Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,400)

Search Parameters:
Keywords = H/F-effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5079 KB  
Article
Naproxen Degradation Using NiO Synthesized via Ultrasonic Spray Pyrolysis on Ni–Fe Foam by Ozone
by George Luis Morejón Aguila, Julia Liliana Rodríguez Santillán, Tatyana Poznyak, Yair Cruz Narváez, Héctor F. Mendoza León, Luis Lartundo Rojas, Claudia Jazmín Ramos Torres and José J. Castro Arellano
Catalysts 2025, 15(10), 993; https://doi.org/10.3390/catal15100993 (registering DOI) - 17 Oct 2025
Abstract
Naproxen (NPX), a nonsteroidal anti-inflammatory drug, is considered an emerging contaminant due to its persistence and potential environmental risks. In this study, NPX degradation was investigated through ozonation using nickel–iron foam (NiFeF) and NiO-modified NiFeF (NiO/NiFeF). The effect of the foam size was [...] Read more.
Naproxen (NPX), a nonsteroidal anti-inflammatory drug, is considered an emerging contaminant due to its persistence and potential environmental risks. In this study, NPX degradation was investigated through ozonation using nickel–iron foam (NiFeF) and NiO-modified NiFeF (NiO/NiFeF). The effect of the foam size was investigated using three configurations: S1 (1 cm × 2.5 cm), S2 (2 cm × 2.5 cm), and S3 (2 cm × 5 cm). Complete NPX removal was achieved in all systems, with degradation times of 4 min for ozonation alone, 2 min for NiFeF-S1, and 1 min for NiO/NiFeF-S2 and NiO/NiFeF-S3. The NiO/NiFeF catalyst was synthesized via ultrasonic spray pyrolysis, resulting in a porous structure with abundant active sites. Compared with conventional ozonation, NiO/NiFeF-S1 improved the total organic carbon (TOC) removal rate by 6.2-fold and maintained 87.5% of its activity after five reuse cycles, demonstrating excellent stability. High-resolution mass spectrometry revealed that catalytic ozonation generated fewer by-products (22 vs. 27 for ozonation alone) and promoted more selective pathways, including demethylation, ring-opening oxidation, and partial mineralization to CO2 and H2O. This enhanced performance is attributed to the synergy between NiO and NiFeF, which facilitates reactive oxygen species generation and electron transfer. These results demonstrate the potential of NiO/NiFeF as an efficient and stable catalyst for pharmaceutical removal from water. Full article
18 pages, 1877 KB  
Article
Factors Driving Amyloid Beta Fibril Recognition by Cell Surface Receptors: A Computational Study
by Olivia Slater and Maria Kontoyianni
Molecules 2025, 30(20), 4116; https://doi.org/10.3390/molecules30204116 - 17 Oct 2025
Abstract
Alzheimer’s disease (AD) has been studied extensively and is characterized by plaques deposited throughout the brain. Plaques are made of beta-amyloid (Aβ) peptides which have undergone fibrillogenesis to form insoluble Aβ fibrils (fAβ) that are neurotoxic. Receptor for [...] Read more.
Alzheimer’s disease (AD) has been studied extensively and is characterized by plaques deposited throughout the brain. Plaques are made of beta-amyloid (Aβ) peptides which have undergone fibrillogenesis to form insoluble Aβ fibrils (fAβ) that are neurotoxic. Receptor for Advanced Glycation End end products (RAGE), toll-like receptors (TLRs) 2 and 4, and co-receptor CD14 recognize negatively charged binding regions on fAβ to activate microglia and release proinflammatory cytokines. In this study, we used two experimentally resolved fAβ structures (type I and II) isolated from AD brain tissue to elucidate binding patterns of fAβ with RAGE, TLR2, TLR4, and CD14 and investigated whether binding was affected by fibril structure or system pH. Receptors TLR2 and RAGE formed tight complexes with both type I and II fibrils, while TLR4 showed selectivity for type I. CD14 binding was less tight and selective for type II. Binding was pH dependent for CD14, TLR4, and RAGE but not TLR2. We explored the effects of familial mutations on fibril structure to determine whether mutants of type I or II structures are feasible. Finally, we investigated whether mutations affected binding interactions of fAβ with proteins. The Arctic (Glu22Gly), Dutch (Glu22Gln), and Iowa (Asp23Asn) mutations showed similar effects on binding affinity. Italian (Glu22Lys) mutations abrogated binding, whereas type I and II fibrils with Flemish (Ala21Gly) mutations were not shown to be feasible. Results highlight the adaptability of immune receptors in recognizing damaging molecules, with fibril structure and pH being the main recognition determinants predicated on disease progression. In silico mutations showed that aggregates similar to type I and II structures were plausible for some familial mutations. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

31 pages, 8232 KB  
Article
Self-Supervised Condition Monitoring for Wind Turbine Gearboxes Based on Adaptive Feature Selection and Contrastive Residual Graph Neural Network
by Wanqian Yang, Mingming Zhang and Jincheng Yu
Energies 2025, 18(20), 5474; https://doi.org/10.3390/en18205474 - 17 Oct 2025
Abstract
Frequent failures in wind turbines underscore the critical need for accurate and efficient online monitoring and early warning systems to detect abnormal conditions. Given the complexity of monitoring numerous components individually, subsystem-level monitoring emerges as a practical and effective alternative. Among all subsystems, [...] Read more.
Frequent failures in wind turbines underscore the critical need for accurate and efficient online monitoring and early warning systems to detect abnormal conditions. Given the complexity of monitoring numerous components individually, subsystem-level monitoring emerges as a practical and effective alternative. Among all subsystems, the gearbox is particularly critical due to its high failure rate and prolonged downtime. However, achieving both efficiency and accuracy in gearbox condition monitoring remains a significant challenge. To tackle this issue, we present a novel adaptive condition monitoring method specifically for wind turbine gearbox. The approach begins with adaptive feature selection based on correlation analysis, through which a quantitative indicator is defined. With the utilization the selected features, graph-based data representations are constructed, and a self-supervised contrastive residual graph neural network is developed for effective data mining. For online monitoring, a health index is derived using distance metrics in a multidimensional feature space, and statistical process control is employed to determine failure thresholds. This framework enables real-time condition tracking and early warning of potential faults. Validation using SCADA data and maintenance records from two wind farms demonstrates that the proposed method can issue early warnings of abnormalities 30 to 40 h in advance, with anomaly detection accuracy and F1 score both exceeding 90%. This highlights its effectiveness, practicality, and strong potential for real-world deployment in wind turbine monitoring applications. Full article
Show Figures

Figure 1

17 pages, 574 KB  
Article
Early Postoperative C-Reactive Protein Trajectories After Thoracic Surgery: A Retrospective Cohort Study
by Ilker Kolbas, Berivan Karatekin, Esra Ergun Alış and Irfan Cicin
Biomedicines 2025, 13(10), 2532; https://doi.org/10.3390/biomedicines13102532 - 17 Oct 2025
Abstract
Background: Distinguishing expected postoperative inflammation from early infection remains challenging after thoracic surgery; serial C-reactive protein (CRP) is widely used to aid this differentiation. Methods: We conducted a single-centre retrospective cohort study of adults undergoing thoracic surgery (1 January 2022–31 December 2024). CRP [...] Read more.
Background: Distinguishing expected postoperative inflammation from early infection remains challenging after thoracic surgery; serial C-reactive protein (CRP) is widely used to aid this differentiation. Methods: We conducted a single-centre retrospective cohort study of adults undergoing thoracic surgery (1 January 2022–31 December 2024). CRP was measured preoperatively and on postoperative days (POD) 1–5; trajectories were compared by surgical approach and extent of resection using repeated-measures ANOVA with Greenhouse–Geisser correction (α = 0.05). Results: Among 144 patients (VATS n = 79; open thoracotomy n = 65; extent: segmentectomy n = 25, lobectomy n = 96, bilobectomy n = 9, pneumonectomy n = 14), overall CRP rose from 26.6 ± 45.0 mg/L preoperatively to a POD2 peak of 200.9 ± 72.7 mg/L, then declined to 118.1 ± 70.7 mg/L by POD5. Thoracotomy showed higher peaks than VATS (POD2 216.1 ± 76.0 vs. 152.3 ± 29.9 mg/L; POD3 206.7 ± 88.7 vs. 159.8 ± 72.4 mg/L), but time × approach was not statistically significant (F = 1.042, p = 0.381; partial η2 = 0.115). The extent analysis showed the highest peaks with pneumonectomy (POD2 273.7 ± 46.3 mg/L) compared with bilobectomy (155.7 ± 11.0 mg/L) and lobectomy (VATS 132.1 ± 3.7, open 196.8 ± 85.3 mg/L); time × extent was not significant (F = 1.136, p = 0.384; partial η2 = 0.299). The overall effect of time did not reach significance (F = 1.127, p = 0.352; partial η2 = 0.124), reflecting variability. Patients with clinically diagnosed infections exhibited more prolonged CRP elevation, often >100 mg/L beyond POD4, whereas uncomplicated cases declined after the POD2 peak; these trends did not achieve statistical significance in this cohort. Conclusions: Early postoperative CRP in thoracic surgery typically peaks at 48–72 h and then falls. Higher peaks with open surgery and more extensive resection were observed but not statistically confirmed; persistence > 100 mg/L after POD3–4 may flag complications. Prospective studies are needed to validate thresholds and refine CRP-based surveillance pathways. Full article
(This article belongs to the Special Issue Multisystem Crosstalk in Health and Disease)
Show Figures

Figure 1

21 pages, 7786 KB  
Article
Engineered Mors1 Enzyme from the Antarctic Bacterium Moraxella TA144 for Enhanced Thermal Stability and Activity for Polyethylene Terephthalate Degradation
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(10), 3320; https://doi.org/10.3390/pr13103320 - 16 Oct 2025
Abstract
Plastic pollution, particularly from polyethylene terephthalate (PET), poses significant environmental concerns due to ecosystem persistence and extensive packaging use. Conventional recycling methods face inefficiencies, high costs, and limited scalability, necessitating sustainable alternatives. Biodegradation via PET hydrolases offers promising eco-friendly solutions, although most natural [...] Read more.
Plastic pollution, particularly from polyethylene terephthalate (PET), poses significant environmental concerns due to ecosystem persistence and extensive packaging use. Conventional recycling methods face inefficiencies, high costs, and limited scalability, necessitating sustainable alternatives. Biodegradation via PET hydrolases offers promising eco-friendly solutions, although most natural PET-degrading enzymes are thermophilic and require energy-intensive high temperatures. In contrast, psychrophilic enzymes function efficiently at extremely low temperatures but often lack stability under moderate conditions. Therefore, this study aimed to enhance the ability of the Mors1 enzyme from Moraxella TA144 to operate effectively under mesophilic conditions, which is closer to the optimal conditions for environmental application. Three strategic hydrophobic substitutions (K93I, E221I, and R235F) were introduced in loop regions, generating the mutant variant Mors1MUT. Comparative characterization revealed that Mors1MUT retained 98% of its activity at pH 9 and displayed greater resilience across both acidic and alkaline conditions than did the wild-type enzyme. Thermal stability assays revealed that Mors1MUT preserved 61% of its activity at 40 °C and 14% at 50 °C, whereas the wild-type enzyme was fully inactivated at these temperatures. The enzymatic hydrolysis of PET films significantly improved with Mors1MUT. Gravimetric analysis revealed weight losses of 0.83% for Mors1WT and 3.46% for Mors1MUT after a 12-day incubation period. This corresponds to a 4.16-fold increase in hydrolysis efficiency, confirming the enhanced catalytic performance of the mutant variant. The improvement was further validated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) analysis. Optimization of the reaction parameters through response surface methodology (enzyme load, time, pH, temperature, and agitation) confirmed increased PET hydrolysis under mild mesophilic conditions. These findings establish Mors1MUT as a robust mesophilic PETase with enhanced catalytic efficiency and thermal stability, representing a promising candidate for sustainable PET degradation under environmentally relevant conditions. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
24 pages, 2726 KB  
Article
Phosphate-Solubilizing Bacteria from Different Genera, Host Plants, and Climates: Influence of Soil pH on Plant Growth and Biochemistry
by Jacinta Santos, Paulo Cardoso, Ricardo Rocha, Ricardo Pinto, Tiago Lopes, Carla Patinha, Rosa Guilherme, António Ferreira and Etelvina Figueira
Land 2025, 14(10), 2065; https://doi.org/10.3390/land14102065 - 16 Oct 2025
Abstract
Phosphorus (P) is an essential element for plant growth, yet it is only available to plants in the form of orthophosphate. In most soils, P occurs predominantly in insoluble forms, such as calcium phosphates in alkaline soils and aluminum/iron phosphates in acidic soils, [...] Read more.
Phosphorus (P) is an essential element for plant growth, yet it is only available to plants in the form of orthophosphate. In most soils, P occurs predominantly in insoluble forms, such as calcium phosphates in alkaline soils and aluminum/iron phosphates in acidic soils, limiting plant uptake. Fertilization is commonly used to overcome this limitation; however, large fractions of applied P rapidly become unavailable. Phosphorus-solubilizing bacteria (PSB) are a sustainable alternative to enhance P availability. This study evaluated the P-solubilization capacity of bacterial strains belonging to different genera isolated from different host plants, soil types, and climates (mainland Portugal, Cape Verde, and Angola). Following initial screening, the most efficient strains were tested under greenhouse conditions in soils with pH 7 and 8. Strains exhibited diverse solubilization capacities, with highly efficient PSB (phosphate solubilization index ≥ 2) accounting for 5% of the total isolates, predominantly originating from the Namib Desert (Angola) and Southern Portugal, and mainly belonging to the genera Pseudomonas, Flavobacterium, Enterobacter, Chryseobacterium and Pantoea. At pH 7, most PSB promoted maize growth, with strain C11 increasing plant P content around 2-fold compared to the control. At pH 8, fewer strains were effective, but strains F and C11 enhanced shoot weight and M shoot length by 28%, 27%, and 10%, respectively. These findings highlight the potential of selected PSB strains as next-generation bioinoculants for sustainable agriculture. However, strain selection must consider geography, crop type, and management practices to ensure consistent efficacy, thereby supporting the broader application of PSB as a precision tool for improving food security. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

15 pages, 379 KB  
Article
Bias-Corrected Method of Moments Estimation of the Hurst Parameter for Improved Option Pricing Under the Fractional Black-Scholes Model
by Hana Sagor, Edward L. Boone and Ryad Ghanam
J. Risk Financial Manag. 2025, 18(10), 588; https://doi.org/10.3390/jrfm18100588 - 16 Oct 2025
Abstract
The Hurst parameter H plays a critical role in modeling long-memory behavior in financial time series, particularly within the framework of the fractional Black–Scholes model (fBSM). While the Method of Moments (MOM) provides a fast, closed-form estimator for H, it suffers from [...] Read more.
The Hurst parameter H plays a critical role in modeling long-memory behavior in financial time series, particularly within the framework of the fractional Black–Scholes model (fBSM). While the Method of Moments (MOM) provides a fast, closed-form estimator for H, it suffers from increasing negative bias, especially as H grows beyond 0.6. This paper proposes a bias-corrected version of the MOM estimator based on a quadratic regression fit derived from simulation data. The corrected estimator substantially reduces estimation error while retaining computational efficiency. Through extensive simulations, we quantify the impact of MOM bias on option pricing and demonstrate how our correction method leads to more accurate pricing under the fBSM. We apply the methodology to real financial assets—including Natural Gas, Apple, Gold, and Crude Oil—and show that the corrected Hurst estimates reduce option pricing error by up to USD 0.47 per contract relative to the uncorrected estimator, depending on the asset’s volatility structure. These results underscore the importance of accurate Hurst parameter estimation for derivative pricing, particularly in volatile markets such as energy and commodities, while also remaining relevant to equities and precious metals. The corrected estimator thus offers practitioners a simple yet effective tool to improve financial decision-making. Full article
(This article belongs to the Section Mathematics and Finance)
Show Figures

Figure 1

30 pages, 6643 KB  
Article
Experimental and Machine Learning-Based Investigation on Forced Convection Heat Transfer Characteristics of Al2O3–Water Nanofluid in a Rotating Hypergravity Condition
by Zufen Luo, Gen Li, Jianxun Xie, Xiaojie Zhang, Yunbo Wang and Xiande Fang
Aerospace 2025, 12(10), 931; https://doi.org/10.3390/aerospace12100931 (registering DOI) - 15 Oct 2025
Abstract
This study experimentally investigates single-phase forced convection heat transfer and flow characteristics of Al2O3-water nanofluids under rotating hypergravity conditions ranging from 1 g to 5.1 g. While nanofluids offer enhanced thermal properties for advanced cooling applications in aerospace and [...] Read more.
This study experimentally investigates single-phase forced convection heat transfer and flow characteristics of Al2O3-water nanofluids under rotating hypergravity conditions ranging from 1 g to 5.1 g. While nanofluids offer enhanced thermal properties for advanced cooling applications in aerospace and rotating machinery, their performance under hypergravity remains poorly understood. Experiments employed a custom centrifugal test rig with a horizontal test section (D = 2 mm, L = 200 mm) operating at constant heat flux. Alumina nanoparticles (20–30 nm) were dispersed in deionized water at mass fractions of 0.02–0.5 wt%, with stability validated through transmittance measurements over 72 h. Heat transfer coefficients (HTC), Nusselt numbers (Nu), friction factors (f), and pressure drops were measured across Reynolds numbers from 500 to 30,000. Results demonstrate that hypergravity significantly enhances heat transfer, with HTC increasing by up to 40% at 5.1 g compared to 1 g, most pronounced at the transition from 1 g to 1.41 g. This enhancement is attributed to intensified buoyancy-driven secondary flows quantified by increased Grashof numbers and modified particle distribution. Friction factors increased moderately (15–25%) due to Coriolis effects and enhanced viscous dissipation. Optimal performance occurred at 0.5 wt% concentration, effectively balancing thermal enhancement against pumping penalties. Random forest (RF) and eXtreme gradient boosting (XGBoost) achieved R2 = 0.9486 and 0.9625 in predicting HTC, respectively, outperforming traditional correlations (Gnielinski: R2 = 0.9124). These findings provide crucial design guidelines for thermal management systems in hypergravity environments, particularly for aerospace propulsion and centrifugal heat exchangers, where gravitational variations significantly impact cooling performance. Full article
(This article belongs to the Special Issue Advanced Thermal Management in Aerospace Systems)
Show Figures

Figure 1

19 pages, 7230 KB  
Article
CFD-Based Estimation of Ship Waves in Shallow Waters
by Mingchen Ma, Ingoo Lee, Jungkeun Oh and Daewon Seo
J. Mar. Sci. Eng. 2025, 13(10), 1965; https://doi.org/10.3390/jmse13101965 - 14 Oct 2025
Viewed by 60
Abstract
This study examines the evolution characteristics of ship waves generated by large vessels in shallow waters. A CFD-based numerical wave tank, incorporating Torsvik’s ship wave theory, was developed using the VOF multiphase approach and the RNG k-ε turbulence model to capture free-surface evolution [...] Read more.
This study examines the evolution characteristics of ship waves generated by large vessels in shallow waters. A CFD-based numerical wave tank, incorporating Torsvik’s ship wave theory, was developed using the VOF multiphase approach and the RNG k-ε turbulence model to capture free-surface evolution and turbulence effects. Results indicate that wave heights vary significantly near the critical depth-based Froude number (Fh). Comparative analyses between CFD results for a Wigley hull and proposed empirical correction formulas show strong agreement in predicting maximum wave heights in transcritical and supercritical regimes, accurately capturing the nonlinear surge of wave amplitude in the transcritical range. Simulations of 2000-ton and 6000-ton class vessels further reveal that wave heights increase with Fh, peak in the transcritical regime, and subsequently decay. Lateral wave attenuation was also observed with increasing transverse distance, highlighting the role of vessel dimensions and bulbous bow structures in modulating wave propagation. These findings provide theoretical and practical references for risk assessment and navigational safety in shallow waterways. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 788 KB  
Article
Fresh Pork Quality Assessment by NIRS and NMR: Predicting Eating Quality and Elucidating Relationships with Key Chemical Components
by Xiying Li, Melindee Hastie, Minh Ha, Robyn D. Warner, Cameron C. Steel, Peter McGilchrist, Evan McCarney, Darryl N. D’Souza, Robert J. E. Hewitt, David W. Pethick, Maddison T. Corlett, Sarah M. Stewart and Frank R. Dunshea
Animals 2025, 15(20), 2973; https://doi.org/10.3390/ani15202973 - 14 Oct 2025
Viewed by 185
Abstract
The Australian pork industry has been seeking a rapid and non-destructive way to predict pork chemical components and eating quality. In this study, near-infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR) were applied to fresh pork Longissimus thoracis et lumborum (LTL) and Semimembranosus [...] Read more.
The Australian pork industry has been seeking a rapid and non-destructive way to predict pork chemical components and eating quality. In this study, near-infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR) were applied to fresh pork Longissimus thoracis et lumborum (LTL) and Semimembranosus (SM) with the aim to build prediction models for intramuscular fat (IMF) content, collagen content and solubility, pH, and sensory attributes, namely tenderness, juiciness, liking of flavor and overall liking as well as investigate the effects of chemical components on pork eating quality. Results showed that the NIRS output, which was a predicted IMF content calibrated for the IMF of lamb, correlated with the chemically analyzed IMF content across both muscles. In LTL, NMR parameter p2f was weakly correlated with IMF and pH. For the LTL, NMR parameters p21 and p22 were related to sensory tenderness, while T22 was correlated with the liking of flavor. In both muscles, the collagen content and pH were related to all sensory attributes, and IMF was related to the liking of flavor. The chemical properties of SM were weakly correlated with those of LTL. The NIRS and NMR weakly predicted the pork chemical components and sensory properties, but more studies are required to improve the accuracy. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 3364 KB  
Article
Antibacterial Efficacy of Ethanol Extracts from Edible Rumex madaio Root and Application Potential for Eliminating Staphylococcus aureus and Vibrio cholerae in Aquatic Products for Green Food Preservation
by Huanhuan Fan, Yue Liu, Enyu Tian, Yaping Wang, Shunlin Ren, Bailin Li, Huajun Zheng and Lanming Chen
Foods 2025, 14(20), 3479; https://doi.org/10.3390/foods14203479 - 12 Oct 2025
Viewed by 243
Abstract
Edible and medicinal plants provide a treasure trove of natural phytochemicals for mining the next generation of green food preservatives. Herein, we evaluated antibacterial activities of 55–95% ethanol extracts from the edible rhizome of Rumex madaio (RmEEs). The 75% ethanol extract [...] Read more.
Edible and medicinal plants provide a treasure trove of natural phytochemicals for mining the next generation of green food preservatives. Herein, we evaluated antibacterial activities of 55–95% ethanol extracts from the edible rhizome of Rumex madaio (RmEEs). The 75% ethanol extract displayed the strongest antibacterial activity, and its purified fraction 2 (RmEE-F2) blocked the proliferation of common pathogens Staphylococcus aureus and Vibrio cholerae, with minimum inhibitory concentrations (MICs) of 391 μg/mL. RmEE-F2 (1 × MIC) altered the bacterial cell surface biophysical parameters and impaired cell structure, resulting in intracellular nucleic acid and protein leakage. It manifested bacteriostatic rates of 88.21–91.17% against S. aureus and V. cholerae in spiked fish (Carassius auratus) and shrimp (Penaeus vannamei) during storage at 4 °C for 24 h. Meanwhile, RmEE-F2 effectively rendered the pH rising and reduced lipid oxidation and protein degradation of C. auratus and P. vannamei meat samples at 4 °C for 6 days. Additionally, RmEE-F2 (< 781 µg/mL) showed non-cytotoxicity to human colon Caco-2, liver HepG-2, and lung A549 cell lines, and rescued V. cholerae and S. aureus-infected Caco-2 cellcells with enhanced viability of 14.31–16.60% (1 × MIC). Comparative transcriptomic analysis revealed down-regulated protein synthesis, cell wall and cell membrane synthesis, and or DNA replication and repair in the tested bacteria triggered by RmEE-F2. The major antibacterial compounds in RmEE-F2 included melibiose (9.86%), 3-(N, N-dimethylaminomethyl) indole (7.12%), and citric acid (6.07%). Overall, this study underscores the promising potential of RmEE-F2 for aquatic product green preservation. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plant Food: Discovering Their Health Benefits)
Show Figures

Figure 1

15 pages, 8457 KB  
Article
Transcriptomic Analysis Reveals the Impact of Interstock on Vesicle Granulation in ‘Hainan Qingyou’ Pomelo (Citrus maxima) Fruit
by Chengchao Yang, Chengkun Yang, Haibo Li and Chengdong Jiang
Horticulturae 2025, 11(10), 1230; https://doi.org/10.3390/horticulturae11101230 - 12 Oct 2025
Viewed by 335
Abstract
‘Hainan Qingyou’ (Citrus maxima) Pomelo is one of the predominant local cultivars cultivated in Hainan Province, renowned for its high economic value and strong market competitiveness. However, during cultivation, it was observed that the fruit quality of ‘Hainan Qingyou’ grafted onto [...] Read more.
‘Hainan Qingyou’ (Citrus maxima) Pomelo is one of the predominant local cultivars cultivated in Hainan Province, renowned for its high economic value and strong market competitiveness. However, during cultivation, it was observed that the fruit quality of ‘Hainan Qingyou’ grafted onto a ‘Sanhong’ interstock deteriorated, predominantly manifesting as vesicle granulation. This study was therefore conducted to investigate this phenomenon using ‘Sanhong’ Honey Pomelo as the interstock. Fruit quality indicators were measured, and pulp transcriptomic analysis was performed during the expansion and maturation stages. The results indicated that fruits grafted onto ‘Sanhong’ interstock (SHZ) exhibited increased peel thickness, yellower peel, reduced edible rate, higher pulp firmness, decreased total soluble solids (TSS), increased total acid content, and reduced total antioxidant capacity at maturity, all contributing to diminished fruit quality. Additionally, SHZ fruit accumulated higher lignin content in the pulp, leading to vesicle granulation, which severely compromised marketability. Transcriptomic analysis identified 42 structural genes involved in lignin biosynthesis in ‘Hainan Qingyou’ pulp, including 5 PAL, 2 C4H, 2 4CL, 6 CAD, 15 PER, 2 HCT, 1 C3′H, 1 CCoAOMT, 1 CCR, 1 COMT, 2 CSE, and 1 F5H genes. Most of these genes were highly expressed in SHZ fruit at maturity, with expression levels significantly higher than those in fruit grafted onto ‘Hainan Qingyou’ interstock (QYZ). The interstock also affected hormone signaling pathways. Weighted gene co-expression network analysis (WGCNA) identified transcription factors such as MYB, MIKC, ERF, and bZIP as key regulators involved in pulp lignin biosynthesis. This study provides insights into the effects of rootstocks on citrus fruit quality and offers valuable information for cultivar improvement in pomelo orchards. Full article
Show Figures

Figure 1

13 pages, 255 KB  
Article
The Relationship Between Subjective Cognitive Decline, Financial Interference, and Excess Spending in Older Adults with and Without Early Memory Loss
by Emily V. Flores, Moyosoreoluwa Jacobs, Peter A. Lichtenberg and Vanessa Rorai
J. Ageing Longev. 2025, 5(4), 43; https://doi.org/10.3390/jal5040043 - 11 Oct 2025
Viewed by 114
Abstract
Background/Objective: This study examined whether a brief measure combining subjective cognitive concerns and financial interference, termed Subjective Cognitive Decline-Financial (SCD-F), is associated with excess spending behavior in older adults. Methods: Community-dwelling older adults, some with early memory loss and some with no cognitive [...] Read more.
Background/Objective: This study examined whether a brief measure combining subjective cognitive concerns and financial interference, termed Subjective Cognitive Decline-Financial (SCD-F), is associated with excess spending behavior in older adults. Methods: Community-dwelling older adults, some with early memory loss and some with no cognitive complaints (N = 150, M age = 72.6), provided 12 months of checking account statements and participated in interviews to clarify aspects of their personal financial behaviors. SCD-F was defined by asking if memory decline was interfering with financial decision-making or transactions. A 3-point SCD-F measure was created. Excess spending was determined by checking whether account expenditures exceeded all sources of income. Nonparametric tests (Kruskal–Wallis and Mann–Whitney U) and multiple regression models assessed group differences and predictors. Results: Group differences in excess spending were pronounced (H(2) = 15.75, p < 0.001). Those in the high SCD-F group had a significantly greater likelihood of excess spending (Z = −4.11; r = 0.43) and higher excess spending percentages (Z = −4.11; r = 0.43) compared to those with no memory loss. Regression analyses indicated that SCD-F was the strongest predictor of excessive spending (β = 0.40, t = 5.43, p < 0.001), even after controlling for age, gender, race, and education (R2 = 0.235, F(5,144) = 8.86, p < 0.001). Conclusions: A brief self-report measure, SCD-F, effectively identifies older adults at risk of financial mismanagement, even absent formal cognitive impairment. Monitoring subjective cognitive concerns together with financial interference could enable early intervention. This brief measure may be useful in clinical settings as a screening tool, and in large national surveys. Full article
26 pages, 11124 KB  
Article
Ecological Effects and Microbial Regulatory Mechanisms of Functional Grass Species Assembly in the Restoration of “Heitutan” Degraded Alpine Grasslands
by Zongcheng Cai, Jianjun Shi, Shouquan Fu, Liangyu Lv, Fayi Li, Qingqing Liu, Hairong Zhang and Shancun Bao
Microorganisms 2025, 13(10), 2341; https://doi.org/10.3390/microorganisms13102341 - 11 Oct 2025
Viewed by 304
Abstract
The restoration of “Heitutan” degraded grasslands on the Qinghai-Tibetan Plateau was hindered by suboptimal grass species mixtures, leading to low vegetation productivity, impaired soil nutrient cycling, and microbial functional degradation. Based on a 22-year controlled field experiment, this study systematically elucidated the regulatory [...] Read more.
The restoration of “Heitutan” degraded grasslands on the Qinghai-Tibetan Plateau was hindered by suboptimal grass species mixtures, leading to low vegetation productivity, impaired soil nutrient cycling, and microbial functional degradation. Based on a 22-year controlled field experiment, this study systematically elucidated the regulatory mechanisms of different artificial grass mixtures on vegetation community characteristics, soil physicochemical properties, and bacterial community structure and function. The results demonstrated that mixed-sowing treatments significantly improved soil conditions and enhanced aboveground biomass. The HC treatment (Elymus nutans Griseb. + Poa crymophila Keng ex L. Liu cv. ‘Qinghai’ + Festuca sinensis Keng ex S. L. Lu cv. ‘Qinghai’) achieved aboveground biomass of 1580.0 and 1645.0 g·m−2, representing 66.14% and 60.91% increases, respectively, compared to the HA monoculture (E. nutans). Concurrently, this treatment increased soil organic matter content by 52.3% and 48.4%, total nitrogen by 59.4% and 69.2%, while reducing electrical conductivity by 48.99% and 51.72%, with optimal pH stabilization (7.34–7.38). These findings confirmed that optimized grass mixtures effectively enhance soil physicochemical properties and carbon–nitrogen retention. Microbiome analysis revealed that the HE treatment (E. nutans + P. crymophila + F. sinensis + Poa poophagorum Bor. + Festuca kryloviana Reverd. cv. ‘Huanhu’) exhibited superior α-diversity indices (OTU, Shannon, Ace, Chao1, Pielou) with increases of 9.36%, 4.20%, 15.0%, 1.76%, and 13.4%, respectively, over HA, accompanied by optimal community evenness (lowest Simpson index). Core bacterial phyla included Pseudomonadota (22.7–29.9%), Acidobacteriota (21.5–23.6%), and Actinomycetota (13.6–16.0%), with significant suppression of pathogenic bacteria. Co-occurrence network analysis identified specialized functional modules, with HC and HD treatments (E. nutans + P. crymophila + F. sinensis + P. poophagorum) forming a “nitrogen transformation–antibiotic secretion” network (57.3% positive connections). Structural equation modeling (SEM) revealed that mixed sowing had the strongest direct effect on bacterial diversity (β = 0.76), surpassing indirect effects via soil (β = 0.37) and vegetation (β = 0.11). Redundancy analysis (RDA) identified vegetation cover (24.7% explained variance) and soil pH (20.0%) as key drivers of bacterial community assembly. Principal component analysis (PCA) confirmed HC and HD treatments as the most effective restoration strategies. This study elucidated a tripartite “vegetation–soil–microorganism” restoration mechanism, demonstrating that intermediate-diversity mixtures (3–4 species) optimize ecosystem recovery through niche complementarity, pathogen suppression, and enhanced nutrient cycling. These findings provided a scientific basis for species selection in alpine grassland restoration. Full article
Show Figures

Figure 1

48 pages, 5238 KB  
Article
Chemodynamics of Mercury (Hg) in a Southern Reservoir Lake (Cane Creek Lake, Cookeville, TN, USA): II—Estimation of the Hg Water/Air Exchange Coefficient Using the Two-Thin Film Model and Field-Measured Data of Hg Water/Air Exchange and Dissolved Gaseous Hg
by Hong Zhang, Lesta S. Fletcher and William C. Crocker
Water 2025, 17(20), 2931; https://doi.org/10.3390/w17202931 - 10 Oct 2025
Viewed by 364
Abstract
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the [...] Read more.
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the Two-Thin Film (TTF) Model for Hg transfer together with the field-measured data of Hg emission flux (F), dissolved gaseous mercury concentration (DGM), air Hg concentration (Ca), and water temperature for Henry’s coefficient (KH) obtained from a separate field study at the CCL. The daily mean kw values range from 0.045 to 0.21 m h−1, with the min. at 0.0025–0.14 and the max. at 0.079–0.41 m h−1, generally higher for the summer, and from 0.0092 to 0.15, with the min. at 0.0032–0.033 and the max. at 0.017–0.31 m h−1, generally lower for the fall and winter, exhibiting an apparent seasonal trend. The highest kw values occur in August (mean: 0.21, max.: 0.41 m h−1). Our kw results add to and enrich the aquatic interfacial Hg transfer coefficient database and provide an alternative avenue to evaluate and select the coefficients for the TTF Model’s application. The kw results are of value in gaining insights into the Hg transfer actually occurring across the water/air interface under environmental influences (e.g., wind/wave, solar radiation). Our kw results do not show a clear, consistent correlation of kw with wind/wave effect, nor sunlight effect, in spite of some correlations in sporadic cases. Generally, the kw values do not exbibit the trends prescribed by the model sensitivity study. The comparisons of our kw results with those obtained using wind-based transfer models (the Liss/Merlivat Model, the Wanninkhof Model, and the modified linear model) show that they depart from each other. The findings of this study indicate that the TTF Model has limitations and weaknesses. One major assumption of the TTF Model is the equilibrium of the Hg distribution between the air and water films across the water/air interface. The predominant oversaturation of DGM shown by our DGM data evidently challenges this assumption. This study suggests that aquatic interfacial Hg transfer is considerably more complicated, involving a group of factors, more than just wind and wave. Full article
Show Figures

Figure 1

Back to TopTop