a thickness of 2 µm was grown on a sapphire substrate using atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD). Subsequently, the layer was annealed under a nitrogen atmosphere at temperatures ranging from 1000 °C to 1120 °C. High-resolution X-ray diffraction (HRXRD) analysis reveals the impact of thermal annealing on the mosaic structure of the GaN, specifically the tilt and twist variations in four planes: (00.2), (10.3), (10.2), and (10.1). Interestingly, the observed trends suggest a differential effect of annealing on screw and edge dislocation densities. The annealing process reduces the edge and screw dislocation density. Lower values (Dscrew = 1.2 × 108 cm−2; Dedge = 1.6 × 109 cm−2) were obtained for the sample annealed at 1050 °C. Notably, both tilt and twist angles exhibited a minimum at 1050 °C (tilt = 252 arcsecs, and twist = 558 arcsecs), indicating improved crystal quality at this specific temperature. Photoluminescence (PL) spectroscopy further complemented the structural analysis. The intensity and broadening of the yellow band (YL) in the PL spectra progressively increased with the increasing annealing temperature, suggesting the presence of additional defect states. The near band edge PL emission (3.35 and 3.41 eV) variation upon thermal annealing was correlated with the mosaic structure evolution. Full article
Show Figures

Figure 1

19 pages, 9100 KiB  
Article
Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire
by Zhe Chuan Feng, Ming Tian, Xiong Zhang, Manika Tun Nafisa, Yao Liu, Jeffrey Yiin, Benjamin Klein and Ian Ferguson
Nanomaterials 2024, 14(21), 1769; https://doi.org/10.3390/nano14211769 - 4 Nov 2024
Viewed by 1434
Abstract
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on [...] Read more.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal–organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS). A set of formulas was deduced to precisely determine x(Al) from HR-XRD data. Screw dislocation densities in AlGaN and AlN layers were deduced. DUV (266 nm) excitation RS clearly exhibits AlGaN Raman features far superior to visible RS. The simulation on the AlGaN longitudinal optical (LO) phonon modes determined the carrier concentrations in the AlGaN layers. The spatial correlation model (SCM) analyses on E2(high) modes examined the AlGaN and AlN layer properties. These high-x(Al) AlxGa1−xN films possess large energy gaps Eg in the range of 5.0–5.6 eV and are excited by a DUV 213 nm (5.8 eV) laser for room temperature (RT) photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) studies. The obtained RTPL bands were deconvoluted with two Gaussian bands, indicating cross-bandgap emission, phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of Al0.87Ga0.13N exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation energy (19.6 meV) associated with the luminescence process is acquired. In addition, the combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with DUV 213 nm pulse excitation was applied to measure a typical AlGaN multiple-quantum well (MQW). The RT TRPL decay spectra were obtained at four wavelengths and fitted by two exponentials with fast and slow decay times of ~0.2 ns and 1–2 ns, respectively. Comprehensive studies on these Al-rich AlGaN epi-films and a typical AlGaN MQW are achieved with unique and significant results, which are useful to researchers in the field. Full article
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia
by Mi-Hyang Cho and Hyo-Joung Seol
Materials 2024, 17(21), 5148; https://doi.org/10.3390/ma17215148 - 22 Oct 2024
Viewed by 1117
Abstract
Optical characteristics and microstructure of multilayered zirconia with different yttria contents in each layer can be influenced differently with a layer after speed sintering. The layer-wise translucency and opalescence of dental zirconia (E.max, E.max ZirCAD prime; Cercon, Cercon ht ML) after conventional (control) [...] Read more.
Optical characteristics and microstructure of multilayered zirconia with different yttria contents in each layer can be influenced differently with a layer after speed sintering. The layer-wise translucency and opalescence of dental zirconia (E.max, E.max ZirCAD prime; Cercon, Cercon ht ML) after conventional (control) and speed sintering were analyzed using a spectrophotometer (n = 5). Specimens were subjected to microstructural analyses (n = 2) using field-emission scanning electron microscopy (FE-SEM) and phase analyses (n = 1) using high-resolution X-ray diffraction (HRXRD) and Rietveld refinement. The translucency parameter (TP) and opalescence parameter (OP) were analyzed using a 3-way ANOVA, followed by Scheffé’s post hoc test (α = 0.05). The average grain size was analyzed using the Welch’s t-test and Kruskal–Wallis test, followed by the Bonferroni–Dunn post hoc test (α = 0.05). Changes to the TP and OP after speed sintering were only observed in the dentin layers. Although the TP of E.max increased (p < 0.05), the difference was below the 50:50% perceptibility threshold (ΔE00 = 0.8). The OP of E.max decreased slightly, whereas that of Cercon increased slightly (p < 0.05). The microstructure and phase fraction of both zirconia barely changed. Therefore, speed sintering is considered to have a negligible clinical impact on the optical characteristics and microstructure. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Figure 1

13 pages, 3297 KiB  
Article
Characterization and Antibacterial Activity of Silver Nanoparticles Synthesized from Oxya chinensis sinuosa (Grasshopper) Extract
by Se-Min Kim, Tai-Yong Kim, Yun-Sang Choi, Gyeongsik Ok and Min-Cheol Lim
Microorganisms 2024, 12(10), 2089; https://doi.org/10.3390/microorganisms12102089 - 18 Oct 2024
Cited by 2 | Viewed by 1361
Abstract
In this study, silver nanoparticles (AgNPs) were synthesized using a green method from an extract of the edible insect Oxya chinensis sinuosa (O_extract). The formation of AgNPs (O_AgNPs) was confirmed via UV–vis spectroscopy, and their stability was assessed using Turbiscan analysis. The size [...] Read more.
In this study, silver nanoparticles (AgNPs) were synthesized using a green method from an extract of the edible insect Oxya chinensis sinuosa (O_extract). The formation of AgNPs (O_AgNPs) was confirmed via UV–vis spectroscopy, and their stability was assessed using Turbiscan analysis. The size and morphology of the synthesized particles were characterized using transmission electron microscopy and field-emission scanning electron microscopy. Dynamic light scattering and zeta potential analyses further confirmed the size distribution and dispersion stability of the particles. The average particle size was 111.8 ± 1.5 nm, indicating relatively high stability. The synthesized O_AgNPs were further characterized using X-ray photoelectron spectroscopy (XPS), high-resolution X-ray diffraction (HR-XRD), and Fourier transform infrared (FTIR) spectroscopy. XPS analysis confirmed the chemical composition of the O_AgNP surface, whereas HR-XRD confirmed its crystallinity. FTIR analysis suggested that the O_extract plays a crucial role in the synthesis process. The antibacterial activity of the O_AgNPs was demonstrated using a disk diffusion assay, which revealed effective activity against common foodborne pathogens, including Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. O_AgNPs exhibited clear antibacterial activity, with inhibition zones of 15.08 ± 0.45 mm for S. Typhimurium, 15.03 ± 0.15 mm for E. coli, 15.24 ± 0.66 mm for S. aureus, and 13.30 ± 0.16 mm for B. cereus. These findings suggest that the O_AgNPs synthesized from the O_extract have potential for use as antibacterial agents against foodborne bacteria. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

11 pages, 4925 KiB  
Article
Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties
by Thanh Ngoc Kim Bui, Estelle Wagner, Rahma Moalla, William Maudez, Karim Dogheche, Romain Bachelet, Bruno Masenelli, Giacomo Benvenuti, Denis Rémiens and El Hadj Dogheche
Photonics 2024, 11(10), 895; https://doi.org/10.3390/photonics11100895 - 24 Sep 2024
Viewed by 2116
Abstract
LiNbO3 thin films are grown on a c-plane (0001) sapphire wafer at a relatively low substrate temperature by chemical beam vapor deposition (CBVD) in Sybilla equipment. Raman measurements only evidence the LiNbO3 phase, while HR-XRD diffractograms demonstrate a c-axis-oriented growth with [...] Read more.
LiNbO3 thin films are grown on a c-plane (0001) sapphire wafer at a relatively low substrate temperature by chemical beam vapor deposition (CBVD) in Sybilla equipment. Raman measurements only evidence the LiNbO3 phase, while HR-XRD diffractograms demonstrate a c-axis-oriented growth with only (006) and (0012) planes measured. The rocking curve is symmetric, with a full width at half maximum (FWHM) of 0.04°. The morphology and topography observed by SEM and AFM show very low roughness, with rms equaling 2.0 nm. The optical properties are investigated by a guided-wave technique using prism coupling. The ordinary refractive index (no) and extraordinary refractive index (ne) at different wavelengths totally match with the LiNbO3 bulk, showing the high microstructural quality of the film. The film composition is estimated by Raman and bi-refringence and shows a congruent or near-stoichiometric LiNbO3. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 3804 KiB  
Article
Optical Characterization of the Interband Cascade LWIR Detectors with Type-II InAs/InAsSb Superlattice Absorber
by Krzysztof Murawski, Kinga Majkowycz, Małgorzata Kopytko, Tetiana Manyk, Karol Dąbrowski, Bartłomiej Seredyński, Łukasz Kubiszyn and Piotr Martyniuk
Nanomaterials 2024, 14(17), 1393; https://doi.org/10.3390/nano14171393 - 26 Aug 2024
Cited by 2 | Viewed by 1253
Abstract
The long-wave infrared (LWIR) interband cascade detector with type-II superlattices (T2SLs) and a gallium-free (“Ga-free”) InAs/InAsSb (x = 0.39) absorber was characterized by photoluminescence (PL) and spectral response (SR) methods. Heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate (001) [...] Read more.
The long-wave infrared (LWIR) interband cascade detector with type-II superlattices (T2SLs) and a gallium-free (“Ga-free”) InAs/InAsSb (x = 0.39) absorber was characterized by photoluminescence (PL) and spectral response (SR) methods. Heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate (001) orientation. The crystallographic quality was confirmed by high-resolution X-Ray diffraction (HRXRD). Two independent methods, combined with theoretical calculations, were able to determine the transitions between the superlattice minibands. Moreover, transitions from the trap states were determined. Studies of the PL intensity as a function of the excitation laser power allowed the identification of optical transitions. The determined effective energy gap (Eg) of the tested absorber layer was 116 meV at 300 K. The transition from the first light hole miniband to the first electron miniband was red-shifted by 76 meV. The detected defects’ energy states were constant versus temperature. Their values were 85 meV and 112 meV, respectively. Moreover, two additional transitions from acceptor levels in cryogenic temperature were determined by being shifted from blue to Eg by 6 meV and 16 meV, respectively. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials)
Show Figures

Figure 1

9 pages, 3530 KiB  
Article
Investigation of the Dislocation Behavior of 6- and 8-Inch AlGaN/GaN HEMT Structures with a Thin AlGaN Buffer Layer Grown on Si Substrates
by Yujie Yan, Jun Huang, Lei Pan, Biao Meng, Qiangmin Wei and Bing Yang
Inorganics 2024, 12(8), 207; https://doi.org/10.3390/inorganics12080207 - 30 Jul 2024
Viewed by 1715
Abstract
Developing cost-effective methods to synthesize large-size GaN films remains a challenge owing to the high dislocation density during heteroepitaxy. Herein, AlGaN/GaN HEMTs were grown on 6- and 8-inch Si(111) substrates using metal–organic chemical vapor deposition, and their basic properties and dislocation evolution characteristics [...] Read more.
Developing cost-effective methods to synthesize large-size GaN films remains a challenge owing to the high dislocation density during heteroepitaxy. Herein, AlGaN/GaN HEMTs were grown on 6- and 8-inch Si(111) substrates using metal–organic chemical vapor deposition, and their basic properties and dislocation evolution characteristics were investigated thoroughly. With the insertion of a 100 nm thin AlGaN buffer layer, bow–warp analysis of the epitaxial wafers revealed excellent stress control for both the 6- and 8-inch wafers. HR-XRD and AFM analyses validated the high crystal quality and step-flow growth mode of GaN. Further, Hall measurements demonstrated the superior transport performance of AlGaN/GaN heterostructures. It is worth noting that dislocations tended to annihilate in the AlN nucleation layer, the thin AlGaN buffer layer, and the GaN buffer layer in the initial thickness range of 200–300 nm, which was indicated by ADF-STEM. To be specific, the heterointerfaces exhibited a significant effect on the annihilation of c-type (b = <0001>) dislocations, which led to the formation of dislocation loops. The thin inserted layers within the AlGaN buffer layer played a key role in promoting the annihilation of c-type dislocations, while they exerted less influence on a-type (b = 1/3<112¯0>) and (a+c)-type (b = 1/3<112¯3>) dislocations. Within an initial thickness of 200–300 nm in the GaN buffer layer, a-type and (a+c)-type dislocations underwent strong interactions, leading to considerable dislocation annihilation. In addition, the EELS results suggested that the V-shaped pits in the AlN nucleation layer were filled with the AlGaN thin layer with a low Al content. Full article
Show Figures

Figure 1

10 pages, 2489 KiB  
Article
A Comparative Study of Methods for Calculating the Dislocation Density in GaN-on-Si Epitaxial Wafers
by Yujie Yan, Jun Huang, Lei Pan, Biao Meng, Qiangmin Wei and Bing Yang
Micromachines 2024, 15(8), 954; https://doi.org/10.3390/mi15080954 - 25 Jul 2024
Cited by 3 | Viewed by 1992
Abstract
A series of characterization methods involving high-resolution X-ray diffraction (HR-XRD), electron channel contrast imaging (ECCI), cathodoluminescence microscopy (CL), and atomic force microscopy (AFM) were applied to calculate the dislocation density of GaN-on-Si epitaxial wafers, and their performance was analyzed and evaluated. The ECCI [...] Read more.
A series of characterization methods involving high-resolution X-ray diffraction (HR-XRD), electron channel contrast imaging (ECCI), cathodoluminescence microscopy (CL), and atomic force microscopy (AFM) were applied to calculate the dislocation density of GaN-on-Si epitaxial wafers, and their performance was analyzed and evaluated. The ECCI technique, owing to its high lateral resolution, reveals dislocation distributions on material surfaces, which can visually characterize the dislocation density. While the CL technique is effective for low-density dislocations, it is difficult to accurately identify the number of dislocation clusters in CL images as the density increases. The AFM technique analyzes surface dislocation characteristics by detecting surface pits caused by dislocations, which are easily affected by sample and probe conditions. A prevalent method for assessing the crystal quality of GaN is the rocking curve of HR-XRD (ω-scan), which calculates the dislocation density based on the FWHM value of the curves. By comparing the above four dislocation characterization methods, the advantages and limitations of each method are clarified, which also verifies the applicability of DB=β29b2 for GaN-on-Si epitaxial wafers. This provides an important reference value for dislocation characterization in GaN-on-Si materials. The accuracy evaluation of dislocation density can truly and reliably reflect crystal quality, which is conducive to further optimization. Furthermore, this study can also be applied to other heterogeneous or homogeneous epitaxial materials. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

19 pages, 6011 KiB  
Article
Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy
by Zhe Chuan Feng, Jiamin Liu, Deng Xie, Manika Tun Nafisa, Chuanwei Zhang, Lingyu Wan, Beibei Jiang, Hao-Hsiung Lin, Zhi-Ren Qiu, Weijie Lu, Benjamin Klein, Ian T. Ferguson and Shiyuan Liu
Materials 2024, 17(12), 2921; https://doi.org/10.3390/ma17122921 - 14 Jun 2024
Cited by 5 | Viewed by 1553
Abstract
GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) [...] Read more.
GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180–1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman–PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth. Full article
(This article belongs to the Special Issue III-V Semiconductor Optoelectronics: Materials and Devices)
Show Figures

Figure 1

15 pages, 11880 KiB  
Article
Epitaxial Growth of GaN Films on Chemical-Vapor-Deposited 2D MoS2 Layers by Plasma-Assisted Molecular Beam Epitaxy
by Iwan Susanto, Hong-Shan Liu, Yen-Ten Ho and Ing-Song Yu
Nanomaterials 2024, 14(8), 732; https://doi.org/10.3390/nano14080732 - 22 Apr 2024
Cited by 2 | Viewed by 2730
Abstract
The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted [...] Read more.
The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics. Full article
Show Figures

Figure 1

18 pages, 3103 KiB  
Article
Optimization of Calcium Fluoride Crystallization Process for Treatment of High-Concentration Fluoride-Containing Semiconductor Industry Wastewater
by Arindam Sinharoy, Ga-Young Lee and Chong-Min Chung
Int. J. Mol. Sci. 2024, 25(7), 3960; https://doi.org/10.3390/ijms25073960 - 2 Apr 2024
Cited by 13 | Viewed by 3973
Abstract
This study utilized a fluidized bed reactor (FBR) for fluoride removal from high-concentration fluoride-ion-containing simulated semiconductor industry wastewater and recovered high-purity CaF2 crystals. The effects of hydraulic retention time (HRT), pH, Ca2+ to F ratio, upflow velocity, seed size and [...] Read more.
This study utilized a fluidized bed reactor (FBR) for fluoride removal from high-concentration fluoride-ion-containing simulated semiconductor industry wastewater and recovered high-purity CaF2 crystals. The effects of hydraulic retention time (HRT), pH, Ca2+ to F ratio, upflow velocity, seed size and seed bed height were investigated by performing lab-scale batch experiments. Considering fluoride removal and CaF2 crystallization efficiency, 5 h HRT, pH 6, seed height of 50 cm and [Ca2+]/[F] ratio of 0.55 (mol/mol) were found to be optimum. The effect of the interaction between the important process parameters on fluoride removal was further analyzed using response surface methodology (RSM) experimental design. The results showed that all the individual parameters have a significant impact (p = 0.0001) on fluoride removal. SEM-EDX and FTIR analysis showed the composition of the crystals formed inside FBR. HR-XRD analysis confirmed that the crystalline structure of samples was mainly CaF2. The results clearly demonstrated the feasibility of silica seed material containing FBR for efficient removal and recovery of fluoride as high-purity calcium fluoride crystals. Full article
(This article belongs to the Special Issue Recent Advances on Fluorine Chemistry)
Show Figures

Figure 1

Back to TopTop