Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Composition Properties
3.2. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballman, A.A. Growth of Piezoelectric and Ferroelectric Materials by the CzochraIski Technique. J. Am. Ceram. Soc. 1965, 48, 112–113. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium Niobate Photonics: Unlocking the Electromagnetic Spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Osgood, R.M.; Liu, R.; Cross, L.E.; Cargill, G.S.; Kumar, A.; Bakhru, H. Fabrication of Single-Crystal Lithium Niobate Films by Crystal Ion Slicing. Appl. Phys. Lett. 1998, 73, 2293–2295. [Google Scholar] [CrossRef]
- Zivasatienraj, B.; Brooks Tellekamp, M.; Alan Doolittle, W. Epitaxy of LiNbO3: Historical Challenges and Recent Success. Crystals 2021, 11, 397. [Google Scholar] [CrossRef]
- Takada, S.; Ohnishi, M.; Hayakawa, H.; Mikoshiba, N. Optical Waveguides of Single-Crystal LiNbO3 Film Deposited by Rf Sputtering. Appl. Phys. Lett. 1974, 24, 490–492. [Google Scholar] [CrossRef]
- Shimizu, M.; Furushima, Y.; Nishida, T.; Shiosaki, T. Preparation and Optical Waveguide Properties of LiNbO3 Thin Films by RF Magnetron Sputtering. Jpn. J. Appl. Phys. 1993, 32, 4111–4114. [Google Scholar] [CrossRef]
- Rost, T.A.; Lin, H.; Rabson, T.A.; Baumann, R.C.; Callahan, D.L. Deposition and Analysis of Lithium Niobate and Other Lithium Niobium Oxides by Rf Magnetron Sputtering. J. Appl. Phys. 1992, 72, 4336–4343. [Google Scholar] [CrossRef]
- Lansiaux, X.; Dogheche, E.; Remiens, D.; Guilloux-Viry, M.; Perrin, A.; Ruterana, P. LiNbO3 Thick Films Grown on Sapphire by Using a Multistep Sputtering Process. J. Appl. Phys. 2001, 90, 5274–5277. [Google Scholar] [CrossRef]
- Sauze, L.C.; Vaxelaire, N.; Rouchon, D.; Pierre, F.; Templier, R.; Remiens, D.; Rodriguez, G. Microstructural and Chemical Analysis of Polycrystalline LiNbO3 Films Obtained by Room-Temperature RF Sputtering after Various Annealing Durations. J. Vac. Sci. Technol. A 2020, 38, 043205. [Google Scholar] [CrossRef]
- Graça, M.P.F.; Prezas, P.R.; Costa, M.M.; Valente, M.A. Structural and Dielectric Characterization of LiNbO3 Nano-Size Powders Obtained by Pechini Method. J. Sol-Gel Sci. Technol. 2012, 64, 78–85. [Google Scholar] [CrossRef]
- Yoon, J.G.; Kim, K. Growth of Highly Textured LiNbO3 Thin Film on Si with MgO Buffer Layer through the Sol-Gel Process. Appl. Phys. Lett. 1995, 2523, 2523. [Google Scholar] [CrossRef]
- Nashimoto, K.; Cima, M.J. Epitaxial LiNbO3 Thin Films Prepared by a Sol-Gel Process. Mater. Lett. 1991, 10, 348–354. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Shu, Y.; Lou, C.; Kong, Y.; Huang, Z.; Xu, J.; Zhang, G. Determination of the Li/Nb Ratio in LiNbO3 Crystals Prepared by Vapor Transport Equilibration Method. Opt. Mater. 2003, 23, 295–298. [Google Scholar] [CrossRef]
- Han, H.; Cai, L.; Xiang, B.; Jiang, Y.; Hu, H. Lithium-Rich Vapor Transport Equilibration in Single-Crystal Lithium Niobate Thin Film at Low Temperature. Opt. Mater. Express 2015, 5, 2634. [Google Scholar] [CrossRef]
- Shih, W.C.; Sun, X.Y. Preparation of C-Axis Textured LiNbO3 Thin Films on SiO2/Si Substrates with a ZnO Buffer Layer by Pulsed Laser Deposition Process. Phys. B Condens. Matter 2010, 405, 1619–1623. [Google Scholar] [CrossRef]
- Shandilya, S.; Tomar, M.; Sreenivas, K.; Gupta, V. Structural and Interfacial Defects in C-Axis Oriented LiNbO3 Thin Films Grown by Pulsed Laser Deposition on Si Using Al: ZZnO Conducting Layer. J. Phys. D. Appl. Phys. 2009, 42, 095303. [Google Scholar] [CrossRef]
- Lee, G.H.; Yoshimoto, M.; Koinuma, H. Self-Assembled Island Formation of LiNbO3 by Pulsed Laser Deposition on α-Al2O3 Substrate. Appl. Surf. Sci. 1998, 127–129, 393–397. [Google Scholar] [CrossRef]
- Tellekamp, M.B.; Shank, J.C.; Goorsky, M.S.; Doolittle, W.A. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3. J. Electron. Mater. 2016, 45, 6292–6299. [Google Scholar] [CrossRef]
- Matsubara, K.; Niki, S.; Watanabe, M.; Fons, P.; Iwata, K.; Yamada, A. Growth of LiNbO3 Epitaxial Films by Oxygen Radical-Assisted Laser Molecular Beam Epitaxy. Appl. Phys. A 1999, 681, 679–681. [Google Scholar] [CrossRef]
- Tamada, H.; Yamada, A.; Saitoh, M. LiNbO3 Thin-Film Optical Waveguide Grown by Liquid Phase Epitaxy and Its Application to Second-Harmonic Generation. Appl. Phys. 1991, 70, 2536. [Google Scholar] [CrossRef]
- Yamada, A.; Tamada, H.; Saitoh, M. LiNbO3 Thin-Film Optical Waveguide Grown by Liquid Phase Epitaxy Using Li2O-B2O3 Flux. Appl. Phys. Lett. 1992, 61, 2848. [Google Scholar] [CrossRef]
- Miyazawa, S.; Fushimi, S.; Kondo, S. Optical Waveguide of LiNbO3 Thin Film Grown by Liquid Phase Epitaxy. Appl. Phys. Lett. 1975, 26, 8–10. [Google Scholar] [CrossRef]
- Wernberg, A.A.; Gysling, H.J.; Filo, A.J.; Blanton, T.N. Epitaxial Growth of Lithium Niobate Thin Films from a Single-Source Organometallic Precursor Using Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett. 1993, 62, 946–948. [Google Scholar] [CrossRef]
- Ocón, J.A.; Murillo, J.G.; Miki-Yoshida, M.; Cardoza, M.N.; Contreras-López, O.E. Synthesis and Characterization of LiNbO3 Nanocrystals Prepared by the Aerosol Assisted Chemical Vapor Deposition Method. J. Cryst. Growth 2014, 408, 64–70. [Google Scholar] [CrossRef]
- Ocón-Arellanes, J.A.; Murillo-Ramírez, J.G.; Amézaga-Madrid, P.; Miki-Yoshida, M. Synthesis, Microstructural and Optical Characterization of LiNbO3 Thin Films Deposited by Aerosol Assisted Chemical Vapor Deposition. Acta Univ. 2014, 24, 21–26. [Google Scholar] [CrossRef]
- Sakashita, Y.; Segawa, H. Preparation and Characterization of LiNbO3 Thin Films Produced by Chemical-vapor Deposition. J. Appl. Phys. 1995, 77, 5995–5999. [Google Scholar] [CrossRef]
- Margueron, S.; Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Boulet, P.; Kubilius, V.; Saltyte, Z. Effect of Deposition Conditions on the Stoichiometry and Structural Properties of LiNbO3 Thin Films Deposited by MOCVD. In Oxide-Based Materials and Devices IV; SPIE: San Francisco, CA, USA, 2013; Volume 8626. [Google Scholar] [CrossRef]
- Kadota, M.; Suzuki, Y.; Ito, Y. Properties of LiNbO3 Thin Film Deposited by Chemical Vapor Deposition and Frequency Characteristics of Film Bulk Acoustic Wave Resonator. Jpn. J. Appl. Phys. 2011, 50, 07HD10. [Google Scholar] [CrossRef]
- Dabirian, A.; Kuzminykh, Y.; Sandu, S.C.; Harada, S.; Wagner, E.; Brodard, P.; Benvenuti, G.; Rushworth, S.; Muralt, P.; Hoffmann, P. Combinatorial High-Vacuum Chemical Vapor Deposition of Textured Hafnium-Doped Lithium Niobate Thin Films on Sapphire. Cryst. Growth Des. 2011, 11, 203–209. [Google Scholar] [CrossRef]
- Pellegrino, A.L.; Wagner, E.; Lo Presti, F.; Maudez, W.; Kolb, S.; Rani, R.; Bernard, A.; Guy, S.; Gassenq, A.; Raevskaia, M.; et al. Efficient Optimization of High-Quality Epitaxial Lithium Niobate Thin Films by Chemical Beam Vapor Deposition: Impact of Cationic Stoichiometry. Adv. Mater. Interfaces 2023, 10, 2300535. [Google Scholar] [CrossRef]
- Lu, Z.; Hiskes, R.; DiCarolis, S.A.; Route, R.K.; Feigelson, R.S.; Leplingard, F.; Fouquet, J.E. Epitaxial LiNbO3 Thin Films on Sapphire Substrates Grown by Solid Source MOCVD. J. Mater. Res. 1994, 9, 2258–2263. [Google Scholar] [CrossRef]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Stanionyte, S.; Margueron, S.; Kubilius, V.; Boulet, P.; Huband, S.; Thomas, P.A. Thickness Dependent Stresses and Thermal Expansion of Epitaxial LiNbO3 Thin Films on C-Sapphire. Mater. Chem. Phys. 2015, 149, 622–631. [Google Scholar] [CrossRef]
- Sumets, M. Lithium Niobate-Based Heterostructures Synthesis, Properties and Electron Phenomena; IOP Publishing: Bristol, UK, 2018; ISBN 978-0-7503-1729-0. [Google Scholar]
- Qi, Y.; Li, Y. Integrated Lithium Niobate Photonics. Nanophotonics 2020, 9, 1287–1320. [Google Scholar] [CrossRef]
- Gorisse, M.; Bauder, R.; Timme, H.-J.; Friedrich, H.-P.; Dours, L.; Perreau, P.; Ravix, A.; Lefebvre, R.; Castellan, G.; Maeder-Pachurka, C.; et al. High Frequency LiNbO3 Bulk Wave Resonator. In Proceedings of the 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Orlando, FL, USA, 14–18 April 2019; pp. 1–2. [Google Scholar]
- Plessky, V.; Yandrapalli, S.; Turner, P.J.; Villanueva, L.G.; Koskela, J.; Hammond, R.B. 5 GHz Laterally-Excited Bulk-Wave Resonators (XBARs) Based on Thin Platelets of Lithium Niobate. Electron. Lett. 2019, 55, 98–100. [Google Scholar] [CrossRef]
- Benvenuti, G.; Halary-Wagner, E.; Brioude, A.; Hoffmann, P. High Uniformity Deposition with Chemical Beams in High Vacuum. Thin Solid Films 2003, 427, 411–416. [Google Scholar] [CrossRef]
- Wagner, E.; Sandu, C.S.; Harada, S.; Pellodi, C.; Jobin, M.; Muralt, P.; Benvenuti, G. Geometry of Chemical Beam Vapor Deposition System for Efficient Combinatorial Investigations of Thin Oxide Films: Deposited Film Properties versus Precursor Flow Simulations. ACS Comb. Sci. 2016, 18, 154–161. [Google Scholar] [CrossRef]
- Dabirian, A.; Kuzminykh, Y.; Wagner, E.; Benvenuti, G.; Rushworth, S.; Hoffmann, P. Evaluation of Niobium Dimethylamino-Ethoxide for Chemical Vapour Deposition of Niobium Oxide Thin Films. Thin Solid Films 2014, 571, 94–101. [Google Scholar] [CrossRef]
- Wagner, E.; Maudez, W.; Bagdzevicius, S.; Sandu, S.C.; Benvenuti, G. Chemical Beam Vapour Deposition Technique with Sybilla Equipment: Review of Main Results in Its 20-Year Anniversary. In Oxide-Based Materials and Devices XII; Teherani, F.H., Look, D.C., Rogers, D.J., Eds.; SPIE: San Francisco, CA, USA, 2021; p. 64. [Google Scholar]
- Skryleva, E.A.; Kubasov, I.V.; Kiryukhantsev-Korneev, P.V.; Senatulin, B.R.; Zhukov, R.N.; Zakutailov, K.V.; Malinkovich, M.D.; Parkhomenko, Y.N. XPS Study of Li/Nb Ratio in LiNbO3 Crystals. Effect of Polarity and Mechanical Processing on LiNbO3 Surface Chemical Composition. Appl. Surf. Sci. 2016, 389, 387–394. [Google Scholar] [CrossRef]
- Skryleva, E.A.; Senatulin, B.R.; Kiselev, D.A.; Ilina, T.S.; Podgorny, D.A.; Parkhomenko, Y.N. Ar Gas Cluster Ion Beam Assisted XPS Study of LiNbO3 Z Cut Surface. Surf. Interfaces 2021, 26, 101428. [Google Scholar] [CrossRef]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Stanionyte, S.; Margueron, S.; Boulet, P.; Kobata, T.; Uesu, Y.; Gleize, J. Identification of LiNbO3, LiNb3O8 and Li3NbO4 Phases in Thin Films Synthesized with Different Deposition Techniques by Means of XRD and Raman Spectroscopy. J. Phys. Condens. Matter 2013, 25, 205901. [Google Scholar] [CrossRef]
- Galinetto, P.; Ballarini, D.; Grando, D.; Samoggia, G. Microstructural Modification of LiNbO3 Crystals Induced by Femtosecond Laser Irradiation. Appl. Surf. Sci. 2005, 248, 291–294. [Google Scholar] [CrossRef]
- Schlarb, U.; Klauer, S.; Wesselmann, M.; Betzler, K.; Wöhlecke, M. Determination of the Li/Nb Ratio in Lithium Niobate by Means of Birefringence and Raman Measurements. Appl. Phys. A Solids Surfaces 1993, 56, 311–315. [Google Scholar] [CrossRef]
- Nikogosyan, D.N. Basic Nonlinear Optical Crystals. In Nonlinear Optical Crystals: A Complete Survey; Springer: New York, NY, USA, 2005; pp. 5–74. ISBN 978-0-387-27151-4. [Google Scholar]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Murauskas, T.; Boulet, P.; Margueron, S.; Gleize, J.; Robert, S.; Kubilius, V.; Saltyte, Z. Residual Stresses and Clamped Thermal Expansion in LiNbO3 and LiTaO3 Thin Films. Appl. Phys. Lett. 2012, 101, 122902. [Google Scholar] [CrossRef]
- Aggarwal, R.L.; Ramdas, A.K. Physical Properties of Diamond and Sapphire, 1st ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2019; ISBN 9780429283260. [Google Scholar]
- Feigelson, R.S. Epitaxial Growth of Lithium Niobate Thin Films by the Solid Source MOCVD Method. J. Cryst. Growth 1996, 166, 1–16. [Google Scholar] [CrossRef]
- Cardin, J.; Leduc, D. Determination of Refractive Index, Thickness, and the Optical Losses of Thin Films from Prism-Film Coupling Measurements. Appl. Opt. 2008, 47, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Dogheche, E.; Lansiaux, X.; Remiens, D. M-Line Spectroscopy for Optical Analysis of Thick LiNbO3 Layers Grown on Sapphire Substrates by Radio-Frequency Multistep Sputtering. J. Appl. Phys. 2003, 93, 1165–1168. [Google Scholar] [CrossRef]
- Ulrich, R.; Torge, R. Measurement of Thin Film Parameters with a Prism Coupler. Appl. Opt. 1973, 12, 2901. [Google Scholar] [CrossRef]
- Smith, D.S.; Riccius, H.D.; Edwin, R.P. Refractive Indices of Lithium Niobate. Opt. Commun. 1976, 17, 332–335. [Google Scholar] [CrossRef]
- Schlarb, U.; Betzler, K. Refractive Indices of Lithium Niobate as a Function of Temperature, Wavelength, and Composition: A Generalized Fit. Phys. Rev. B 1993, 48, 15613–15620. [Google Scholar] [CrossRef]
Main chamber pressure (10−5 mbar) | 1.59 ± 0.27 |
[Li(OtBu)]6 reservoir temperature (°C) | 89.0 ± 0.1 |
[Li(OtBu)]6 pressure (10−3 mbar) | 6.17 ± 0.31 |
Nb(OEt)4dmae reservoir temperature (°C) | 70.0 ± 0.1 |
Nb(OEt)4dmae pressure (10−3 mbar) | 29.0 ± 0.6 |
T_2.2 (°C) * | 385 ± 5 |
T_2.3 (°C) * | 402 ± 4 |
Deposition time (s) | 10,805 |
λ (nm) | n (TE) | n (TM) | Δn |
---|---|---|---|
449.5 | 2.376 | 2.262 | −0.114 |
520.7 | 2.326 | 2.217 | −0.109 |
636.6 | 2.284 | 2.175 | −0.109 |
983.9 | 2.235 | 2.146 | −0.090 |
1308.1 | 2.214 | 2.129 | −0.085 |
1548.4 | 2.207 | 2.133 | −0.074 |
λ (nm) | Δn | a | b | % Li |
---|---|---|---|---|
449.5 | −0.114 | 40.11 | −85.37 | 49.86 |
520.7 | −0.109 | 40.09 | −92.94 | 50.08 |
636.6 | −0.109 | 40.09 | −100.18 | 51.01 |
983.9 | −0.090 | 40.16 | −108.26 | 49.85 |
1308.1 | −0.085 | 40.26 | −110.52 | 48.55 |
1548.4 | −0.074 | 40.35 | −111.30 | 48.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, T.N.K.; Wagner, E.; Moalla, R.; Maudez, W.; Dogheche, K.; Bachelet, R.; Masenelli, B.; Benvenuti, G.; Rémiens, D.; Dogheche, E.H. Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties. Photonics 2024, 11, 895. https://doi.org/10.3390/photonics11100895
Bui TNK, Wagner E, Moalla R, Maudez W, Dogheche K, Bachelet R, Masenelli B, Benvenuti G, Rémiens D, Dogheche EH. Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties. Photonics. 2024; 11(10):895. https://doi.org/10.3390/photonics11100895
Chicago/Turabian StyleBui, Thanh Ngoc Kim, Estelle Wagner, Rahma Moalla, William Maudez, Karim Dogheche, Romain Bachelet, Bruno Masenelli, Giacomo Benvenuti, Denis Rémiens, and El Hadj Dogheche. 2024. "Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties" Photonics 11, no. 10: 895. https://doi.org/10.3390/photonics11100895
APA StyleBui, T. N. K., Wagner, E., Moalla, R., Maudez, W., Dogheche, K., Bachelet, R., Masenelli, B., Benvenuti, G., Rémiens, D., & Dogheche, E. H. (2024). Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties. Photonics, 11(10), 895. https://doi.org/10.3390/photonics11100895