Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = HLA-G antigen expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1318 KB  
Article
Antibody-Dependent Cytotoxicity of Monocytes in Preeclampsia Is Associated with Soluble Forms of HLA
by Aleksey M. Krasnyi, Leya E. Sorokina, Anastacia Maria Argentova-Stevens, Diana N. Kokoeva, Aleksey A. Alekseev, Tatjana Jankevic, Natalia E. Kan, Victor L. Tyutyunnik and Gennady T. Sukhikh
Int. J. Mol. Sci. 2025, 26(23), 11638; https://doi.org/10.3390/ijms262311638 - 1 Dec 2025
Viewed by 361
Abstract
Preeclampsia (PE) is a serious gestational complication that affects the lives of the mother and the child. Women with PE showed higher levels of pro-inflammatory cytokines secreted by leukocytes compared with women with normal pregnancies. The differences are most noticeable in the percentage [...] Read more.
Preeclampsia (PE) is a serious gestational complication that affects the lives of the mother and the child. Women with PE showed higher levels of pro-inflammatory cytokines secreted by leukocytes compared with women with normal pregnancies. The differences are most noticeable in the percentage of CD16+ monocytes, although the mechanism underlying this increase remains unclear. The CD16 receptor is critical for antibody-dependent cellular cytotoxicity, and by binding to antibodies on the surface of target cells, it activates their death. In this study, we examined the effect of soluble placental factors on the expression of CD16 monocytes and the potential role the soluble form of human leukocyte antigen (HLA) has on CD16 monocyte expression. At the first stage of our study, we collected samples of placental villi fragments from 58 pregnant women (38 women with PE and 20 with a healthy pregnancy). Then we studied the effect of placental villus-conditioned culture medium on CD16 expression by monocytes derived from the same women. It was shown that the content of CD16+ monocytes increased significantly in women with PE within 3 h and to a lesser extent in women with a healthy pregnancy (p = 0.009). Also, the addition of the recombinant histocompatibility HLA-B to the placental villus-conditioned culture medium blocks the induction of CD16 expression on monocytes. At the second stage of our study, we typed HLA class I and class II alleles in the umbilical cord blood samples and the venous blood samples taken from 38 women with PE and 40 women with a normal pregnancy. It was found that certain HLA class II alleles predominate in women with preeclampsia. The DRB1*01:01:01G allele showed the greatest difference (p < 0.001). Analyzing five alleles simultaneously makes it possible to predict the PE with AUC = 0.76. Evaluation of unique children’s alleles also showed that class II alleles have greater differences among them than class I alleles. The DQB1*06:03:01G allele had the greatest differences with p = 0.03 (the number was higher in the control group). Performing an analysis of four alleles of children simultaneously allowed us to predict PE with an AUC of 0.64. This work suggests that the activation of CD16+ monocyte expression occurs due to the interaction of soluble placental antigens with monocytes. The most likely way to activate CD16 expression on monocytes is by HLA class II (both maternal and fetal) interaction with CD4 receptors on the surface of monocytes, whereas HLA class I is capable of blocking this process. Evaluation of maternal HLA alleles may be a significant marker for predicting PE. Full article
(This article belongs to the Special Issue Pathogenesis of Preeclampsia: From a Molecular Perspective)
Show Figures

Figure 1

23 pages, 3798 KB  
Article
The Impact of IFN-γ Licensing on Mesenchymal Stromal Cells’ Mediated Immunoregulation and HLA Class II Expression: Emerging Evidence from In Vitro Results
by Panagiotis Mallis, Theofanis Chatzistamatiou, Evangelia Gkatzoflia, Hava Zdrava, Eirini-Faidra Sarri, Efstathios Michalopoulos, Alexandros Spyridonidis and Catherine Stavropoulos-Giokas
Int. J. Mol. Sci. 2025, 26(19), 9436; https://doi.org/10.3390/ijms26199436 - 26 Sep 2025
Viewed by 1055
Abstract
Mesenchymal stromal cells (MSCs) exert their immunoregulatory properties after licensing by inflammatory signaling cues, e.g., interferon (IFN)-γ. However, MSCs licensing by IFN-γ may result in increased expression of human leukocyte antigen (HLA) class II, which is related to rapid cell elimination, impairment of [...] Read more.
Mesenchymal stromal cells (MSCs) exert their immunoregulatory properties after licensing by inflammatory signaling cues, e.g., interferon (IFN)-γ. However, MSCs licensing by IFN-γ may result in increased expression of human leukocyte antigen (HLA) class II, which is related to rapid cell elimination, impairment of their immunosuppressive properties, and patient sensitization. The aim of this study was to evaluate the impact of IFN-γ on mediated immunoregulation and HLA class II expression. In this study, Wharton’s jelly (WJ) MSCs were isolated from human umbilical cords. Well-defined WJ-MSCs were submitted to IFN-γ exposure, and after 96 h, evaluation of biomolecule secretion and HLA class II expression was performed. Typing of HLA alleles using a next-generation sequencing (NGS) platform was performed. IFN-γ-primed WJ-MSCs secreted a high amount of immunoregulatory biomolecules, while elevated expression of HLA-DRB1 was observed. Analyses the NGS results showed the possibility of WJ-MSCs cluster formation based on their frequency of detected HLA alleles and immunoregulatory potential. Taking into consideration that IFN-γ-primed WJ-MSCs express HLA class II alleles, it is suggested that the HLA histocompatibility between allogeneic donor and recipient should be strongly considered to acquire the most beneficial outcome for the MSCs therapeutic strategy. Full article
Show Figures

Figure 1

15 pages, 7550 KB  
Article
Novel BCR-Targeting Fusion Proteins for Antigen-Specific Depletion of Alloreactive B Cells in Antibody-Mediated Rejection
by Jing Zhang, Leiyan Wei, Lei Song, Xiaofang Lu, Liang Tan, Xin Li, Li Fu, Qizhi Luo, Xubiao Xie and Yizhou Zou
Cells 2025, 14(18), 1410; https://doi.org/10.3390/cells14181410 - 9 Sep 2025
Viewed by 3507
Abstract
Donor-specific anti-HLA antibodies (DSAs) bind to donor vascular endothelial cells and mediate allograft rejection (AMR), but a clinical challenge for which targeted therapeutic options remain limited. We used a multiplexed single-antigen bead (SAB) assay to detect anti-human leukocyte antigen (HLA) antibodies. Based on [...] Read more.
Donor-specific anti-HLA antibodies (DSAs) bind to donor vascular endothelial cells and mediate allograft rejection (AMR), but a clinical challenge for which targeted therapeutic options remain limited. We used a multiplexed single-antigen bead (SAB) assay to detect anti-human leukocyte antigen (HLA) antibodies. Based on the antigens which patient’s antibodies aganist to, we developed bivalent HLA-Fc fusion proteins composed of HLA-derived antigenic domains and human IgG1-Fc effector regions (rA24-Fc and rB13-Fc). Specific binding and functional activity of the HLA-Fc proteins were further validated by flow cytometry, ELISA, complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) assays. Our findings demonstrate that the fusion proteins rA24-Fc and rB13-Fc significantly reduced HLA-specific antibody reactivity in vitro. Notably, rA24-Fc and rB13-Fc selectively bound to B-cell hybridomas (e.g., mouse W6/32 cells) expressing membrane immunoglobulins (BCR) which bound to the most HLA class I antigens. Importantly, rA24-Fc and rB13-Fc elicited antigen-specific, Fc-dependent elimination of the specific B-cell hybridomas. This study highlights HLA-Fc fusion proteins as a promising therapeutic strategy for the antigen-specific suppression of depletion of alloreactive B cells through dual cytotoxic mechanisms. This precision targeted to BCR of B cells approach is used to apply to the treatment of antibody-mediated rejection. Full article
(This article belongs to the Special Issue Mechanisms of Immune Responses and Therapy)
Show Figures

Figure 1

17 pages, 3271 KB  
Article
Ectopic HLA-II Expression in ESCC: Exploration of Its Relationship with Neoantigen Burden and Patient Survival
by Yupei Ji, Zhizhong Wang, Zhenguo Cheng, Shuangshuang Lu, Nick R. Lemoine, Renato Baleeiro, Louisa S. Chard Dunmall and Yaohe Wang
Cells 2025, 14(17), 1403; https://doi.org/10.3390/cells14171403 - 8 Sep 2025
Viewed by 859
Abstract
Ectopic expression of human leukocyte antigen class II (HLA-II) on tumor cells correlates with anti-tumor immunity and prognosis in various cancers, but its role in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: HLA-II expression was evaluated in 34 ESCC tissue sections and [...] Read more.
Ectopic expression of human leukocyte antigen class II (HLA-II) on tumor cells correlates with anti-tumor immunity and prognosis in various cancers, but its role in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: HLA-II expression was evaluated in 34 ESCC tissue sections and a 102-sample tissue microarray (TMA) using immunohistochemistry (IHC) and in 10 ESCC cell lines via flow cytometry. Transcriptome sequencing of KYSE270, KYSE180, KYSE450, and KYSE510 was performed to investigate HLA-II regulatory mechanisms, while tumor samples from 104 ESCC patients were analyzed for neoantigen load. The prognostic significance of neoantigen burden was assessed using Cox regression. Results: HLA-II was ectopically expressed in ESCC, with positivity rates of 20.59% (34 tissues) and 25.49% (TMA). Among 10 ESCC cell lines, only KYSE270 exhibited spontaneous HLA-II expression. Transcriptome analysis revealed 1278 KYSE270-specific genes enriched in immune-related pathways (e.g., “Cytokine–cytokine receptor interaction”), suggesting immune-mediated HLA-II regulation. IFN-γ stimulation induced HLA-II expression in KYSE180, KYSE450, and KYSE510, indicating broader inducible HLA-II potential. In 104 patients, MHC-II-restricted neoantigen burden varied widely (0–75) and lacked direct correlation with HLA-II expression. Additionally, MHC-II-restricted neoantigen load was not significantly associated with overall survival (p > 0.05). Conclusion: Ectopic HLA-II expression in ESCC may influence the tumor immune microenvironment, while the prognostic value of MHC-II-restricted neoantigen burden in ESCC remains unclear, providing potential implications for immunotherapy strategies. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

17 pages, 2609 KB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Viewed by 1118
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

15 pages, 2497 KB  
Article
Cytomegalovirus-Specific T-Cell-Receptor-like Antibodies Target In Vivo-Infected Human Leukocytes Inducing Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity
by Moritz Bewarder, Konstantinos Christofyllakis, Milena Petersen, Gerhard Held, Sigrun Smola, Gabi Carbon, Birgit Bette, Annika Link, Maximilian Kiefer, Joerg Thomas Bittenbring, Igor Age Kos, Vadim Lesan, Dominic Kaddu-Mulindwa, Lorenz Thurner and Frank Neumann
Int. J. Mol. Sci. 2024, 25(23), 12908; https://doi.org/10.3390/ijms252312908 - 30 Nov 2024
Viewed by 2252
Abstract
Cytomegalovirus (CMV) reactivation after stem cell or solid organ transplantation remains a major cause of morbidity and mortality in this setting. T-cell receptor (TCR)-like antibodies bind to intracellular peptides presented in major histocompatibility complex (MHC) molecules on the cell surface and may have [...] Read more.
Cytomegalovirus (CMV) reactivation after stem cell or solid organ transplantation remains a major cause of morbidity and mortality in this setting. T-cell receptor (TCR)-like antibodies bind to intracellular peptides presented in major histocompatibility complex (MHC) molecules on the cell surface and may have the potential to replace T-cell function in immunocompromised patients. Three previously selected CMV-specific, human leukocyte antigen (HLA)-restricted (HLA-A*0101, HLA-A*0201 and HLA-B*0702) Fab-antibodies (A6, C1 and C7) were produced as IgG antibodies with Fc optimization. All antibodies showed specific binding to CMV peptide-loaded tumor cell lines and primary fibroblasts expressing the corresponding MHC-I molecules, leading to specific target cell lysis after the addition of natural killer (NK) cells. When deployed in combination as an antibody pool against target cells expressing more than one matching HLA allele, cytotoxic effects were amplified accordingly. CMV-specific TCR-like antibodies were also able to mediate their cytotoxic effects through neutrophils, which is important considering the delayed recovery of NK cells after stem cell transplantation. When tested on patient blood obtained during CMV reactivation, CMV-specific antibodies were able to bind to and induce cytotoxic effects in lymphocytes. CMV-specific TCR-like antibodies may find application in patients with CMV reactivation or at risk of CMV reactivation. In contrast to previous HLA/peptide-directed therapeutic approaches, the concept of a TCR-like antibody repertoire covering more than one HLA allele would make this therapeutic format available to a much larger group of patients. Full article
(This article belongs to the Special Issue Pathogenesis and Immunology of Cytomegalovirus)
Show Figures

Figure 1

17 pages, 897 KB  
Article
Association of HLA-G Expression, Its Genetic Variants and Related Neuro-Immunomodulation with Characteristics of Bladder Carcinoma
by Vladimira Durmanova, Iveta Mikolaskova, Eszter Zsemlye, Agata Ocenasova, Helena Bandzuchova, Magda Suchankova, Boris Kollarik, Patrik Palacka, Milan Zvarik, Maria Bucova and Luba Hunakova
Cancers 2024, 16(22), 3877; https://doi.org/10.3390/cancers16223877 - 20 Nov 2024
Cited by 3 | Viewed by 2471
Abstract
Background: Human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities. It belongs to class I non-classical major histocompatibility complex molecules and has been upregulated in various cancer types. In bladder cancer (BC) tumors, the association of HLA-G [...] Read more.
Background: Human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities. It belongs to class I non-classical major histocompatibility complex molecules and has been upregulated in various cancer types. In bladder cancer (BC) tumors, the association of HLA-G with cancer progression has to be explained. Methods: A total of 89 BC patients and 74 control subjects were genotyped for the HLA-G 14 bp ins/del polymorphism. In urine cell samples, HLA-G mRNA expression was analyzed using real-time PCR. Soluble HLA-G (sHLA-G) serum levels were measured by ELISA. The associations between the HLA-G 14 bp ins/del polymorphism, HLA-G mRNA expression, and/or sHLA-G levels and selected variables including tumor grade, disease stage, body mass index, and heart rate variability (HRV) parameters were evaluated. Results: The protective HLA-G 14 bp ins/ins genotype under the recessive genetic model was associated with lower HLA-G mRNA expression in the BC group (p = 0.049). Significantly higher HLA-G mRNA expression was detected in patients with pT2 + pT3 as compared to those with pTa + pT1 stages (p = 0.0436). Furthermore, higher HLA-G mRNA expression was observed in high-grade muscle-infiltrating BC (MIBC) than in the low-grade non-MIBC group (p = 0.0365). Patients with a level of sHLA-G above 29 U/mL had shorter disease-free survival than patients with lower sHLA-G levels. Furthermore, the opposite HRV correlations with sHLA-G levels in BC patients as compared to controls probably reflect the different roles of HLA-G in health and cancer. Conclusions: Our results suggest the impact of the HLA-G 14 bp ins/del variant, HLA-G expression, and autonomic nervous system imbalance on advanced stages of BC. Full article
(This article belongs to the Topic Anti-Tumor Immune Responses 2.0)
Show Figures

Graphical abstract

27 pages, 6809 KB  
Article
Long-Term Human Immune Reconstitution, T-Cell Development, and Immune Reactivity in Mice Lacking the Murine Major Histocompatibility Complex: Validation with Cellular and Gene Expression Profiles
by Milita Darguzyte, Philipp Antczak, Daniel Bachurski, Patrick Hoelker, Nima Abedpour, Rahil Gholamipoorfard, Hans A. Schlößer, Kerstin Wennhold, Martin Thelen, Maria A. Garcia-Marquez, Johannes Koenig, Andreas Schneider, Tobias Braun, Frank Klawonn, Michael Damrat, Masudur Rahman, Jan-Malte Kleid, Sebastian J. Theobald, Eugen Bauer, Constantin von Kaisenberg, Steven R. Talbot, Leonard D. Shultz, Brian Soper and Renata Stripeckeadd Show full author list remove Hide full author list
Cells 2024, 13(20), 1686; https://doi.org/10.3390/cells13201686 - 12 Oct 2024
Cited by 1 | Viewed by 3601
Abstract
Background: Humanized mice transplanted with CD34+ hematopoietic cells (HPCs) are broadly used to study human immune responses and infections in vivo and for testing therapies pre-clinically. However, until now, it was not clear whether interactions between the mouse major histocompatibility complexes (MHCs) [...] Read more.
Background: Humanized mice transplanted with CD34+ hematopoietic cells (HPCs) are broadly used to study human immune responses and infections in vivo and for testing therapies pre-clinically. However, until now, it was not clear whether interactions between the mouse major histocompatibility complexes (MHCs) and/or the human leukocyte antigens (HLAs) were necessary for human T-cell development and immune reactivity. Methods: We evaluated the long-term (20-week) human hematopoiesis and human T-cell development in NOD Scid Gamma (NSG) mice lacking the expression of MHC class I and II (NSG-DKO). Triplicate experiments were performed with HPCs obtained from three donors, and humanization was confirmed in the reference strain NOD Rag Gamma (NRG). Further, we tested whether humanized NSG-DKO mice would respond to a lentiviral vector (LV) systemic delivery of HLA-A*02:01, HLA-DRB1*04:01, human GM-CSF/IFN-α, and the human cytomegalovirus gB antigen. Results: Human immune reconstitution was detectable in peripheral blood from 8 to 20 weeks after the transplantation of NSG-DKO. Human single positive CD4+ and CD8+ T-cells were detectable in lymphatic tissues (thymus, bone marrow, and spleen). LV delivery harnessed the detection of lymphocyte subsets in bone marrow (αβ and γδ T-cells and NK cells) and the expression of HLA-DR. Furthermore, RNA sequencing showed that LV delivery increased the expression of different human reactome pathways, such as defense responses to other organisms and viruses. Conclusions: Human T-cell development and reactivity are independent of the expression of murine MHCs in humanized mice. Therefore, humanized NSG-DKO is a promising new model for studying human immune responses, as it abrogates the xenograft mouse MHC interference. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

22 pages, 3833 KB  
Article
Viral Vector-Based Chlamydia trachomatis Vaccines Encoding CTH522 Induce Distinct Immune Responses in C57BL/6J and HLA Transgenic Mice
by Giuseppe Andreacchio, Ylenia Longo, Sara Moreno Mascaraque, Kartikan Anandasothy, Sarah Tofan, Esma Özün, Lena Wilschrey, Johannes Ptok, Dung T. Huynh, Joen Luirink and Ingo Drexler
Vaccines 2024, 12(8), 944; https://doi.org/10.3390/vaccines12080944 - 22 Aug 2024
Viewed by 2521
Abstract
Chlamydia trachomatis remains a major global health problem with increasing infection rates, requiring innovative vaccine solutions. Modified Vaccinia Virus Ankara (MVA) is a well-established, safe and highly immunogenic vaccine vector, making it a promising candidate for C. trachomatis vaccine development. In this study, [...] Read more.
Chlamydia trachomatis remains a major global health problem with increasing infection rates, requiring innovative vaccine solutions. Modified Vaccinia Virus Ankara (MVA) is a well-established, safe and highly immunogenic vaccine vector, making it a promising candidate for C. trachomatis vaccine development. In this study, we evaluated two novel MVA-based recombinant vaccines expressing spCTH522 and CTH522:B7 antigens. Our results show that while both vaccines induced CD4+ T-cell responses in C57BL/6J mice, they failed to generate antigen-specific systemic CD8+ T cells. Only the membrane-anchored CTH522 elicited strong IgG2b and IgG2c antibody responses. In an HLA transgenic mouse model, both recombinant MVAs induced Th1-directed CD4+ T cell and multifunctional CD8+ T cells, while only the CTH522:B7 vaccine generated antibody responses, underscoring the importance of antigen localization. Collectively, our data indicate that distinct antigen formulations can induce different immune responses depending on the mouse strain used. This research contributes to the development of effective vaccines by highlighting the importance of careful antigen design and the selection of appropriate animal models to study specific vaccine-induced immune responses. Future studies should investigate whether these immune responses provide protection in humans and should explore different routes of immunization, including mucosal and systemic immunization. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

11 pages, 425 KB  
Article
How the Soluble Human Leukocyte Antigen-G levels in Amniotic Fluid and Maternal Serum Correlate with the Feto-Placental Growth in Uncomplicated Pregnancies
by Márió Vincze, János Sikovanyecz, Imre Földesi, Andrea Surányi, Szabolcs Várbíró, Gábor Németh, Zoltan Kozinszky and János Sikovanyecz
Bioengineering 2024, 11(5), 509; https://doi.org/10.3390/bioengineering11050509 - 18 May 2024
Cited by 1 | Viewed by 2023
Abstract
Introduction: Trophoblast-derived angiogenic factors are considered to play an important role in the pathophysiology of various complications of pregnancy. Human Leukocyte Antigen-G (HLA-G) belongs to the non-classical human major histocompatibility complex (MHC-I) molecule and has membrane-bound and soluble forms. HLA-G is primarily expressed [...] Read more.
Introduction: Trophoblast-derived angiogenic factors are considered to play an important role in the pathophysiology of various complications of pregnancy. Human Leukocyte Antigen-G (HLA-G) belongs to the non-classical human major histocompatibility complex (MHC-I) molecule and has membrane-bound and soluble forms. HLA-G is primarily expressed by extravillous cytotrophoblasts located in the placenta between the maternal and fetal compartments and plays a pivotal role in providing immune tolerance. The aim of this study was to establish a relationship between concentrations of soluble HLA-G (sHLA-G) in maternal serum and amniotic fluid at 16–22 weeks of gestation and the sonographic measurements of fetal and placental growth. Materials and methods: sHLA-G in serum and amniotic fluid, as well as fetal biometric data and placental volume and perfusion indices, were determined in 41 singleton pregnancies with no complications. The level of sHLA-G (U/mL) was tested with a sandwich enzyme-linked immunosorbent assay (ELISA) kit. Results: The sHLA-G levels were unchanged both in amniotic fluid and serum during mid-pregnancy. The sHLA-G level in serum correlated positively with amniotic sHLA-G level (β = 0.63, p < 0.01). Serum sHLA-G level was significantly correlated with abdominal measurements (β = 0.41, p < 0.05) and estimated fetal weight (β = 0.41, p < 0.05). Conversely, amniotic sHLA-G level and placental perfusion (VI: β = −0.34, p < 0.01 and VFI: β = −0.44, p < 0.01, respectively) were negatively correlated. A low amniotic sHLA-G level was significantly associated with nuchal translucency (r = −0.102, p < 0.05). Conclusions: sHLA-G assayed in amniotic fluid might be a potential indicator of placental function, whereas the sHLA-G level in serum can be a prognostic factor for feto-placental insufficiency. Full article
Show Figures

Figure 1

13 pages, 1865 KB  
Article
Association between Plasma HLA-DR+ Placental Vesicles and Preeclampsia: A Pilot Longitudinal Cohort Study
by Marianna Onori, Rita Franco, Donatella Lucchetti, Silvio Tartaglia, Silvia Buongiorno, Giuliana Beneduce, Fabio Sannino, Silvia Baroni, Andrea Urbani, Antonio Lanzone, Giovanni Scambia, Nicoletta Di Simone and Chiara Tersigni
Cells 2024, 13(2), 196; https://doi.org/10.3390/cells13020196 - 20 Jan 2024
Cited by 4 | Viewed by 2594
Abstract
(1) Background: Preeclampsia (PE) usually presents with hypertension and proteinuria, related to poor placentation. Reduced maternal–fetal immunological tolerance is a possible trigger of inadequate placentation. Aberrant antigen expression of HLA-DR has been observed in the syncytiotrophoblast of PE patients. In this study, we [...] Read more.
(1) Background: Preeclampsia (PE) usually presents with hypertension and proteinuria, related to poor placentation. Reduced maternal–fetal immunological tolerance is a possible trigger of inadequate placentation. Aberrant antigen expression of HLA-DR has been observed in the syncytiotrophoblast of PE patients. In this study, we analyzed plasma levels of Human Leukocyte Antigen (HLA)-DR+ syncytiotrophoblast-derived extracellular vesicles (STEVs) during the three trimesters of pregnancy in relation to PE onset. (2) Methods: Pregnant women underwent venous blood sampling during the three trimesters. STEVs were collected from plasma via ultracentrifugation (120,000 g) and characterized by Western blot, nanotracking analysis and flow cytometry for the expression of Placental Alkaline Phosphatase (PLAP), a placental-derived marker, and HLA-DR. (3) Results: Out of 107 women recruited, 10 developed PE. STEVs were detected in all three trimesters of pregnancy with a zenith in the second trimester. A significant difference was found between the non-PE and PE groups in terms of plasma levels of HLA-DR+ STEVs during all three trimesters of pregnancy. (4) Conclusions: More research is needed to investigate HLA-DR+ as a potential early marker of PE. Full article
(This article belongs to the Special Issue Role of Extracellular Vesicles in Inflammatory Diseases)
Show Figures

Figure 1

12 pages, 859 KB  
Article
Low Prevalence of HLA-G Antibodies in Lung Transplant Patients Detected using MAIPA-Adapted Protocol
by Pascal Pedini, Lucas Hubert, Federico Carlini, Jean Baptiste Baudey, Audrey Tous, Francois Jordier, Agnès Basire, Claude Bagnis, Martine Reynaud-Gaubert, Benjamin Coiffard, Jacques Chiaroni, Monique Silvy and Christophe Picard
Int. J. Mol. Sci. 2023, 24(22), 16479; https://doi.org/10.3390/ijms242216479 - 18 Nov 2023
Cited by 1 | Viewed by 1754
Abstract
Lung transplantation is often complicated by acute and/or chronic rejection leading to graft-function loss. In addition to the HLA donor-specific antibodies (HLA-DSA), a few autoantibodies are correlated with the occurrence of these complications. Recently, antibodies directed against non-classical HLA molecules, HLA-G, -E, and [...] Read more.
Lung transplantation is often complicated by acute and/or chronic rejection leading to graft-function loss. In addition to the HLA donor-specific antibodies (HLA-DSA), a few autoantibodies are correlated with the occurrence of these complications. Recently, antibodies directed against non-classical HLA molecules, HLA-G, -E, and -F have been detected in autoimmune diseases, like systemic lupus erythematosus. Non-classical HLA molecules are crucial in the immunological acceptance of the lung graft, and some of their isoforms, like HLA-G*01:04 and -G*01:06, are associated with a negative clinical outcome. The aim of this study is to determine the frequency of detection of HLA-G antibodies in lung transplant recipients (LTRs) and their impact on the occurrence of clinical complications. After incubating the cell lines SPI-801, with and without three different HLA-G isoform expression, with sera from 90 healthy blood donors and 35 LTRs (before and after transplantation), HLA-G reactivity was revealed using reagents from commercial monoclonal antibody immobilization of platelet antigen assay (MAIPA ApDIA®). Only one serum from one blood donor had specific reactivity against the HLA-G transduced lines. Non-specific reactivity in many sera from LTRs was observed with transduced- and wild-type cell lines, which may suggest recognition of an autoantigen expressed by the SPI-801 cell line. In conclusion, this study allowed the development of a specific detection tool for non-denatured HLA-G antibodies. These antibodies seem uncommon, both in healthy subjects and in complicated LTRs. This study should be extended to patients suffering from autoimmune diseases as well as kidney and heart transplant recipients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 328 KB  
Article
HLA-F and LILRB1 Genetic Polymorphisms Associated with Alloimmunisation in Sickle Cell Disease
by Emmanuelle Bernit, Estelle Jean, Bastien Marlot, Laurine Laget, Caroline Izard, Isabelle Dettori, Sophie Beley, Isabelle Gautier, Imane Agouti, Coralie Frassati, Pascal Pedini, Christophe Picard, Julien Paganini, Jacques Chiaroni and Julie Di Cristofaro
Int. J. Mol. Sci. 2023, 24(17), 13591; https://doi.org/10.3390/ijms241713591 - 2 Sep 2023
Cited by 5 | Viewed by 2733
Abstract
Red blood cell (RBC) transfusion remains a critical component in caring for the acute and chronic complications of sickle cell disease (SCD). Patient alloimmunisation is the main limitation of transfusion, which can worsen anaemia and lead to delayed haemolytic transfusion reaction or transfusion [...] Read more.
Red blood cell (RBC) transfusion remains a critical component in caring for the acute and chronic complications of sickle cell disease (SCD). Patient alloimmunisation is the main limitation of transfusion, which can worsen anaemia and lead to delayed haemolytic transfusion reaction or transfusion deadlock. Although biological risk factors have been identified for immunisation, patient alloimmunisation remains difficult to predict. We aimed to characterise genetic alloimmunisation factors to optimise the management of blood products compatible with extended antigen matching to ensure the self-sufficiency of labile blood products. Considering alloimmunisation in other clinical settings, like pregnancy and transplantation, many studies have shown that HLA Ib molecules (HLA-G, -E, and -F) are involved in tolerance mechanism; these molecules are ligands of immune effector cell receptors (LILRB1, LILRB2, and KIR3DS1). Genetic polymorphisms of these ligands and receptors have been linked to their expression levels and their influence on inflammatory and immune response modulation. Our hypothesis was that polymorphisms of HLA Ib genes and of their receptors are associated with alloimmunisation susceptibility in SCD patients. The alloimmunisation profile of thirty-seven adult SCD patients was analysed according to these genetic polymorphisms and transfusion history. Our results suggest that the alloimmunisation of SCD patients is linked to both HLA-F and LILRB1 genetic polymorphisms located in their regulatory region and associated with their protein expression level. Full article
17 pages, 356 KB  
Article
HLA-G Gene Variability Is Associated with Papillary Thyroid Carcinoma Morbidity and the HLA-G Protein Profile
by Bruna C. Bertol, Guilherme Debortoli, Fabrício C. Dias, Jéssica N. G. de Araújo, Luana S. M. Maia, Bibiana S. de Almeida, Nathalie L. de Figueiredo-Feitosa, Luiz Carlos C. de Freitas, Erick C. Castelli, Celso T. Mendes-Junior, Vivian N. Silbiger, Léa M. Z. Maciel and Eduardo A. Donadi
Int. J. Mol. Sci. 2023, 24(16), 12858; https://doi.org/10.3390/ijms241612858 - 16 Aug 2023
Cited by 3 | Viewed by 2013
Abstract
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that is highly expressed in papillary thyroid carcinoma (PTC). The HLA-G gene presents several functional polymorphisms distributed across the coding and regulatory regions (5′URR: 5′ upstream regulatory region and 3′UTR: 3′ untranslated region) and [...] Read more.
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that is highly expressed in papillary thyroid carcinoma (PTC). The HLA-G gene presents several functional polymorphisms distributed across the coding and regulatory regions (5′URR: 5′ upstream regulatory region and 3′UTR: 3′ untranslated region) and some of them may impact HLA-G expression and human malignancy. To understand the contribution of the HLA-G genetic background in PTC, we studied the HLA-G gene variability in PTC patients in association with tumor morbidity, HLA-G tissue expression, and plasma soluble (sHLA-G) levels. We evaluated 185 PTC patients and 154 healthy controls. Polymorphic sites defining coding, regulatory and extended haplotypes were characterized by sequencing analyses. HLA-G tissue expression and plasma soluble HLA-G levels were evaluated by immunohistochemistry and ELISA, respectively. Compared to the controls, the G0104a(5′URR)G*01:04:04(coding)UTR-03(3’UTR) extended haplotype was underrepresented in the PTC patients, while G0104a(5′URR)G*01:04:01(coding)UTR-03(3′UTR) was less frequent in patients with metastatic and multifocal tumors. Decreased HLA-G tissue expression and undetectable plasma sHLA-G were associated with the G010102a(5′URR)G*01:01:02:01(coding)UTR-02(3′UTR) extended haplotype. We concluded that the HLA-G variability was associated with PTC development and morbidity, as well as the magnitude of the encoded protein expression at local and systemic levels. Full article
(This article belongs to the Special Issue Research Advances in Immunogenetics)
20 pages, 2321 KB  
Review
The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy
by Jia Mao, Ying Feng, Xiaofeng Zhu and Fang Ma
Biomolecules 2023, 13(8), 1213; https://doi.org/10.3390/biom13081213 - 3 Aug 2023
Cited by 21 | Viewed by 7765
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal–fetal interface during pregnancy and is essential in establishing immune tolerance. This review [...] Read more.
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal–fetal interface during pregnancy and is essential in establishing immune tolerance. This review provides a comprehensive understanding of the multiple molecular mechanisms by which HLA-G regulates the immune function of NK cells. It highlights that HLA-G binds to microRNA to suppress NK cell cytotoxicity and stimulate the secretion of growth factors to support fetal growth. The interactions between HLA-G and NK cells also activate senescence signaling, promoting spiral artery remodeling and maintaining the balance of maternal–fetal immune responses. In addition, HLA-G can inhibit the function of decidual T cells, dendritic cells, and macrophages. Overall, the interaction between trophoblast cells and immune cells mediated by HLA-G plays a crucial role in understanding immune regulation at the maternal–fetal interface and offers insights into potential treatments for pregnancy-related diseases. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

Back to TopTop