Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (168,031)

Search Parameters:
Keywords = H752

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7443 KB  
Article
Study on the Organic Geochemical Characteristics of Jurassic Source Rocks from the Northern Tibetan Plateau Basin
by Yajun Shi, Li Xu, Xinmin Ma and Jiajia Guo
Processes 2025, 13(10), 3266; https://doi.org/10.3390/pr13103266 (registering DOI) - 13 Oct 2025
Abstract
The Northern Tibetan Plateau Basin is the most extensive and least explored Mesozoic marine basin in China and shows considerable potential for oil and gas exploration. This study systematically analyzed the abundance, type, hydrocarbon generation potential, and conversion rate of organic matter within [...] Read more.
The Northern Tibetan Plateau Basin is the most extensive and least explored Mesozoic marine basin in China and shows considerable potential for oil and gas exploration. This study systematically analyzed the abundance, type, hydrocarbon generation potential, and conversion rate of organic matter within three Jurassic drill core samples from the Biloucuo area of the Northern Tibetan Plateau Basin. The total organic carbon (TOC) content of these Jurassic source rocks was >4%, on average, permitting their classification as excellent source rocks. The average contents of sapropelinite, exinite, vitrinite, and inertinite in kerogen were 74%, 4%, 18%, and 4%, respectively. The H/C and O/C ratios of the kerogen mainly ranged from 0.8 to 1.3 and 0.06 to 0.11, respectively, indicative of type II1 kerogen. The average S1 + S2 content was 15.0 mg/g rock, indicating a high hydrocarbon generation potential. On the basis of the relationship between the quantity of soluble hydrocarbons remaining in the strata and the S2 and TOC contents, it can be inferred that the hydrocarbon generation conversion rate of these Jurassic source rocks was between 25% and 50%, and partial hydrocarbon expulsion has taken place. It is estimated that the maximum oil generation potential of the formation will reach 20 kg/t rock at a greater depth, which equates to good exploration potential. Full article
Show Figures

Figure 1

11 pages, 255 KB  
Article
Comparative Analysis of Serum Lipid Profiles in Sanctuary-Housed Chimpanzees (Pan troglodytes verus) at Tacugama Chimpanzee Sanctuary
by Ethan Renfro, Anneke Moresco, Ismail Hirji, Zoë MacIntyre, Kylie McDaniel, Yedra Feltrer-Rambaud, Thalita Calvi, Larry J. Minter, Aimee Drane, Joshua C. Tremblay, Bala Amarasekaran and Kimberly Ange-van Heugten
Vet. Sci. 2025, 12(10), 985; https://doi.org/10.3390/vetsci12100985 (registering DOI) - 13 Oct 2025
Abstract
Cholesterol, triglycerides, high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), and very-low-density lipoproteins (VLDLs) were evaluated in chimpanzees at Tacugama Chimpanzee Sanctuary, Sierra Leone. Blood from 75 visually healthy chimpanzees was collected, centrifuged within one hour of collection, and analyzed at Choithram Hospital within 24 [...] Read more.
Cholesterol, triglycerides, high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), and very-low-density lipoproteins (VLDLs) were evaluated in chimpanzees at Tacugama Chimpanzee Sanctuary, Sierra Leone. Blood from 75 visually healthy chimpanzees was collected, centrifuged within one hour of collection, and analyzed at Choithram Hospital within 24 h. Statistical analyses assessed differences and interactions based on age, body condition score (BCS), housing group, and sex. HDLs varied widely by housing group; HDLs and LDLs were higher in males than in females. Cholesterol and LDLs were higher in prepubertal individuals while VLDLs and triglycerides were higher in postpubertal individuals. Lipid biomarker differences by age and age * sex statistical interactions were not observed. These data represent a novel compilation of serum lipid biomarkers from a large population of sanctuary-housed Western chimpanzees (Pan troglodytes verus) within a range country, a population not previously studied with regard to serum lipid biomarkers. This study has documented significant differences compared to known values from managed chimpanzees and human reference ranges. The relationship of serum lipid biomarkers with health and disease in great apes remains understudied, but the present data set provides a basis for future studies to ascertain whether these differences are healthy biomarker variations or represent an elevated risk factor for disease. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
22 pages, 6581 KB  
Article
Near-Field Aerodynamic Noise of Subway Trains: Comparative Mechanisms in Open Tracks vs. Confined Tunnels
by Xiao-Ming Tan, Zi-Xi Long, Cun-Rui Xiang, Xiao-Hong Zhang, Bao-Jun Fu, Xu-Long He and Yuan-Sheng Chen
Symmetry 2025, 17(10), 1724; https://doi.org/10.3390/sym17101724 (registering DOI) - 13 Oct 2025
Abstract
As the operational speeds of subway trains in China incrementally increase to 160 km/h, the enclosed nature of tunnel environments poses significant challenges by restricting free airflow. This limitation leads to intense airflow disturbances and turbulence phenomena within tunnels, consequently exacerbating aerodynamic noise [...] Read more.
As the operational speeds of subway trains in China incrementally increase to 160 km/h, the enclosed nature of tunnel environments poses significant challenges by restricting free airflow. This limitation leads to intense airflow disturbances and turbulence phenomena within tunnels, consequently exacerbating aerodynamic noise issues. This study utilizes compressible Large Eddy Simulation (LES) and acoustic finite element methods to construct a computational model of aerodynamic noise for subway trains within tunnels. It employs this model to compare and analyze the near-field noise characteristics of subway trains traveling at 120 km/h on open tracks versus in infinitely long tunnels. The findings indicate that the distribution of sound pressure levels on the surfaces of trains within tunnels is comparatively uniform, overall being 15 dB higher than those on open tracks. The presence of a high blockage ratio in tunnels intensifies the cavity flow between two air conditioning units, making it the region with the highest sound pressure level. The surface sound pressure spectrum within the tunnel shows greater similarity across different segments, with low-frequency sound pressure levels notably enhanced and high-frequency levels attenuating more rapidly compared to open tracks. It is recommended that in tunnels with high blockage ratios, the positioning of subway train air conditioning should not be too high, overly concentrated, submerged, or without the use of sound-absorbing materials. Such adjustments can effectively reduce the sound pressure levels in these areas, thereby enhancing the acoustic performance of the train within the tunnel. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

25 pages, 3342 KB  
Article
Modelling Urban Plant Diversity Along Environmental, Edaphic, and Climatic Gradients
by Tuba Gül Doğan, Engin Eroğlu, Ecir Uğur Küçüksille, Mustafa İsa Doğan and Tarık Gedik
Diversity 2025, 17(10), 706; https://doi.org/10.3390/d17100706 (registering DOI) - 13 Oct 2025
Abstract
Urbanization imposes complex environmental gradients that threaten plant diversity and urban ecosystem integrity. Understanding the multifactorial drivers that govern species distribution in urban contexts is essential for biodiversity conservation and sustainable landscape planning. This study addresses this challenge by examining the environmental determinants [...] Read more.
Urbanization imposes complex environmental gradients that threaten plant diversity and urban ecosystem integrity. Understanding the multifactorial drivers that govern species distribution in urban contexts is essential for biodiversity conservation and sustainable landscape planning. This study addresses this challenge by examining the environmental determinants of urban flora in a rapidly developing city. We integrated data from 397 floristic sampling sites and 13 environmental monitoring locations across Düzce, Türkiye. A multidimensional suite of environmental predictors—including microclimatic variables (soil temperature, moisture, light), edaphic properties (pH, EC (Electrical Conductivity), texture, carbonate content), precipitation chemistry (pH and major ions), macroclimatic parameters (CHELSA bioclimatic variables), and spatial metrics (elevation, proximity to urban and natural features)—was analyzed using nonlinear regression models and machine learning algorithms (RF (Random Forest), XGBoost, and SVR (Support Vector Regression)). Shannon diversity exhibited strong variation across land cover types, with the highest values in broad-leaved forests and pastures (>3.0) and lowest in construction and mining zones (<2.3). Species richness and evenness followed similar spatial trends. Evenness peaked in semi-natural habitats such as agricultural and riparian areas (~0.85). Random Forest outperformed other models in predictive accuracy. Elevation was the most influential predictor of Shannon diversity, while proximity to riparian zones best explained richness and evenness. Chloride concentrations in rainfall were also linked to species composition. When the models were recalibrated using only native species, they exhibited consistent patterns and maintained high predictive performance (Shannon R2 ≈ 0.937474; Richness R2 ≈ 0.855305; Evenness R2 ≈ 0.631796). Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

25 pages, 2084 KB  
Article
The Immune System in Antarctic and Subantarctic Fish of the Genus Harpagifer Is Affected by the Effects of Combined Microplastics and Thermal Increase
by Daniela P. Nualart, Pedro M. Guerreiro, Kurt Paschke, Stephen D. McCormick, Chi-Hing Christina Cheng and Luis Vargas-Chacoff
Int. J. Mol. Sci. 2025, 26(20), 9968; https://doi.org/10.3390/ijms26209968 (registering DOI) - 13 Oct 2025
Abstract
Rising ocean temperatures due to climate change, combined with the intensification of anthropogenic activity, may lead to changes in the physiology and distribution of native species. Compounding climate stress, microplastic particles (MPs) enter the oceans through wastewater and the breakdown of macroplastics. Depending [...] Read more.
Rising ocean temperatures due to climate change, combined with the intensification of anthropogenic activity, may lead to changes in the physiology and distribution of native species. Compounding climate stress, microplastic particles (MPs) enter the oceans through wastewater and the breakdown of macroplastics. Depending on their composition, they can be harmful and act as a vehicle for toxic substances, although their effects on native Antarctic and subantarctic species are unknown. Notothenioid fish are members of this group and are found inside and outside Antarctica, such as the Harpagifer, which has adapted to the cold and is particularly sensitive to thermal increases. Here, we aimed to evaluate the innate immune response in the head kidney, spleen, and foregut of two notothenoid fish, Harpagifer antarcticus and Harpagifer bispinis, exposed to elevated temperatures and PVC (polyvinyl chloride) microplastics. Adults from both species were collected on King George Island (Antarctica) and Punta Arenas (Chile), respectively. Specimens were assigned to a control group or exposed to a temperature increase (TI) or PVC microplastics (MPs), separately or in combination (MPs + TI). MP exposures were oral (gavage) for 24 h or aqueous (in a bath) for 24 and 48 h. Using real-time qPCR, we evaluated the relative gene expression of markers involved in the innate immune response, including tlr2 (toll-like receptor 2), tlr4 (toll-like receptor 4), myd88 (myeloid differentiation factor 88), nfkb (nuclear factor kb), il6 (interleukin 6), and il8 (irterleukin 8). We found differences between treatments when H. antarcticus and H. bispinis were exposed independently to MPs or thermal increase (TI) in the experiment with a cannula, showing an up-regulation in transcripts. In contrast, a down-regulation was observed when exposed in combination to MP + TI, which looked to be tissue-dependent. However, transcripts related to innate immunity in the bath experiment increased when exposure to both stressors was combined, mostly at 48 h. These results highlight the importance of evaluating the effects of multiple stressors, both independently and in combination, and whether these species will have the capacity to adapt or survive under these conditions, especially in waters where temperature is increasing and pollution is also rising, primarily from MP-PVC, a plastic widely used in various industries and among the population. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Immunology in Chile, 2nd Edition)
Show Figures

Figure 1

15 pages, 2356 KB  
Article
A Fenton Oxidation-Based Integrated Strategy for the Treatment of Raw Gasoline Alkali Residue in Kashi
by Yucai Zhang, Xianghao Zha, Zhuo Zhang, Yangyang Guo, Shuying Yang, Haonan Qiu and Zhiwei Li
Toxics 2025, 13(10), 871; https://doi.org/10.3390/toxics13100871 (registering DOI) - 13 Oct 2025
Abstract
Gasoline alkali residue raw liquid, a kind of highly toxicity containing organic waste generated during petroleum refining, is characterized by its complex composition, high pollutant levels, and significant emission volume. The effective treatment of this wastewater remains a considerable challenge in environmental engineering. [...] Read more.
Gasoline alkali residue raw liquid, a kind of highly toxicity containing organic waste generated during petroleum refining, is characterized by its complex composition, high pollutant levels, and significant emission volume. The effective treatment of this wastewater remains a considerable challenge in environmental engineering. This study systematically investigates the degradation efficiency and mechanism of Fenton oxidation in reducing the chemical oxygen demand (COD) of raw gasoline alkali residue sourced from Kashi. The effects of H2O2 concentration and the H2O2/Fe2+ molar ratio on COD and TOC removal were examined. Results demonstrated that the COD and TOC removal efficiency exhibited an initial decrease followed by an increase with rising concentrations of Fe2+ and H2O2. Comparative assessment of different combined Fenton processes revealed distinct mechanistic differences among the composite oxidation systems. The integration of pretreatment with UV-Fenton oxidation was identified as the optimal strategy. Under optimal conditions (pH = 3.0, H2O2 concentration = 1.0 mol/L, H2O2/Fe2+ molar ratio = 5:0.10), the COD was reduced from 25,041 mg/L to 543 mg/L, achieving a COD removal rate of 97.8%. This study elucidates the reaction mechanism of the Fenton system in treating alkali residue and provides a theoretical foundation for the advanced treatment of high-concentration organic wastewater. Full article
(This article belongs to the Special Issue Technology and Principle of Removing Pollutants in Water)
12 pages, 1479 KB  
Article
Structure-Guided In-Use Stability Assessment of Monoclonal Antibody Tislelizumab
by David Andre Rudd and Ghizal Siddiqui
Pharmaceuticals 2025, 18(10), 1539; https://doi.org/10.3390/ph18101539 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: Monoclonal antibody (mAb) stability is critical not only during manufacturing but also at the point of clinical administration. For therapies like tislelizumab (Tevimbra), a programmed death-1 (PD-1) targeting IgG mAb, delays in dosing often result in prepared infusions being discarded, contributing [...] Read more.
Background/Objectives: Monoclonal antibody (mAb) stability is critical not only during manufacturing but also at the point of clinical administration. For therapies like tislelizumab (Tevimbra), a programmed death-1 (PD-1) targeting IgG mAb, delays in dosing often result in prepared infusions being discarded, contributing to substantial drug waste despite being engineered for improved stability. Methods: To evaluate the physicochemical in-use stability of tislelizumab in a ready-to-administer format, we mapped degradation pathways, including post-translational modifications (PTMs); peptide alterations; pH and solution characteristics—under 12-month storage (ultra-long), under 1-month storage (0, 7, 14, 21, 28 and 31 days), and under exposure-related forced degradation conditions including room temperature, elevated temperature, pH (acidic/basic), oxidation and UV exposure. Structural analysis was contextualised to the known PD-1 binding site, making stability assessment relevant to tislelizumab’s mechanism-of-action in blocking PD-1. To assess solution stability, a validated size-exclusion chromatography (SEC) assay was applied to all conditions. Results: Aggregation was identified as the primary degradation pathway during ultra-long-term storage. SEC and chemical assessment revealed no measurable changes in protein quantity, aggregation, peptide integrity, or PTM profile over 31 days at 2–8 °C in polyolefin intravenous bags (1.6 mg/mL). Conclusions: These results support the structural and physicochemical stability of tislelizumab under refrigerated conditions. Full article
(This article belongs to the Topic Optimization of Drug Utilization and Medication Adherence)
Show Figures

Graphical abstract

10 pages, 945 KB  
Communication
Development of New Amide Derivatives of Betulinic Acid: Synthetic Approaches and Structural Characterization
by Qinwei Xu, Yuhan Xie, Jin Qi, Zimo Ren, Carmine Coluccini and Paolo Coghi
Molbank 2025, 2025(4), M2072; https://doi.org/10.3390/M2072 (registering DOI) - 13 Oct 2025
Abstract
In this study, we report the synthesis of three new derivatives of betulinic acid, a pentacyclic triterpenoid known for its antitumor activity. These derivatives were synthesized via amide bond formation at the C-28 position using 3-[(Ethylimino)methylidene]amino-N,N-dimethylpropan-1-amine (EDC)/Hydroxybenzotriazole (HOBt) activation [...] Read more.
In this study, we report the synthesis of three new derivatives of betulinic acid, a pentacyclic triterpenoid known for its antitumor activity. These derivatives were synthesized via amide bond formation at the C-28 position using 3-[(Ethylimino)methylidene]amino-N,N-dimethylpropan-1-amine (EDC)/Hydroxybenzotriazole (HOBt) activation and various amines as nucleophiles. The synthesized compounds were characterized by nuclear magnetic resonance (NMR) techniques, including proton (1H), carbon-13 (13C), COSY, HSQC, and DEPT, as well as ultraviolet–visible (UV-VIS) spectroscopy, Fourier-transform infrared (IR) and elemental analysis. This work highlights the potential of semi-synthetic modification of betulinic acid to enhance anticancer properties while addressing challenges in solubility and bioavailability. Further structural optimization and formulation studies are warranted to improve drug-like properties and therapeutic applicability. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

15 pages, 596 KB  
Article
Variation in Child Stunting and Association with Maternal and Child Dietary Intakes in Rural Kenya: A One-Year Prospective Study
by Madoka Kishino, Azumi Hida, Kazuko Ishikawa-Takata, Yuki Tada, Lucy Kariuki, Patrick Maundu, Hirotaka Matsuda, Kenji Irie and Yasuyuki Morimoto
Dietetics 2025, 4(4), 46; https://doi.org/10.3390/dietetics4040046 (registering DOI) - 13 Oct 2025
Abstract
Objectives: Few studies have examined maternal dietary intakes in relation to children’s malnutrition status. We examined variations in children stunting status and their association with maternal and child dietary intakes. Methods: This one-year prospective study (conducted from November 2021 to December 2022) consisted [...] Read more.
Objectives: Few studies have examined maternal dietary intakes in relation to children’s malnutrition status. We examined variations in children stunting status and their association with maternal and child dietary intakes. Methods: This one-year prospective study (conducted from November 2021 to December 2022) consisted of up to four surveys carried out in rural Kenya. It included 135 pairs of children aged 12–59 months and their non-pregnant mothers, all of whom had received nutrition guidance during the study. Dietary intakes were assessed in four non-consecutive 24 h dietary recalls during the first two surveys. Anthropometric measurements were taken at most four times, and variations in children stunting status (not-stunted, recovered-from-stunting, or persistent/worsened stunting) were assessed. Maternal and child dietary intakes, based on variations in stunting status, were compared using one-way analysis of covariance adjusted for socio-demographic variables. Results: Of the 135 children studied, 40 (29.6%) were stunted at baseline, whereas 85, 20, and 30 had no stunting, recovered from stunting, or had persistent/worsened stunting. Children with persistent/worsened stunting had a significantly lower energy intake than other children; however, maternal energy intake did not differ by children’s stunting status. Milk intake was significantly lower among children with persistent/worsening stunting than other children. A similar difference based on variations in stunting was also observed for maternal milk intake. Conclusions for Practice: The mothers of rural Kenyan children who had recovered from stunting consumed the most milk, while the mothers of children with persistent/worsening consumed the least milk. Further research is needed to confirm the factors behind the observed intake differences. Full article
Show Figures

Figure 1

18 pages, 1340 KB  
Article
Genetic Characterization and Pathogenesis of Highly Pathogenic Avian Influenza Virus A (H5N1) Isolated in Egypt During 2021–2023
by Mina Nabil Kamel, Yassmin Moatasim, Basma Emad Aboulhoda, Mokhtar Gomaa, Ahmed El Taweel, Omnia Kutkat, Mohamed El Sayes, Mohamed GabAllah, Hend AbdAllah, Refaat M. Gabre, Maha M. AlKhazindar, Ahmed Kandeil, Pamela P. McKenzie, Richard J. Webby, Mohamed Ahmed Ali, Ghazi Kayali and Rabeh El-Shesheny
Viruses 2025, 17(10), 1370; https://doi.org/10.3390/v17101370 (registering DOI) - 13 Oct 2025
Abstract
Highly pathogenic avian influenza (HPAI) viruses have recently had a substantial impact on global poultry production and public health. In Egypt, clade 2.3.4.4b HPAI H5N1 viruses were first isolated from wild birds in 2021 and then became dominant in domestic poultry. In this [...] Read more.
Highly pathogenic avian influenza (HPAI) viruses have recently had a substantial impact on global poultry production and public health. In Egypt, clade 2.3.4.4b HPAI H5N1 viruses were first isolated from wild birds in 2021 and then became dominant in domestic poultry. In this study, we aimed to genetically characterize the H5N1 viruses isolated in Egypt during 2021–2023 and examine the pathogenicity and transmissibility of two H5N1 strains isolated from wild and domestic poultry in chickens. We collected 7588 specimens from live bird markets including poultry, wild birds, and environmental samples. Influenza A viruses were detected in 20.94% (484/2311) of tested samples, and 17 isolates were identified as H5N1 through complete genome sequencing. Phylogenetic analysis revealed that all H5N1 viruses were closely related to Eurasian viruses and classified into three distinct genetic groups, suggesting multiple introductions likely linked to migratory birds. Experimental infections of chickens with two H5N1 isolates, A/Pintail/Egypt/RA19853OP/2021 and A/duck/Egypt/BA20361C/2022, showed efficient replication, systemic infection, and transmission by direct contact. These findings underscore the need for continued surveillance of H5N1 at the poultry-wild bird interface to identify circulating strains, evaluate their biological characteristics, and assess their zoonotic potential. Full article
(This article belongs to the Section General Virology)
19 pages, 3696 KB  
Article
Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion
by Dhananjaya Merum, Rama Krishna Chava and Misook Kang
Nanomaterials 2025, 15(20), 1559; https://doi.org/10.3390/nano15201559 (registering DOI) - 13 Oct 2025
Abstract
The rational design of multifunctional electrocatalysts requires synergistic integration of conductive scaffolds with redox-active components. Here, a hierarchical core–shell NiCo2S4 grown/anchored on Co9S8-loaded carbon nanofibers (NCS/CS/CNFs) was synthesized via an electrospinning and hydrothermal approach and systematically [...] Read more.
The rational design of multifunctional electrocatalysts requires synergistic integration of conductive scaffolds with redox-active components. Here, a hierarchical core–shell NiCo2S4 grown/anchored on Co9S8-loaded carbon nanofibers (NCS/CS/CNFs) was synthesized via an electrospinning and hydrothermal approach and systematically characterized. FESEM/TEM confirmed a core-shell nanofiber structure with a NiCo2S4 shell thickness of ~30–70 nm, increasing the fiber diameter to ~290 ± 30 nm, while BET analysis revealed a surface area of 24.84 m2 g−1 and pore volume of 0.042 cm3 g−1, surpassing CS/CNFs (6.12 m2 g−1) and NCS (4.85 m2 g−1). XRD confirmed crystalline NiCo2S4 and Co9S8 phases, while XPS identified mixed Ni2+/Ni3+ and Co2+/Co3+ states with strong Ni-S/Co-S bonding, indicating enhanced electron delocalization. Electrochemical measurements in 1 M KOH demonstrated outstanding OER activity, with NCS/CS/CNFs requiring only 324 mV overpotential at 10 mA cm−2, a Tafel slope of 125.7 mV dec−1, and low charge-transfer resistance (0.33 Ω cm2). They also achieved a high areal capacitance of 1412.5 μF cm−2 and maintained a stable current density for >5 h. For methanol oxidation, the composite delivered 150 mA cm−2 at 0.1 M methanol, ~1.6 times that of CS and 1.3 times that of NCS, while maintaining stability for 18,000 s. This bifunctional activity underscores the synergy between conductive CNFs and hierarchical sulfides, offering a scalable route to durable electrocatalysts for water splitting and direct methanol fuel cells. Full article
(This article belongs to the Special Issue Design and Application of Nanomaterials in Photoenergy Conversions)
Show Figures

Graphical abstract

20 pages, 2818 KB  
Article
Tunable Fly Ash-Based Geopolymer Fibers for Multivariate Heavy-Metal Adsorption: Optimization and Mechanistic Insights
by Gongming Luo, Yuanbing Zhou, Shuangquan Liao and Sujitra Onutai
Materials 2025, 18(20), 4698; https://doi.org/10.3390/ma18204698 (registering DOI) - 13 Oct 2025
Abstract
This study presents the fabrication and performance optimization of porous fly ash-based geopolymer (FAGP)–polyethersulfone (PES) composite fibers with tunable FAGP loading for the multivariate adsorption of heavy-metal ions from aqueous solutions. Fibers containing 20 wt%, 40 wt%, and 60 wt% FAGP were prepared [...] Read more.
This study presents the fabrication and performance optimization of porous fly ash-based geopolymer (FAGP)–polyethersulfone (PES) composite fibers with tunable FAGP loading for the multivariate adsorption of heavy-metal ions from aqueous solutions. Fibers containing 20 wt%, 40 wt%, and 60 wt% FAGP were prepared using phase inversion method and were characterized using X-ray computed tomography and mechanical testing. Adsorption experiments were conducted to assess the removal efficiencies of Pb2+, Cd2+, Cu2+, and Ni2+ at different pH values, temperatures, contact times, adsorbent dosage and initial metal-ion concentrations. The composite containing 60 wt% FAGP exhibited the high performance for all ions, and its performance was especially high for Pb2+. The isotherm and kinetic modeling revealed that the adsorption process followed Freundlich and Redlich–Peterson models, with mixed chemisorption–physisorption mechanisms depending on the metal-ion type. Compared with conventional adsorbents, the optimized composite fibers exhibited high adsorption capacity, enhanced handling suitability, and scalability in addition to their sustainability owing to the use of industrial by-products as precursors. These findings provide new insights into the structure–function relationships of FAGP composite fiber adsorbents and their potential for wastewater treatment applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

21 pages, 8957 KB  
Article
Autonomous Navigation of Unmanned Ground Vehicles Based on Micro-Shell Resonator Gyroscope Rotary INS Aided by LDV
by Hangbin Cao, Yuxuan Wu, Longkang Chang, Yunlong Kong, Hongfu Sun, Wenqi Wu, Jiangkun Sun, Yongmeng Zhang, Xiang Xi and Tongqiao Miao
Drones 2025, 9(10), 706; https://doi.org/10.3390/drones9100706 (registering DOI) - 13 Oct 2025
Abstract
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its [...] Read more.
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its bias varies as an even-harmonic function of the pattern angle, which leads to difficulty in estimating and compensating the bias based on the MSRG in the process of attitude measurement. In this paper, an attitude measurement method based on virtual rotation self-calibration and rotary modulation is proposed for the MSRG–RINS to address this problem. The method utilizes the characteristics of the two operating modes of the MSRG, the force-rebalanced mode and whole-angle mode, to perform virtual rotation self-calibration, thereby eliminating the characteristic bias of the MSRG. In addition, the reciprocating rotary modulation method is used to suppress the residual bias of the MSRG. Furthermore, the magnetometer-aided initial alignment of the MSRG–RINS is carried out and the state-transformation extended Kalman filter is adopted to solve the large misalignment-angle problem under magnetometer assistance so as to enhance the rapidity and accuracy of initial attitude acquisition. Results from real-world experiments substantiated that the proposed method can effectively suppress the influence of MSRG’s bias on attitude measurement, thereby achieving high-precision autonomous navigation in GNSS-denied environments. In the 1 h, 3.7 km, long-range in-vehicle autonomous navigation experiments, the MSRG–RINS, integrated with a Laser Doppler Velocimetry (LDV), attained a heading accuracy of 0.35° (RMS), a horizontal positioning error of 4.9 m (RMS), and a distance-traveled accuracy of 0.24% D. Full article
Show Figures

Figure 1

22 pages, 1656 KB  
Article
Investigation into the Multiphase Product Distribution and Evolution During Biomass Pyrolysis Using Wheat Straw and Pine Sawdust
by Jishuo Li, Kaili Xu, Xiwen Yao and Xingyu Luo
Energies 2025, 18(20), 5397; https://doi.org/10.3390/en18205397 (registering DOI) - 13 Oct 2025
Abstract
Understanding the formation mechanisms of three-phase products during biomass pyrolysis is essential for optimizing thermochemical conversion and enhancing the efficient utilization of renewable resources. In this study, wheat straw (WS) and pine sawdust (PS) were selected as representative feedstocks to investigate the thermal [...] Read more.
Understanding the formation mechanisms of three-phase products during biomass pyrolysis is essential for optimizing thermochemical conversion and enhancing the efficient utilization of renewable resources. In this study, wheat straw (WS) and pine sawdust (PS) were selected as representative feedstocks to investigate the thermal decomposition behavior and evolution characteristics of gas, liquid (tar), and solid (char) products during pyrolysis. Thermogravimetric analysis and kinetic modeling revealed that PS exhibited higher activation energy (75.44 kJ/mol) than WS (65.63 kJ/mol), indicating greater thermal resistance. Tar yield increased initially and then declined with temperature, peaking at 700 °C (37.79% for PS and 32.82% for WS), while the composition shifted from oxygenated compounds to polycyclic aromatic hydrocarbons as temperature rose. FTIR analysis demonstrated that most functional group transformations in char occurred below 400 °C, with aromatic structures forming above 300 °C and stabilizing beyond 700 °C. Gas product evolution showed that WS produced higher CO and H2 yields due to its composition, with CH4 generated in relatively lower amounts. These findings provide insights into biomass pyrolysis mechanisms and offer a theoretical basis for targeted regulation of product distributions in bioenergy applications. Full article
14 pages, 1986 KB  
Article
Responses of Growth and Secondary Metabolites in Fish Mint (Houttuynia cordata Thunb.) Cuttings to Far-Red Light
by Zi-Yi Wang, Kuan-Hung Lin, Yen-Chi Yin and Chang-Chang Chen
Horticulturae 2025, 11(10), 1237; https://doi.org/10.3390/horticulturae11101237 (registering DOI) - 13 Oct 2025
Abstract
Fish mint (Houttuynia cordata Thunb.) is an aromatic herb used as food and medicine across Asia. We evaluated how far-red (FR) light influences growth and secondary metabolites in the non-flowering cultivar ‘BCV02’ propagated by cuttings. Seedlings were grown for 14 days under [...] Read more.
Fish mint (Houttuynia cordata Thunb.) is an aromatic herb used as food and medicine across Asia. We evaluated how far-red (FR) light influences growth and secondary metabolites in the non-flowering cultivar ‘BCV02’ propagated by cuttings. Seedlings were grown for 14 days under FR at 35, 50, and 70 μmol m−2 s−1 (as FR35, 50, and 70, respectively) or without FR (as control, CK). All FR treatments increased plant height but reduced the shoot/rhizome ratio. Total chlorophyll and carotenoid contents were unchanged, while the chlorophyll a/b ratio declined from 2.37 (CK) to 2.15 (FR70). In shoots, combined 3-, 4-, and 5-O-caffeoylquinic acids with rutin, hyperoside, isoquercitrin, and quercitrin reached 12.61–13.83 mg g−1 dry weight (DW) under FR treatments, exceeding CK (8.48 mg g−1 DW). However, in rhizomes, these secondary metabolite contents ranged 0.82–1.00 mg g−1 DW across all treatments. On a per-pot basis, the highest accumulated compounds (4.37 mg per pot) occurred at FR35. Overall, growth and secondary metabolite biosynthesis in fish mint cuttings respond differently to changes in FR treatments, with FR35 optimizing compound accumulation. Quercitrin in shoots was 0.09–0.20 mg g−1 DW and not quantifiable in rhizomes, potentially below pharmacopeial thresholds specified in the Taiwan Herbal Pharmacopeia and Hong Kong Chinese Materia Medica Standards. These results underscore the importance of aligning cultivar choice, light regime, and market specifications to secure both yield and quality of H. cordata. Full article
Back to TopTop