Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = H,KATPase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 16029 KiB  
Article
Antibiotic Cocktail Exacerbates Esomeprazole-Induced Intestinal Dysmotility While Ameliorating Gastric Dyspepsia in Mice
by Jing-Hua Wang, Song-Yi Han, Kyungjae Lee, Uijeong Han, Si-Kyung Cho and Hojun Kim
Antibiotics 2025, 14(5), 442; https://doi.org/10.3390/antibiotics14050442 - 27 Apr 2025
Viewed by 648
Abstract
Background/Objectives: Esomeprazole, a proton pump inhibitor (PPI), is commonly prescribed for gastric-acid-related disorders but has been associated with impaired gastrointestinal (GI) motility with long-term use. However, the effect of concurrent antibiotic administration on this dysfunction remains unclear. Therefore, this study aimed to investigate [...] Read more.
Background/Objectives: Esomeprazole, a proton pump inhibitor (PPI), is commonly prescribed for gastric-acid-related disorders but has been associated with impaired gastrointestinal (GI) motility with long-term use. However, the effect of concurrent antibiotic administration on this dysfunction remains unclear. Therefore, this study aimed to investigate the effects of antibiotics on esomeprazole-induced GI motility dysfunction and explore the underlying mechanisms in a mouse model. Methods: Male C57BL/6 mice were orally administered esomeprazole (160 mg/kg) five times per week for 4 weeks. Three days before initiating esomeprazole treatment, a broad-spectrum antibiotic cocktail (ABX) consisting of ampicillin (1 g/kg), neomycin (1 g/kg), metronidazole (1 g/kg), and vancomycin (0.5 g/kg) was provided in drinking water and maintained throughout the experimental period. Mosapride (3 mg/kg), a prokinetic agent, was used as a positive control. Results: Neither esomeprazole alone nor in combination with ABX affected body weight or food intake. Compared to normal controls, esomeprazole treatment significantly delayed both intestinal transit and gastric emptying. However, ABX co-administration further pronounced intestinal transit time and improved gastric motility. The potential mechanisms may involve interactions among gastric H+/K+-ATPase, CYP3A11, gastrointestinal hormones (secretin and motilin), and the gut microbiome. Conclusions: Long-term esomeprazole use can impair both gastric and intestinal motility, and ABX co-treatment further exacerbates intestinal transit delay while paradoxically enhancing gastric emptying. These findings highlight the critical role of the gut microbiota in esomeprazole-induced GI motility dysfunction and suggest that antibiotic use should be approached with caution, particularly when combined with PPI therapy. Full article
Show Figures

Figure 1

21 pages, 10060 KiB  
Article
The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure
by Yara Knany, Safa Kinaneh, Emad E. Khoury, Yaniv Zohar, Zaid Abassi and Zaher S. Azzam
Int. J. Mol. Sci. 2025, 26(7), 3374; https://doi.org/10.3390/ijms26073374 - 4 Apr 2025
Viewed by 607
Abstract
Alveolar active sodium transport is essential for clearing edema from airspaces, in a process known as alveolar fluid clearance (AFC). Although it has been reported that atrial natriuretic peptide (ANP) attenuates AFC, little is known about the underlying molecular effects of natriuretic peptides [...] Read more.
Alveolar active sodium transport is essential for clearing edema from airspaces, in a process known as alveolar fluid clearance (AFC). Although it has been reported that atrial natriuretic peptide (ANP) attenuates AFC, little is known about the underlying molecular effects of natriuretic peptides (NPs). Therefore, we examined the contribution of NPs to AFC and their effects as mediators of active sodium transport. By using the isolated liquid-filled lungs model, we investigated the effects of NPs on AFC. The expression of NPs, Na+, K+-ATPase, and Na+ channels was assessed in alveolar epithelial cells. Congestive heart failure (CHF) was induced by using the aortocaval fistula model. ANP and brain NP (BNP) significantly reduced AFC rate from 0.49 ± 0.02 mL/h in sham rats to 0.26 ± 0.013 and 0.19 ± 0.005 in ANP and BNP-treated groups, respectively. These effects were mediated by downregulating the active Na+ transport components in the alveolar epithelium while enhancing the ubiquitination and degradation of αENaC in the lungs, as reflected by increased levels of Nedd4-2. In addition, AFC was reduced in compensated CHF rats treated with ANP, while in decompensated CHF, ANP partially restored AFC. In conclusion, NPs regulate AFC in health and CHF. This research could help optimize pharmacological treatments for severe CHF. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Lung Health and Disease)
Show Figures

Figure 1

14 pages, 1620 KiB  
Article
Transcriptional and Physiological Responses of Saccharomyces cerevisiae CZ to Octanoic Acid Stress
by Zhi-Hai Yu, Ming-Zhi Shi, Wen-Xuan Dong, Xiao-Zhu Liu, Wei-Yuan Tang and Ming-Zheng Huang
Fermentation 2025, 11(4), 180; https://doi.org/10.3390/fermentation11040180 - 1 Apr 2025
Viewed by 556
Abstract
This study elucidates the adaptive mechanisms of Saccharomyces cerevisiae CZ under octanoic acid stress, revealing concentration-dependent growth inhibition (76% lethality at 800 mg/L) and notable tolerance at 600 mg/L. Initial exposure (≤6 h) showed no growth impairment, but prolonged treatment induced dose-dependent lethality, [...] Read more.
This study elucidates the adaptive mechanisms of Saccharomyces cerevisiae CZ under octanoic acid stress, revealing concentration-dependent growth inhibition (76% lethality at 800 mg/L) and notable tolerance at 600 mg/L. Initial exposure (≤6 h) showed no growth impairment, but prolonged treatment induced dose-dependent lethality, accompanied by reduced H+/K+-ATPase activity and elevated malondialdehyde (MDA) levels, indicative of oxidative damage. Transcriptomic profiling of 5665 genes highlighted the predominant downregulation of ribosomal functions (translation, ribosome biogenesis) and amino acid metabolism pathways (e.g., ARO10, ARO9). Strain-specific regulatory dynamics were observed: (1) TPO1-mediated efflux was active at 400 mg/L but absent at 600 mg/L, suggesting compensatory mechanisms under high stress; (2) HTX1-related genes exhibited bidirectional regulation (downregulated at 400 mg/L vs. upregulated at 600 mg/L), reflecting metabolic flexibility; (3) ACC1 downregulation (600 mg/L) and unaltered SFK1 expression contrasted with lipid-remodeling strategies in engineered strains; and (4) PMA2 suppression diverged from literature-reported PMA1 activation, underscoring strain-specific energy reallocation. Suppression of ergosterol biosynthesis and ribosomal genes revealed a trade-off between stress adaptation and biosynthetic processes. These findings reconcile prior contradictions by attributing discrepancies to genetic backgrounds (CZ vs. laboratory/engineered strains) and methodological variations. Unlike strains relying on phospholipid asymmetry or oleic acid overproduction, CZ’s unique tolerance stems from integrated membrane homeostasis (via lipid balance) and metabolic conservation. This work emphasizes the critical role of strain-specific regulatory networks in octanoic acid resistance and provides insights for optimizing yeast robustness through targeted engineering of membrane stability and metabolic adaptability. Future studies should employ multi-omics integration to unravel the dynamic gene regulatory logic underlying these adaptive traits. Full article
Show Figures

Figure 1

21 pages, 4295 KiB  
Article
Activation of the TRPML1 Ion Channel Induces Proton Secretion in the Human Gastric Parietal Cell Line HGT-1
by Alina Ulrike Mueller, Gaby Andersen, Phil Richter and Veronika Somoza
Int. J. Mol. Sci. 2024, 25(16), 8829; https://doi.org/10.3390/ijms25168829 - 13 Aug 2024
Cited by 1 | Viewed by 2148
Abstract
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of [...] Read more.
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of TRPML1 in regulating proton secretion in the immortalized human parietal cell line HGT-1. The primary focus was to investigate the involvement of TRPML1 in proton secretion using the known synthetic agonists ML-SA1 and ML-SA5 and the antagonist ML-SI3 and, furthermore, to identify food-derived compounds that target the channel. Proton secretion stimulated by ML-SA1 was reduced by 122.2 ± 22.7% by the antagonist ML-SI3. The steroid hormone 17β-estradiol, present in animal-derived foods, diminished the proton secretory effect of ML-SA1 by 63.4 ± 14.5%. We also demonstrated a reduction in the proton secretory effects of ML-SA1 and ML-SA5 on TRPML1 knock-down cells. The food-derived compounds sulforaphane and trehalose promoted proton secretion in HGT-1 cells but may act independently of TRPML1. Also, histamine- and caffeine-induced proton secretion were affected by neither the TRPML1 antagonist ML-SI3 nor the TRPML1 knock-down. In summary, the results obtained suggest that the activation of TRPML1 promotes proton secretion in HGT-1 cells, but the channel may not participate in canonical signaling pathways. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Graphical abstract

10 pages, 2201 KiB  
Review
Improving the Diagnosis of Autoimmune Gastritis: From Parietal Cell Antibodies to H+/K+ ATPase Antibodies
by Michela Tonegato, Maria Piera Panozzo, Antonio Antico and Nicola Bizzaro
Diagnostics 2024, 14(16), 1721; https://doi.org/10.3390/diagnostics14161721 - 8 Aug 2024
Cited by 4 | Viewed by 2658
Abstract
Parietal cell autoantibodies (PCAs), which recognize the enzyme H+/K+-ATPase as a target, are considered to be a diagnostic marker of autoimmune gastritis and pernicious anemia; these conditions are characterized by the presence of corpus atrophic gastritis. Circulating PCAs can be detected using several [...] Read more.
Parietal cell autoantibodies (PCAs), which recognize the enzyme H+/K+-ATPase as a target, are considered to be a diagnostic marker of autoimmune gastritis and pernicious anemia; these conditions are characterized by the presence of corpus atrophic gastritis. Circulating PCAs can be detected using several analytical methods that are commonly available in the clinical laboratory. Traditionally, indirect immunofluorescence (IIF) on rodent or primate stomach tissue is used as a screening test for the detection of PCAs. However, IIF suffers from a high inter-observer variability and lacks standardization. In addition, like immunoblotting, results are expressed only in a qualitative or semi-quantitative manner. Based on the few available studies that are reviewed herein, quantitative enzyme-linked immunosorbent assays (ELISAs) and fluorescence enzyme immunoassays (FEIAs) using purified H+/K+-ATPase perform better than IIF in the detection of PCAs, displaying higher sensitivity and utility in monitoring the disease. In light of their higher diagnostic accuracy, these solid-phase methods should be preferred to IIF in the screening of autoimmune atrophic gastritis. The use of methods to detect antibodies versus a specific subunit of H+/K+-ATPase (α or β) is currently confined to the world of research. Further investigation is required to define the clinical utility of H+/K+-ATPase subunit detection. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Laboratory Immunology)
Show Figures

Figure 1

24 pages, 10619 KiB  
Article
Spirothiazolidine-Derivative on Silver Nanoparticles and Carbon Nanotubes: Evaluation of Antibacterial, Anti-Fungal, Anti-Inflammatory, Antioxidant and Gastroprotective Activities
by Walaa I. El-Sofany, Eid. M. S. Azzam, Salman Latif and Khaled Hamden
Pharmaceutics 2024, 16(7), 901; https://doi.org/10.3390/pharmaceutics16070901 - 5 Jul 2024
Cited by 1 | Viewed by 1516
Abstract
This study aims to develop innovative heterocyclic nanocomposites incorporating silver nanoparticles (SNPs) for potential therapeutic applications targeting infections, gastric ulceration, inflammation, and oxidative damage. By synthesizing new derivatives of spiro-thiazolidine-carbonitrile (Py-ST-X) and incorporating them into Ag nanoparticles (AgNPs) and carbon nanotubes (CNTs), we [...] Read more.
This study aims to develop innovative heterocyclic nanocomposites incorporating silver nanoparticles (SNPs) for potential therapeutic applications targeting infections, gastric ulceration, inflammation, and oxidative damage. By synthesizing new derivatives of spiro-thiazolidine-carbonitrile (Py-ST-X) and incorporating them into Ag nanoparticles (AgNPs) and carbon nanotubes (CNTs), we have prepared Ag@Py-ST-X and Ag@Py-ST-X@CNT nanocomposites, respectively. The physical properties of these materials were studied using XRD, TEM, SEM, and Zeta potential techniques. In our investigation involving rats with gastric ulcers, we observed noteworthy inhibitory effects on gastric acid enzyme activity, specifically H+/K+ATPase, by Ag@Py-ST-NO2 and Ag@Py-ST-Br nanocomposites, demonstrating reductions of 25 and 34%, respectively, compared to untreated ulcers. Nanotubulation of these compounds further improved their inhibitory efficacy to 29 and 45%, respectively. Additionally, these nanoparticles showed the most potent myeloperoxidase (MPO)-inhibitory activity, demonstrating 36 and 49% inhibition, respectively, with nanotubulated versions reaching 44 and 53%. Moreover, Ag@Py-ST-NO2@CNT and Ag@Py-ST-Br@CNT nanotubes showed significant antioxidant activity, reducing thiobarbituric acid reactive substances (TBARS) by 35 and 51%, and hydrogen peroxide (H2O2) levels by 49 and 71%, respectively. These therapeutic effects were confirmed by reductions in gastric surface area (GSA) by 44% and 52%, a decrease in ulcer index (UI) from 80% to 44 and 38%, and an increase in curative index (CI) from 19 to 55 and 62% following administration of Ag@Py-ST-NO2@CNT and Ag@Py-ST-Br@CNT, respectively. Histological studies support these findings, suggesting the potential of these nanocomposites as promising candidates for treating various disorders. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

13 pages, 3279 KiB  
Article
Effect of Chronic Hydrogen Peroxide Exposure on Ion Transport in Gills of Common Carp (Cyprinus carpio)
by Yating Mou, Bing Li, Yiran Hou, Rui Jia and Jian Zhu
Fishes 2023, 8(3), 134; https://doi.org/10.3390/fishes8030134 - 26 Feb 2023
Cited by 5 | Viewed by 2933
Abstract
High environmental hydrogen peroxide (H2O2) has been demonstrated to be toxic for fish. However, the response mechanism of fish to chronic H2O2 exposure is not yet well understood. Therefore, this study aimed to investigate the alteration [...] Read more.
High environmental hydrogen peroxide (H2O2) has been demonstrated to be toxic for fish. However, the response mechanism of fish to chronic H2O2 exposure is not yet well understood. Therefore, this study aimed to investigate the alteration in ion transport in gills and analyzed the potential response mechanism after chronic H2O2 exposure. The common carps were exposed to 0, 0.25, 0.50, and 1.00 mM of H2O2 for 14 days. The histopathological evaluation results indicated that H2O2 exposure caused incomplete gill filament structure. In the plasma, H2O2 exposure suppressed the potassium (K+) concentration but increased sodium (Na+) concentration. In the gills, the calcium (Ca2+) level was raised, but the K+ and chlorine (Cl) levels were decreased after H2O2 exposure. After 14 days of exposure, H2O2 prompted the activities of Ca2+/Mg2+-ATPase and H+/K+-ATPase but suppressed Na+/K+-ATPase activity in the gills. Gene transcription analysis showed that the ion-regulation-related genes including nkaa and rhbg were downregulated after H2O2 exposure. In addition, H2O2 exposure upregulated the mRNA levels of cam and camk II, indicating that the Ca2+ singling pathway was activated. In conclusion, our data showed that chronic H2O2 exposure altered gill structure and disturbed ion transport, which further negatively affected the equilibrium of ions and osmotic pressure. Full article
(This article belongs to the Special Issue Effects of Environmental Pollutants on Aquatic Animals and Ecosystem)
Show Figures

Graphical abstract

17 pages, 2984 KiB  
Article
Effects of Hydrogen-Rich Water on Postharvest Physiology in Scales of Lanzhou Lily during Storage
by Xingjuan Liu, Hua Fang, Panpan Huang, Li Feng, Fujin Ye, Lijuan Wei, Xuetong Wu, Hongsheng Zhang and Weibiao Liao
Horticulturae 2023, 9(2), 156; https://doi.org/10.3390/horticulturae9020156 - 27 Jan 2023
Cited by 5 | Viewed by 2235
Abstract
Hydrogen gas (H2) is considered as a signaling molecule and plays multiple roles in plant growth. However, the effect of H2 on postharvest physiology in lily scales during storage has not been reported. In this study, the regulatory roles of [...] Read more.
Hydrogen gas (H2) is considered as a signaling molecule and plays multiple roles in plant growth. However, the effect of H2 on postharvest physiology in lily scales during storage has not been reported. In this study, the regulatory roles of hydrogen-rich water (HRW, a H2 donor, a concentration of 0.45 mM for 100% HRW) in water status, ion balance, and nutrients in Lanzhou lily (Lilium davidii var. unicolor) scales were investigated. The scales were soaked in HRW for 12 d, and sampling was performed every 3 d for a total of 5 times. The results show that HRW (0, 10, 50, and 100%) increased the fresh weight, dry weight, relative water content, and water loss rate in lily scales, with maximum biological response at 50% HRW. Treatment with 50% HRW significantly increased the K+ content and K+/Na+ ratio in lily scales and decreased Na+ content. The Na+ K+-ATPase, and PM H+-ATPase activities were also increased by 50% HRW treatment. Meanwhile, 50% HRW up-regulated the expression of AKT1 and HA3 genes and down-regulated the expression of NHX2 and SOS1 genes. In addition, 50% HRW treatment significantly increased the expression level of PIP1;5, PIP2A, TIP1;3, and TIP2;2 genes. Treatment with 50% HRW significantly increased the content of water-soluble carbohydrate, sucrose, glucose, and fructose in lily scales, and decreased the content of starch. In addition, 50% HRW treatment significantly increased the activity of α-amylase, β-amylase, total amylase, sucrose synthase, and sucrose phosphate synthase. Collectively, H2 might enhance the water retention capacity and nutrient content in lily scales by maintaining ion balance, regulating aquaporin, and increasing sugar-metabolizing enzyme activity, thereby prolonging the storage period of postharvest scales of Lanzhou lily. Full article
(This article belongs to the Special Issue Uses of Hydrogen Gas in Horticulture)
Show Figures

Graphical abstract

35 pages, 11543 KiB  
Article
Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs
by Neelum Gul Qazi, Arif-ullah Khan, Sumra Wajid Abbasi, Fawad Ali Shah, Faisal Rasheed, Fawad Ali, Syed Shams ul Hassan and Simona Bungau
Molecules 2022, 27(18), 5919; https://doi.org/10.3390/molecules27185919 - 12 Sep 2022
Cited by 24 | Viewed by 3563
Abstract
This present study aimed to delineate Rumex hastatus D. Don crude extract (Rh.Cr), n-Hexane, ethyl acetate, aqueous fractions (Rh.n-Hex, Rh.ETAC, Rh.Aq) and rutin for antidiarrheal, antisecretory effects, anti-spasmodic, gastrointestinal transient time, anti H. pylori, antiulcer effects, and toxicology. The preliminary phytochemical analysis [...] Read more.
This present study aimed to delineate Rumex hastatus D. Don crude extract (Rh.Cr), n-Hexane, ethyl acetate, aqueous fractions (Rh.n-Hex, Rh.ETAC, Rh.Aq) and rutin for antidiarrheal, antisecretory effects, anti-spasmodic, gastrointestinal transient time, anti H. pylori, antiulcer effects, and toxicology. The preliminary phytochemical analysis of Rumex hastatus showed different phytoconstituents and shows different peaks in GC-MC chromatogram. Rumex hastatus crude extract (Rh.Cr), fractions, and rutin attributed dose-dependent (50–300 mg/kg) protection (0–100%) against castor oil-induced diarrhea and dose-dependently inhibited intestinal fluid secretions in mice. They decreased the distance traversed by charcoal in the gastrointestinal transit model in rats. In rabbit jejunum preparations, Rh.Cr and Rh.ETAC caused a concentration-dependent relaxation of both spontaneous and K+ (80 mM)-induced contractions at a similar concentration range, whereas Rh.n-Hex, rutin, and verapamil were relatively potent against K+-induced contractions and shifted the Ca2+ concentration–response curves (CRCs) to the right, Rh.Cr (0.3–1 mg/mL) and Rh.ETAC (0.1–0.3 mg/mL) shifted the isoprenaline-induced inhibitory CRCs to the left. Rh.n-Hex, Rh.ETAC and rutin showed anti-H. pylori effect, also shows an inhibitory effect against H+/K+-ATPase. Rumex hastatus showed gastroprotective and antioxidant effects. Histopathological evaluation showed improvement in cellular architecture and a decrease in the expression of inflammatory markers such as, cyclooxygenase (COX-2), tumor necrosis factor (TN,F-α) and phosphorylated nuclear factor kappa B (p-NFƙB), validated through immunohistochemistry and ELISA techniques. In RT-PCR it decreases H+/K+-ATPase mRNA levels. Rumex hastatus was found to be safe to consume up to a dose of 2000 mg/kg in a comprehensive toxicity profile. Docking studies revealed that rutin against H+/K+-ATPase pump and voltage-gated L-type calcium channel showed E-values of −8.7 and −9.4 Kcal/mol, respectively. MD simulations Molecular Mechanics Poisson Boltzmann surface area and molecular mechanics Generalized Born surface area (MMPBSA/GBSA) findings are consistent with the in-vitro, in-vivo and docking results. Full article
Show Figures

Figure 1

17 pages, 6488 KiB  
Article
Overgrowth of Squamocolumnar Junction and Dysregulation of Stem Cell Lineages in the Stomach of Vitamin A-Deficient Mice
by Neethu Vins, Subi Sugathan, Asma Al Menhali and Sherif M. Karam
Nutrients 2022, 14(16), 3334; https://doi.org/10.3390/nu14163334 - 15 Aug 2022
Cited by 1 | Viewed by 3210
Abstract
Junctional epithelia are common sites for pathological transformations. In mice, the stratified epithelium of the forestomach joins the simple glandular epithelium of the cardia at the limiting ridge. We previously demonstrated the expression of vitamin A receptors in the gastric stem/progenitor cells and [...] Read more.
Junctional epithelia are common sites for pathological transformations. In mice, the stratified epithelium of the forestomach joins the simple glandular epithelium of the cardia at the limiting ridge. We previously demonstrated the expression of vitamin A receptors in the gastric stem/progenitor cells and their progeny and found that excess retinoic acid enhances cellular dynamics of gastric epithelium. This study examines how deficiency of vitamin A would alter gastric epithelial stem cell lineages. Three-week-old mice of both genders were weaned and fed with a vitamin A deficient (VAD) diet for 4 or 8 months. Sex- and weight-matched littermate mice received a standard (control) diet. To label S-phase cells, all mice received a single intraperitoneal injection of 5-bromo-2-deoxyuridine before being euthanized. Stomach tissues were processed for microscopic examination and protein analysis to investigate stem cell lineages using different stains, lectins, or antibodies. The Student’s t-test was used to compare quantified data showing differences between control and VAD groups. Eight-month-vitamin-A deficiency caused enlarged forestomach and overgrowth of the squamocolumnar junction with metaplastic and dysplastic cardiac glands, formation of intramucosal cysts, loss of surface mucosal integrity, increased amount of luminal surface mucus, and upregulation of trefoil factor 1 and H+,K+-ATPase. These changes were associated with decreased cell proliferation and upregulation of p63. In conclusion, vitamin A is necessary for maintaining gastric epithelial integrity and its deficiency predisposes the mouse stomach to precancerous lesions. Full article
(This article belongs to the Special Issue Diet, Microbioma and Gastrointestinal Cancers)
Show Figures

Figure 1

18 pages, 2520 KiB  
Article
Novel Isoxazole Derivative Attenuates Ethanol-Induced Gastric Mucosal Injury through Inhibition of H+/K+-ATPase Pump, Oxidative Stress and Inflammatory Pathways
by Sidra Razzaq, Amber Mahmood Minhas, Neelum Gul Qazi, Humaira Nadeem, Arif-ullah Khan, Fawad Ali, Syed Shams ul Hassan and Simona Bungau
Molecules 2022, 27(16), 5065; https://doi.org/10.3390/molecules27165065 - 9 Aug 2022
Cited by 25 | Viewed by 3148
Abstract
Isoxazole derivatives are significant enough due to their wide range of pharmacological and therapeutic activities. The purpose of the current study is to use computational, in vitro, in vivo, and extensive molecular approaches to examine the possible anti-ulcer activity of 4-benzylidene-3 methyl-1,2-isoxazol-5(4H)-one (MBO). [...] Read more.
Isoxazole derivatives are significant enough due to their wide range of pharmacological and therapeutic activities. The purpose of the current study is to use computational, in vitro, in vivo, and extensive molecular approaches to examine the possible anti-ulcer activity of 4-benzylidene-3 methyl-1,2-isoxazol-5(4H)-one (MBO). Biovia Discovery Studio visualizer (DSV) was utilized for virtual screening. A tissue antioxidant investigation, H+/K+-ATPase test, and anti-H. pylori activities were carried out. ELISA, immunohistochemistry, and PCR methods were employed for the proteome analysis. An ethanol-induced stomach ulcer model was used to examine the anti-ulcer potential in rats. The binding affinities for MBO ranged from −5.4 to −8.2 Kcal/mol. In vitro findings revealed inhibitory activity against H. pylori and the H+/K+-ATPase pump. It also enhanced levels of glutathione, catalase, and glutathione-S-transferase and reduced lipid peroxidation levels in gastric tissues of rats. In vivo results showed the gastro-protective effect of MBO (30 mg/kg) in ulcerative rat stomachs. The proteomic study revealed decreased expression of inflammatory markers (cyclooxygenase-2, p-NFkB, and TNF-α). In RT-PCR analysis, the expression levels of H+/K+-ATPase were reduced. Furthermore, ADMET (absorption, distribution, metabolism, excretion and toxicity) studies revealed that MBO has high GIT solubility and has a safer profile for cardiac toxicity. This study suggests that MBO displayed anti-ulcer potential, which may have been mediated through the inhibition of the H+/K+-ATPase pump, as well as antioxidant and anti-inflammatory pathways. It has the potential to be a lead molecule in the treatment of peptic ulcers with fewer adverse effects. Full article
Show Figures

Figure 1

17 pages, 1818 KiB  
Review
Colonic Fluid and Electrolyte Transport 2022: An Update
by Abel B. Negussie, Annika C. Dell, Bruce A. Davis and John P. Geibel
Cells 2022, 11(10), 1712; https://doi.org/10.3390/cells11101712 - 22 May 2022
Cited by 24 | Viewed by 8770
Abstract
Colonic epithelial cells are responsible for maintaining a delicate balance between luminal secretion and the absorption of fluids and ions. This review aims to discuss and update the model of colonic electrolyte secretion and absorption via the cystic fibrosis transmembrane regulator (CFTR), epithelial [...] Read more.
Colonic epithelial cells are responsible for maintaining a delicate balance between luminal secretion and the absorption of fluids and ions. This review aims to discuss and update the model of colonic electrolyte secretion and absorption via the cystic fibrosis transmembrane regulator (CFTR), epithelial sodium channel (ENaC), Na-K-Cl cotransporters (NKCC1 and 2), Na-H exchangers (NHE1–4), colonic H,KATPase, and several other key components involved in multi-level transepithelial ion transport. Developments in our understanding of the activity, regulation, localization, and relationships of these ion transporters and their interactions have helped forge a more robust understanding of colonic ion movement that accounts for the colonic epithelium’s role in mucosal pH modulation, the setting of osmotic gradients pivotal for fluid retention and secretion, and cell death regulation. Deviations from homeostatic ion transport cause diarrhea, constipation, and epithelial cell death and contribute to cystic fibrosis, irritable bowel syndrome (IBS), ulcerative colitis, and cancer pathologies. Signal transduction pathways that regulate electrolyte movement and the regulatory relationships between various sensors and transporters (CFTR as a target of CaSR regulation and as a regulator of ENaC and DRA, for example) are imperative aspects of a dynamic and comprehensive model of colonic ion homeostasis. Full article
Show Figures

Figure 1

25 pages, 11996 KiB  
Article
Acute Stress in Lesser-Spotted Catshark (Scyliorhinus canicula Linnaeus, 1758) Promotes Amino Acid Catabolism and Osmoregulatory Imbalances
by Ignacio Ruiz-Jarabo, José A. Paullada-Salmerón, Ismael Jerez-Cepa, José Belquior Gonçalves Neto, Jason S. Bystriansky and Juan M. Mancera
Animals 2022, 12(9), 1192; https://doi.org/10.3390/ani12091192 - 6 May 2022
Cited by 8 | Viewed by 2708
Abstract
Acute-stress situations in vertebrates induce a series of physiological responses to cope with the event. While common secondary stress responses include increased catabolism and osmoregulatory imbalances, specific processes depend on the taxa. In this sense, these processes are still largely unknown in ancient [...] Read more.
Acute-stress situations in vertebrates induce a series of physiological responses to cope with the event. While common secondary stress responses include increased catabolism and osmoregulatory imbalances, specific processes depend on the taxa. In this sense, these processes are still largely unknown in ancient vertebrates such as marine elasmobranchs. Thus, we challenged the lesser spotted catshark (Scyliorhinus canicula) to 18 min of air exposure, and monitored their recovery after 0, 5, and 24 h. This study describes amino acid turnover in the liver, white muscle, gills, and rectal gland, and plasma parameters related to energy metabolism and osmoregulatory imbalances. Catsharks rely on white muscle amino acid catabolism to face the energy demand imposed by the stressor, producing NH4+. While some plasma ions (K+, Cl and Ca2+) increased in concentration after 18 min of air exposure, returning to basal values after 5 h of recovery, Na+ increased after just 5 h of recovery, coinciding with a decrease in plasma NH4+. These changes were accompanied by increased activity of a branchial amiloride-sensitive ATPase. Therefore, we hypothesize that this enzyme may be a Na+/H+ exchanger (NHE) related to NH4+ excretion. The action of an omeprazole-sensitive ATPase, putatively associated to a H+/K+-ATPase (HKA), is also affected by these allostatic processes. Some complementary experiments were carried out to delve a little deeper into the possible branchial enzymes sensitive to amiloride, including in vivo and ex vivo approaches, and partial sequencing of a nhe1 in the gills. This study describes the possible presence of an HKA enzyme in the rectal gland, as well as a NHE in the gills, highlighting the importance of understanding the relationship between acute stress and osmoregulation in elasmobranchs. Full article
Show Figures

Figure 1

11 pages, 4457 KiB  
Article
Crosstalk between Acidosis and Iron Metabolism: Data from In Vivo Studies
by Raêd Daher, Nicolas Ducrot, Thibaud Lefebvre, Sofia Zineeddine, Jérome Ausseil, Hervé Puy and Zoubida Karim
Metabolites 2022, 12(2), 89; https://doi.org/10.3390/metabo12020089 - 18 Jan 2022
Cited by 3 | Viewed by 2842
Abstract
Iron absorption requires an acidic environment that is generated by the activity of the proton pump gastric H(+)/K(+)ATPase (ATP4), expressed in gastric parietal cells. However, hepcidin, the iron regulatory peptide that inhibits iron absorption, unexpectedly upregulates ATP4 and increases gastric acidity. Thus, a [...] Read more.
Iron absorption requires an acidic environment that is generated by the activity of the proton pump gastric H(+)/K(+)ATPase (ATP4), expressed in gastric parietal cells. However, hepcidin, the iron regulatory peptide that inhibits iron absorption, unexpectedly upregulates ATP4 and increases gastric acidity. Thus, a concept of link between acidosis and alterations in iron metabolism, needs to be explored. We investigated this aspect in-vivo using experimental models of NH4Cl-induced acidosis and of an iron-rich diet. Under acidosis, gastric ATP4 was augmented. Serum hepcidin was induced and its mRNA level was increased in the liver but not in the stomach, a tissue where hepcidin is also expressed. mRNA and protein levels of intestinal DMT1(Divalent Metal Transporter 1) and ferroportin were downregulated. Serum iron level and transferrin saturation remained unchanged, but serum ferritin was significantly increased. Under iron-rich diet, the protein expression of ATP4A was increased and serum, hepatic and gastric hepcidin were all induced. Taken together, these results provide evidence of in-vivo relationship between iron metabolism and acidosis. For clinical importance, we speculate that metabolic acidosis may contribute in part to the pathologic elevation of serum hepcidin levels seen in patients with chronic kidney disease. The regulation of ATP4 by iron metabolism may also be of interest for patients with hemochromatosis. Full article
Show Figures

Figure 1

20 pages, 2538 KiB  
Article
Surface Properties of Synaptosomes in the Presence of L-Glutamic and Kainic Acids: In Vitro Alteration of the ATPase and Acetylcholinesterase Activities
by Virjinia Doltchinkova, Nevena Mouleshkova and Victoria Vitkova
Membranes 2021, 11(12), 987; https://doi.org/10.3390/membranes11120987 - 17 Dec 2021
Cited by 7 | Viewed by 3264
Abstract
Morphologically and functionally identical to brain synapses, the nerve ending particles synaptosomes are biochemically derived membrane structures responsible for the transmission of neural information. Their surface and mechanical properties, measured in vitro, provide useful information about the functional activity of synapses in the [...] Read more.
Morphologically and functionally identical to brain synapses, the nerve ending particles synaptosomes are biochemically derived membrane structures responsible for the transmission of neural information. Their surface and mechanical properties, measured in vitro, provide useful information about the functional activity of synapses in the brain in vivo. Glutamate and kainic acid are of particular interest because of their role in brain pathology (including causing seizure, migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, traumatic brain injury and stroke). The effects of the excitatory neurotransmitter L-glutamic acid and its agonist kainic acid are tested on Na+, K+-ATPase and Mg2+-ATPase activities in synaptic membranes prepared from the cerebral cortex of rat brain tissue. The surface parameters of synaptosome preparations from the cerebral cortex in the presence of L-glutamic and kainic acids are studied by microelectrophoresis for the first time. The studied neurotransmitters promote a significant increase in the electrophoretic mobility and surface electrical charge of synaptosomes at 1–4 h after isolation. The measured decrease in the bending modulus of model bimolecular membranes composed of monounsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine provides evidence for softer membranes in the presence of L-glutamate. Kainic acid does not affect membrane mechanical stability even at ten-fold higher concentrations. Both the L-glutamic and kainic acids reduce acetylcholinesterase activity and deviation from the normal functions of neurotransmission in synapses is presumed. The presented results regarding the modulation of the enzyme activity of synaptic membranes and surface properties of synaptosomes are expected by biochemical and biophysical studies to contribute to the elucidation of the molecular mechanisms of neurotransmitters/agonists’ action on membranes. Full article
(This article belongs to the Special Issue Biological Membranes as Targets for Natural and Synthetic Compounds)
Show Figures

Figure 1

Back to TopTop