Variation in Child Stunting and Association with Maternal and Child Dietary Intakes in Rural Kenya: A One-Year Prospective Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Assessment of Variation in Children’s Stunting Status
2.3. Assessment of Maternal and Child Dietary Intakes
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Variation in Children’s Stunting Status
3.2. Characteristics of Participants
3.3. Children’s and Mothers’ Energy and Nutrient Intakes
3.4. Children’s and Mothers’ Food Group Intakes
Never Stunted (n = 85) | Recovered from Stunting (n = 20) | Persistent/Worsened Stunting (n = 30) | p-Value (crude) * | p-Value (adjusted) † | |
Children’s intake | |||||
Energy (kcal) | 1124 (962, 1343)a | 1068 (923, 1265)b | 972 (840, 1150)ab | 0.013 | 0.002 |
Energy (kcal/kgBM) | 91 (76, 109) | 95 (82, 117) | 94 (77, 101) | 0.596 | 0.460 |
Protein (g) | 27.8 (22.7, 35.3)a | 25.0 (22.9, 32.2)b | 23.1 (19.8, 28.8)ab | 0.034 | 0.005 |
Protein (g/kgBM) | 2.2 (1.9, 2.7) | 2.4 (2.1, 2.9) | 2.2 (1.9, 2.7) | 0.451 | 0.436 |
Animal protein (g) | 5.3 (3.4, 8.1) | 6.4 (3.3, 11.3)a | 2.8 (1.4, 5.8)a | 0.005 | 0.003 |
Plant protein (g) | 21.5 (17.4, 27.6)a | 19.9 (17.1, 23.2) | 20.2 (17.4, 21.4)a | 0.232 | 0.018 |
Fat (g) | 27.7 (23.7, 34.2) | 25.6 (22.5, 40.7)a | 22.6 (18.4, 30.3)a | 0.039 | 0.004 |
Carbohydrate (g) | 179.4 (154.3, 210.9)a | 173.3 (146.8, 190.4) | 150.8 (131.9, 172.8)a | 0.006 | 0.002 |
Fibre (g) | 23.0 (18.8, 29.5) | 22.3 (17.9, 25.1) | 20.4 (18.1, 25.1) | 0.198 | 0.119 |
Calcium (mg) | 419 (325, 526) | 435 (290, 611)a | 306 (268, 450)a | 0.044 | 0.012 |
Magnesium (mg) | 192 (150, 231) | 177 (158, 207) | 164 (138, 195) | 0.086 | 0.076 |
Iron (mg) | 9.4 (7.5, 11.8) | 9.0 (7.0, 12.6) | 8.2 (6.9, 10.5) | 0.317 | 0.163 |
Zinc (mg) | 5.1 (4.2, 6.1) | 4.9 (4.3, 6.0) | 4.3 (3.6, 5.3) | 0.082 | 0.062 |
Vitamin A (μgRAE) | 169 (140, 235) | 196 (129, 240) | 146 (112, 190) | 0.141 | 0.050 |
Vitamin B1 (mg) | 0.65 (0.53, 0.78) | 0.56 (0.49, 0.72) | 0.53 (0.48, 0.70) | 0.105 | 0.060 |
Vitamin B2 (mg) | 0.74 (0.58, 0.93)a | 0.84 (0.51, 1.06)b | 0.51 (0.39, 0.81)ab | 0.002 | <0.001 |
Niacin (μg) | 7.1 (6.2, 8.5)a | 6.7 (4.9, 8.1) | 5.9 (5.2, 7.4)a | 0.059 | 0.049 |
Vitamin B12 (μg) | 1.6 (0.8, 2.7)a | 2.3 (0.8, 3.9)ab | 0.9 (0.4, 1.8)b | 0.028 | 0.018 |
Folate (μg) | 267 (214, 326) | 252 (197, 336) | 238 (151, 302) | 0.140 | 0.157 |
Vitamin C (mg) | 60 (49, 78) | 65 (41, 83) | 52 (39, 80) | 0.307 | 0.268 |
Mothers’ intake | |||||
Energy (kcal) | 1931 (1669, 2231) | 1901 (1633, 2229) | 1749 (1477, 2074) | 0.052 | 0.140 |
Energy (kcal/kgBM) | 31 (25, 39) | 32 (27, 38) | 30 (24, 36) | 0.697 | 0.614 |
Protein (g) | 50.2 (43.1, 56.3) | 48 (41.5, 57.7) | 46.2 (38.6, 52.7) | 0.197 | 0.392 |
Protein (g/kgBM) | 0.8 (0.7, 1) | 0.8 (0.7, 1) | 0.8 (0.7, 0.9) | 0.763 | 0.748 |
Animal protein (g) | 6.7 (3.8, 9.8) | 9.5 (5.9, 13.1)a | 5.1 (2.2, 10.1)a | 0.014 | 0.036 |
Plant protein (g) | 42.1 (35.6, 47.7) | 38.1 (33.4, 43.1) | 39.4 (36.1, 42.8) | 0.161 | 0.191 |
Fat (g) | 42.5 (36.5, 52.6) | 44.2 (37.4, 59.6) | 38.6 (28, 45.5) | 0.037 | 0.057 |
Carbohydrate (g) | 309.9 (263.1, 361.1) | 291.7 (250.7, 347.6) | 273.3 (232.5, 315.2) | 0.080 | 0.175 |
Fibre (g) | 44.9 (36.7, 50.9) | 40.5 (36.2, 45.7) | 42.7 (33.5, 49.4) | 0.313 | 0.377 |
Calcium (mg) | 615 (508, 816) | 679 (456, 890) | 538 (412, 733) | 0.091 | 0.330 |
Magnesium (mg) | 328 (273, 381) | 300 (266, 375) | 289 (241, 328) | 0.176 | 0.438 |
Iron (mg) | 16.2 (13.9, 18.1) | 14.7 (12.2, 18) | 14.4 (12.4, 18.6) | 0.225 | 0.571 |
Zinc (mg) | 9 (8, 10.6) | 8.6 (7.4, 10.7) | 8.7 (6.8, 10.3) | 0.383 | 0.696 |
Vitamin A (μgRAE) | 237 (186, 304) | 222 (184, 330) | 216 (170, 259) | 0.212 | 0.405 |
Vitamin B1 (mg) | 1.16 (0.98, 1.32) | 1.00 (0.88, 1.2) | 1.08 (0.86, 1.23) | 0.153 | 0.209 |
Vitamin B2 (mg) | 1.07 (0.84, 1.32) | 1.05 (0.77, 1.66) | 0.92 (0.68, 1.25) | 0.073 | 0.267 |
Niacin (μg) | 12 (10.3, 13.5) | 10.8 (9.1, 12.9) | 10.8 (9.4, 12.2) | 0.090 | 0.200 |
Vitamin B12 (μg) ‡ | 2.2 (1.4, 3.4) | 3.5 (1.6, 5) | 2 (1.1, 2.9) | 0.093 | 0.355 |
Folate (μg) | 475 (391, 538) | 377 (337, 528) | 427 (325, 534) | 0.136 | 0.481 |
Vitamin C (mg) | 77 (61, 98) | 80 (61, 103) | 72 (56, 90) | 0.486 | 0.391 |
Never Stunted (n = 85) | Recovered from Stunting (n = 20) | Persistent/Worsened Stunting (n = 30) | p-Value | ||||||
Consumers (%) | Median (IQR) (g) | Consumers (%) | Median (IQR) (g) | Consumers (%) | Median (IQR) (g) | Consumers (%) * | Intake † | Intake (adjusted) ‡ | |
Children’s intake | |||||||||
Grains and cereals total | 100.0 | 326 (251, 409) | 100.0 | 327 (214, 366) | 100.0 | 303 (252, 375) | - | 0.711 | 0.137 |
Maize | 100.0 | 212 (150, 270) | 100.0 | 186 (160, 291) | 100.0 | 186 (145, 253) | - | 0.739 | 0.510 |
Bread/Wheat flour § | 67.1 | 77 (56, 95) | 55.0 | 57 (54, 68) | 63.3 | 58 (49, 77) | 0.592 | 0.067 | 0.200 |
Rice | 83.5 | 188 (152, 232) | 70.0 | 170 (144, 212) | 76.7 | 189 (141, 247) | 0.328 | 0.523 | 0.491 |
Other cereals | 43.5 | 32 (27, 44) | 50.0 | 32 (30, 36) | 46.7 | 35 (30, 40) | 0.857 | 0.906 | 0.975 |
Potatoes, tubers and starches | 71.8 | 138 (97, 216) | 85.0 | 96 (83, 164) | 60.0 | 131 (101, 160) | 0.157 | 0.164 | 0.110 |
Sugar | 100.0 | 22 (14, 32) | 100.0 | 27 (21, 35) | 100.0 | 14 (10, 28) | - | 0.018 | 0.105 |
Nuts and seeds | 7.1 | 53 (21, 120) | 15.0 | 17 (15, 44) | 3.3 | - | 0.309 | - | - |
Dark green leafy vegetables ** | 96.5 | 61 (49, 75) | 85.0 | 59 (50, 91) | 100.0 | 57 (52, 77) | 0.056 | 0.869 | 0.867 |
Vitamin A rich fruits and vegetables †† | 57.6 | 166 (80, 222) | 55.0 | 162 (144, 256) | 36.7 | 160 (115, 228) | 0.137 | 0.703 | 0.714 |
Other vegetables ‡‡ | 100.0 | 47 (36, 64)a | 100.0 | 65 (48, 86)ab | 100.0 | 48 (33, 67)b | - | 0.040 | <0.001 |
Other fruits §§ | 57.6 | 131 (107, 180) | 65.0 | 118 (108, 160) | 63.3 | 135 (92, 184) | 0.762 | 0.803 | 0.512 |
Pulses | 75.3 | 93 (58, 133) | 80.0 | 83 (51, 106) | 86.7 | 83 (51, 97) | 0.468 | 0.321 | 0.147 |
Fish, meat and egg total | 57.6 | 40 (30, 51) | 55.0 | 40 (36, 48) | 40.0 | 43 (34, 64) | 0.247 | 0.784 | 0.788 |
Milk and dairy products | 97.6 | 108 (79, 152)a | 100.0 | 118 (69, 218)b | 93.3 | 79 (48, 100)ab | 0.312 | 0.003 | 0.004 |
Oils and fats | 100.0 | 14 (10, 17) | 100.0 | 14 (9, 19) | 100.0 | 13 (9, 14) | - | 0.433 | 0.078 |
Confectioneries | 62.4 | 55 (42, 72) | 70.0 | 62 (53, 73) | 53.3 | 55 (48, 74) | 0.477 | 0.267 | 0.175 |
Beverages | 95.3 | 328 (167, 573)a | 95.0 | 232 (205, 580) | 100.0 | 206 (129, 289)a | 0.530 | 0.024 | 0.018 |
Seasonings | 100.0 | 3 (2.3, 4.2) | 100.0 | 3.4 (2.9, 5.1) | 100.0 | 2.8 (2.2, 4.3) | - | 0.254 | 0.053 |
Mothers’ intake | |||||||||
Grains and cereals total | 100.0 | 667 (594, 762) | 100.0 | 607 (541, 752) | 100.0 | 648 (535, 720) | - | 0.319 | 0.386 |
Maize | 100.0 | 535 (414, 632) | 100.0 | 486 (437, 591) | 100.0 | 491 (394, 639) | - | 0.806 | 0.697 |
Bread/Wheat flour | 69.4 | 108 (85, 137) | 60.0 | 97 (84, 109) | 66.7 | 108 (85, 138) | 0.718 | 0.411 | 0.285 |
Rice § | 75.3 | 324 (273, 395) | 70.0 | 304 (221, 336) | 70.0 | 321 (274, 367) | 0.798 | 0.444 | 0.393 |
Other cereals | 24.7 | 31 (22, 39) | 20.0 | 27 (26, 28) | 16.7 | 36 (30, 38) | 0.726 | 0.613 | 0.547 |
Potatoes, tubers and starches | 61.2 | 250 (147, 352) | 75.0 | 181 (144, 252) | 56.7 | 181 (149, 280) | 0.402 | 0.420 | 0.098 |
Sugar | 100.0 | 30 (20, 51) | 100.0 | 36 (22, 50) | 100.0 | 21 (16, 36) | - | 0.038 | 0.430 |
Nuts and seeds | 9.4 | 42 (31, 90) | 10.0 | 48 (9, 87) | 3.3 | - | 0.650 | - | - |
Dark green leafy vegetables ** | 97.6 | 113 (98, 129) | 85.0 | 115 (108, 127) | 93.3 | 105 (92, 123) | 0.035 | 0.245 | 0.855 |
Vitamin A rich fruits and vegetables †† | 41.2 | 169 (143, 292) | 30.0 | 205 (145, 268) | 26.7 | 240 (162, 299) | 0.298 | 0.637 | 0.972 |
Other vegetables ‡‡ | 100.0 | 77 (58, 100)a | 100.0 | 108 (65, 140)ab | 100.0 | 71 (49, 101)b | - | 0.085 | 0.003 |
Other fruits §§ | 35.3 | 148 (126, 197) | 55.0 | 186 (112, 203) | 46.7 | 162 (126, 242) | 0.205 | 0.810 | 0.675 |
Pulses | 82.4 | 195 (140, 253) | 75.0 | 177 (130, 220) | 93.3 | 181 (150, 227) | 0.187 | 0.613 | 0.649 |
Fish, meat and egg total | 54.1 | 61 (49, 84) | 65.0 | 70 (54, 83) | 40.0 | 66 (55, 94) | 0.200 | 0.689 | 0.910 |
Milk and dairy products § | 96.5 | 120 (91, 156) | 95.0 | 164 (109, 198)a | 96.7 | 108 (80, 128)a | 0.825 | 0.003 | 0.011 |
Oils and fats | 100.0 | 21 (16, 28) | 100.0 | 23 (16, 32) | 100.0 | 20 (14, 24) | - | 0.405 | 0.176 |
Confectioneries § | 57.6 | 86 (78, 96) | 60.0 | 75 (53, 99) | 43.3 | 80 (78, 87) | 0.352 | 0.369 | 0.243 |
Beverages | 100.0 | 515 (365, 837) | 100.0 | 536 (350, 792) | 100.0 | 407 (306, 600) | - | 0.086 | 0.266 |
Seasonings | 100.0 | 5.9 (4.8, 7.3) | 100.0 | 6 (5.6, 8.9) | 100.0 | 5 (3.8, 6.8) | - | 0.091 | 0.053 |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNICEF. Nutrition, for Every Child: UNICEF Nutrition Strategy 2020–2030; United Nations Children’s Fund: New York, NY, USA, 2020. [Google Scholar]
- De Sanctis, V.; Soliman, A.; Alaaraj, N.; Ahmed, S.; Alyafei, F.; Hamed, N. Early and Long-term Consequences of Nutritional Stunting: From Childhood to Adulthood. Acta Biomed. 2021, 92, e2021168. [Google Scholar] [CrossRef] [PubMed]
- Crookston, B.T.; Penny, M.E.; Alder, S.C.; Dickerson, T.T.; Merrill, R.M.; Stanford, J.B.; Porucznik, C.A.; Dearden, K.A. Children who recover from early stunting and children who are not stunted demonstrate similar levels of cognition. J. Nutr. 2010, 140, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Crookston, B.T.; Schott, W.; Cueto, S.; Dearden, K.A.; Engle, P.; Georgiadis, A.; A Lundeen, E.; E Penny, M.; Stein, A.D.; Behrman, J.R. Postinfancy growth, schooling, and cognitive achievement: Young Lives1234. Am. J. Clin. Nutr. 2013, 98, 1555–1563. [Google Scholar] [CrossRef]
- Yang, S.; Tilling, K.; Martin, R.; Davies, N.; Ben-Shlomo, Y.; Kramer, M.S. Pre-natal and post-natal growth trajectories and childhood cognitive ability and mental health. Int. J. Epidemiol. 2011, 40, 1215–1226. [Google Scholar] [CrossRef]
- Abu-Saad, K.; Fraser, D. Maternal nutrition and birth outcomes. Epidemiol. Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Amugsi, D.A.; Mittelmark, M.B.; Oduro, A. Association between maternal and child dietary diversity: An analysis of the Ghana Demographic and Health Survey. PLoS ONE 2015, 10, e0136748. [Google Scholar] [CrossRef]
- Guja, T.; Melaku, Y.; Andarge, E. Concordance of mother-child (6–23 months) dietary diversity and its associated factors in Kucha District, Gamo Zone, Southern Ethiopia: A community-based cross-sectional study. J. Nutr. Metab. 2021, 2021, 8819846. [Google Scholar] [CrossRef]
- Kishino, M.; Hida, A.; Ishikawa-Takata, K.; Tada, Y.; Kariuki, L.; Maundu, P.; Matsuda, H.; Irie, K.; Morimoto, Y. Relationship of dietary intake between children aged 12–59 months and their mothers in rural Kenya: A cross-sectional study in two seasons. J. Hum. Nutr. Diet. 2023, 37, 491–502. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Avula, R.; Ruel, M.T.; Saha, K.K.; Ali, D.; Tran, L.M.; Frongillo, E.A.; Menon, P.; Rawat, R. Maternal and child dietary diversity are associated in Bangladesh, Vietnam, and Ethiopia. J. Nutr. 2013, 143, 1176–1183. [Google Scholar] [CrossRef]
- Hasan, M.; Islam, M.M.; Mubarak, E.; Haque, M.A.; Choudhury, N.; Ahmed, T. Mother’s dietary diversity and association with stunting among children <2 years old in a low socio-economic environment: A case-control study in an urban care setting in Dhaka, Bangladesh. Matern. Child. Nutr. 2019, 15, e12665. [Google Scholar] [CrossRef]
- Morimoto, Y. Agrobiodiversity Diet Diagnosis Interventions Toolkit (ADD-IT)|Alliance Bioversity International—CIAT. @BiovIntCIAT_eng. 2022. Available online: https://alliancebioversityciat.org/tools-innovations/agrobiodiversity-diet-diagnosis-interventions-toolkit-add-it (accessed on 1 October 2025).
- Kaburu, E.; Kaburi, L.; Okero, D. Factors influencing the functionality of community-based health information systems in Embakasi Sub-County, Nairobi County, Kenya. Int. J. Sci. Res. Publ. 2016, 6, 514–519. [Google Scholar]
- World Health Organization. WHO Child Growth Standards: Length/Height-For-Age, Weight-For-Age, Weight-For-Length, Weight-For-Height and Body Mass Index-For-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Gibson, R.S.; Charrondiere, U.R.; Bell, W. Measurement errors in dietary assessment using self-reported 24-hour recalls in low-income countries and strategies for their prevention. Adv. Nutr. Int. Rev. J. 2017, 8, 980–991. [Google Scholar] [CrossRef]
- FAO; Government of Kenya. Kenya Food Composition Tables; FAO: Nairobi, Kenya, 2018; Available online: http://www.fao.org/3/i8897en/I8897EN.pdf (accessed on 1 October 2025).
- Lukmanji, Z.; Hertzmark, E.; Mlingi, N.; Assey, V.; Ndossi, G.; Fawzi, W. Tanzania Food Composition Tables; MUHAS-TFNC, HSPH: Dar Es Salaam Tanzania, The United Republic of Tanzania, 2008. [Google Scholar]
- Vincent, A.; Grande, F.; Compaoré, E. FAO/INFOODS Food Composition Table for Western Africa 2019. User Guide & Condensed Food Composition Table; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- FAO; Government of Kenya. Kenyan Food Recipes: A Recipe Book of Common Mixed Dishes with Nutrient Values; as Prepared by Communities; FAO: Nairobi, Kenya, 2018; Available online: http://www.fao.org/3/i9056en/I9056EN.pdf (accessed on 1 October 2025).
- FAO; FHI 360. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016; Volume 82. [Google Scholar]
- Harttig, U.; Haubrock, J.; Knuppel, S.; Boeing, H.; Consortium, E. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S87–S91. [Google Scholar] [CrossRef]
- Hjelm, L.; Mathiassen, A.; Miller, D.; Wadhwa, A. VAM Guidance Paper: Creation of a Wealth Index; World Food Program: Rome, Italy, 2017; Available online: https://www.scribd.com/document/555255860/WFP-0000022418 (accessed on 30 November 2024).
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- FAO/WHO/UNU. Human energy requirements: Report of a joint FAO/WHO/UNU Expert Consultation. Food Nutr. Bull. 2005, 26, 166. [Google Scholar]
- Naila, N.N.; Mahfuz, M.; Hossain, M.; Arndt, M.; Walson, J.L.; Nahar, B.; Ahmed, T. Improvement in appetite among stunted children receiving nutritional intervention in Bangladesh: Results from a community-based study. Eur. J. Clin. Nutr. 2021, 75, 1359–1367. [Google Scholar] [CrossRef]
- Haile, B.; Headey, D. Growth in milk consumption and reductions in child stunting: Historical evidence from cross-country panel data. Food Policy 2023, 118, 102485. [Google Scholar] [CrossRef]
- de Beer, H. Dairy products and physical stature: A systematic review and meta-analysis of controlled trials. Econ. Hum. Biol. 2012, 10, 299–309. [Google Scholar] [CrossRef] [PubMed]
- FAO; GDP; IFCN. Dairy’s Impact on Reducing Global Hunger; Food and Agriculture Organization of the United Nations, Global Dairy Platform and IFCN Dairy Research Network: Chicago, IL, USA, 2020. [Google Scholar]
- Herber, C.; Bogler, L.; Subramanian, S.V.; Vollmer, S. Association between milk consumption and child growth for children aged 6–59 months. Sci. Rep. 2020, 10, 6730. [Google Scholar] [CrossRef] [PubMed]
- Long, J.K.; Murphy, S.P.; Weiss, R.E.; Nyerere, S.; Bwibo, N.O.; Neumann, C.G. Meat and milk intakes and toddler growth: A comparison feeding intervention of animal-source foods in rural Kenya. Public Health Nutr. 2012, 15, 1100–1107. [Google Scholar] [CrossRef]
- Mosites, E.; Aol, G.; Otiang, E.; Bigogo, G.; Munyua, P.; Montgomery, J.M.; Neuhouser, M.L.; Palmer, G.H.; Thumbi, S.M. Child height gain is associated with consumption of animal-source foods in livestock-owning households in Western Kenya. Public Health Nutr. 2017, 20, 336–345. [Google Scholar] [CrossRef]
- Nachvak, S.M.; Sadeghi, O.; Moradi, S.; Esmailzadeh, A.; Mostafai, R. Food groups intake in relation to stunting among exceptional children. BMC Pediatrics 2020, 20, 394. [Google Scholar] [CrossRef] [PubMed]
- Kishino, M.; Hirose, M.; Hida, A.; Tada, Y.; Ishikawa-Takata, K.; Hara, K.; Irie, K.; Maundu, P.; Morimoto, Y. Characteristics of dietary intake in relation to the consumption of home-produced foods among farm women in two rural areas of Kenya: A preliminary study. Dietetics 2022, 1, 242–254. [Google Scholar] [CrossRef]
- Willett, W.C.; Ludwig, D.S. Milk and Health. N. Engl. J. Med. 2020, 382, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Traoré, F.; Omolo, M.; Beal, T.; Nordhagen, S.; Codjia, P.; Kiige, L.; Kamudoni, P.; Arimi, C.; Kirogo, V.; Ortenzi, F.; et al. Modelling policies to improve affordability and consumption of nutritious foods for complementary feeding in Kenya. Matern. Child Nutr. 2024, 20, e13519. [Google Scholar] [CrossRef]
- Tanaka, J.; Yoshizawa, K.; Hirayama, K.; Karama, M.; Wanjihia, V.; Changoma, M.S.; Kaneko, S. Relationship between dietary patterns and stunting in preschool children: A cohort analysis from Kwale, Kenya. Public Health 2019, 173, 58–68. [Google Scholar] [CrossRef]
- Faye, C.M.; Fonn, S.; Levin, J. Factors associated with recovery from stunting among under-five children in two Nairobi informal settlements. PLoS ONE 2019, 14, e0215488. [Google Scholar] [CrossRef]
Survey Timing | Overall (n = 135) | Variation in Child Stunting During the Study Period | ||||||||||
Not Stunted (n = 85) | Recovered from Stunting (n = 20) | Persistent/Worsened Stunting (n = 30) | ||||||||||
HAZ | Stunted | Missing | HAZ | Stunted | Missing | HAZ | Stunted | Missing | HAZ | Stunted | Missing | |
Survey 1 (Nov.–Dec. 2021) | −1.25 ± 1.25 | 40 (29.6) | 0 (0.0) | −0.51 ± 0.85 | 0 (0.0) | 0 (0.0) | −2.35 ± 0.77 | 15 (75.0) | 0 (0.0) | −2.61 ± 0.60 | 25 (83.3) | 0 (0.0) |
Survey 2 (Feb.–Mar. 2022) | −1.27 ± 1.15 | 33 (25.0) | 3 (2.2) | −0.63 ± 0.85 | 0 (0.0) | 3 (3.5) | −1.98 ± 0.71 | 10 (50.0) | 0 (0.0) | −2.54 ± 0.69 | 23 (76.7) | 0 (0.0) |
Survey 3 (Jun. 2022) | −1.11 ± 1.15 | 27 (21.1) | 7 (5.2) | −0.49 ± 0.85 | 0 (0.0) | 6 (7.1) | −1.66 ± 0.84 | 9 (45.0) | 0 (0.0) | −2.42 ± 0.68 | 18 (62.1) | 1 (3.4) |
Survey 4 (Oct.–Nov. 2022) | −1.20 ± 1.03 | 29 (23.4) | 11 (8.1) | −0.62 ± 0.73 | 0 (0.0) | 8 (9.4) | −1.46 ± 0.43 | 0 (0.0) | 2 (10.0) | −2.57 ± 0.48 | 29 (100.0) | 1 (3.4) |
Not Stunted (n = 85) | Recovered from Stunting (n = 20) | Persistent/Worsened Stunting (n = 30) | p-Value † | ||||
County | |||||||
Vihiga | 43 | 50.6% | 12 | 60.0% | 11 | 36.7% | 0.237 |
Kitui | 42 | 49.4% | 8 | 40.0% | 19 | 63.3% | |
Characteristics of households | |||||||
Family size (number of persons) | 6.0 | (5.0, 7.0) | 6.0 | (4.0, 6.0) | 6.0 | (5.0, 7.0) | 0.366 |
Number of children under five | 1.0 | (1.0, 2.0) | 1.5 | (1.0, 2.0) | 2.0 | (1.0, 2.0) | 0.217 |
Wealth index | |||||||
Poorer | 27 | 31.8% | 9 | 45.0% | 13 | 43.3% | 0.641 |
Middle | 25 | 29.4% | 6 | 30.0% | 8 | 26.7% | |
Richer | 33 | 38.8% | 5 | 25.0% | 9 | 30.0% | |
Characteristics of Children | |||||||
Male | 40 | 47.1% | 15 | 75.0% | 14 | 46.7% | 0.068 |
Female | 45 | 52.9% | 5 | 25.0% | 16 | 53.3% | |
Age (months) 1 | 26.0 | (20.0, 37.0) | 22.5 | (19.5, 32.5) | 28.0 | (20.0, 39.0) | 0.456 |
The last-born 1 | 78 | 91.8% | 18 | 90.0% | 27 | 90.0% | 0.829 |
Exclusive breastfeeding during the first 6 months | 67 | 78.8% | 12 | 60.0% | 24 | 80.0% | 0.198 |
Characteristics of Mothers | |||||||
Age (years) 1 | 32.0 | (28.0, 36.0) a | 31.0 | (29.0, 35.5) | 29.0 | (23.0, 31.0) a | 0.013 |
Maternal education | |||||||
Less than primary (less than 8 years) | 36 | 42.4% | 5 | 25.0% | 20 | 66.7% | 0.553 |
Completed primary (between 8 and 12 years) | 34 | 40.0% | 9 | 45.0% | 2 | 6.7% | |
Higher than secondary (more than 12 years) | 15 | 17.6% | 6 | 30.0% | 7 | 23.3% | |
Height (cm) 1 | 159.3 | (155.5, 163.0) | 156.6 | (154.1, 159.1) | 156.5 | (152.3, 161.6) | 0.030 |
BMI (kg/m2) 1 | 23.6 | (21.5, 26.9) | 23.5 | (22.1, 25.2) | 22.1 | (19.9, 28.2) | 0.260 |
Underweight | 2 | 2.4% | 0 | 0.0% | 2 | 6.7% | 0.290 |
Normal weight | 48 | 56.5% | 15 | 75.0% | 19 | 63.3% | |
Overweight | 26 | 30.6% | 3 | 15.0% | 4 | 13.3% | |
Obesity | 9 | 10.6% | 2 | 10.0% | 5 | 16.7% | |
Lactating 2 | 39 | 45.9% | 11 | 55.0% | 14 | 46.7% | 0.760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishino, M.; Hida, A.; Ishikawa-Takata, K.; Tada, Y.; Kariuki, L.; Maundu, P.; Matsuda, H.; Irie, K.; Morimoto, Y. Variation in Child Stunting and Association with Maternal and Child Dietary Intakes in Rural Kenya: A One-Year Prospective Study. Dietetics 2025, 4, 46. https://doi.org/10.3390/dietetics4040046
Kishino M, Hida A, Ishikawa-Takata K, Tada Y, Kariuki L, Maundu P, Matsuda H, Irie K, Morimoto Y. Variation in Child Stunting and Association with Maternal and Child Dietary Intakes in Rural Kenya: A One-Year Prospective Study. Dietetics. 2025; 4(4):46. https://doi.org/10.3390/dietetics4040046
Chicago/Turabian StyleKishino, Madoka, Azumi Hida, Kazuko Ishikawa-Takata, Yuki Tada, Lucy Kariuki, Patrick Maundu, Hirotaka Matsuda, Kenji Irie, and Yasuyuki Morimoto. 2025. "Variation in Child Stunting and Association with Maternal and Child Dietary Intakes in Rural Kenya: A One-Year Prospective Study" Dietetics 4, no. 4: 46. https://doi.org/10.3390/dietetics4040046
APA StyleKishino, M., Hida, A., Ishikawa-Takata, K., Tada, Y., Kariuki, L., Maundu, P., Matsuda, H., Irie, K., & Morimoto, Y. (2025). Variation in Child Stunting and Association with Maternal and Child Dietary Intakes in Rural Kenya: A One-Year Prospective Study. Dietetics, 4(4), 46. https://doi.org/10.3390/dietetics4040046