The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure
Abstract
1. Introduction
2. Results
2.1. Stage 1: Effect of Natriuretic Peptides on AFC in Normal Lung
2.2. In Vivo Protocols: Normal Rats
2.2.1. ANP and BNP Effect on NPR-A Expression in Lung Tissue
2.2.2. ENaC
2.2.3. Na+, K+-ATPase
2.2.4. α-ENaC Ubiquitination
2.3. Electron Microscopy
2.4. Stage 2: Lung Tissue of Congestive Heart Failure Rats
2.4.1. Effect of ANP on AFC in CHF
2.4.2. Immunofluorescence
2.4.3. The Effect of ANP on the Mediators of Alveolar Active Sodium Transport in CHF
2.5. Stage 3: ANP Regulates αENaC Levels via Nedd4-2
3. Discussion
4. Materials and Methods
4.1. Animal Care
4.2. Study Design
4.3. Measurement of Alveolar Fluid Clearance (AFC)
4.4. Experimental CHF
4.5. Cell Isolation, Culture, and Treatment
4.6. Lung Fixation and Histology
4.7. Immunofluorescence Staining
4.8. Immunofluorescence of Isolated AECII
4.9. Western Blot Analysis
4.10. RNA Extraction and Real-Time qPCR
4.11. Electron Microscopy
4.12. Cell Culture, Plasmids, and Transfections
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEC | Alveolar Epithelial Cells |
AFC | Alveolar Fluid Clearance |
AKT | Protein kinase B |
ARNI | Angiotensin Receptor-Neprilysin Inhibitor |
ANP | Atrial Natriuretic Peptide |
ATP | Adenosine Triphosphate |
BNP | Brain Natriuretic Peptide |
BSA | Bovine Serum Albumin |
c-GMP | Cyclic guanosine monophosphate |
CHF | Congestive Heart Failure |
CNP | C-type Natriuretic Peptide |
CPE | Cardiogenic Pulmonary Edema |
DMEM | Dulbecco’s Modified Eagle Medium |
ENaC | Epithelial Na+ Channel |
HA-tagged | Human Influenza HemAgglutinin |
HF | Heart Failure |
Na+, K+-ATPase | Na, K-ATPase Sodium Potassium Pump |
Nedd 4-2 | Neural precursor cell expressed developmentally down-regulated protein 4 |
NPs | Natriuretic Peptides |
SDS | Sodium Dodecyl Sulfate |
SGK1 | Serum and Glucocorticoid-regulated Kinase |
TBS | Tris-Buffered Saline |
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Baumbach, A.; Böhm, M.; Burri, H.; Čelutkiene, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Buglioni, A.; Burnett, J.C. Pathophysiology and the Cardiorenal Connection in Heart Failure. Circulating Hormones: Biomarkers or Mediators. Clin. Chim. Acta 2015, 443, 3–8. [Google Scholar] [CrossRef]
- Hasegawa, M.; Townley, R.G. Alpha and Beta Adrenergic Receptors of Canine Lung Tissue Identification and Characterization of Alpha Adrenergic Receptors by Two Different Ligands. Life Sci. 1982, 30, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Abraham, W.T. Hormones and Hemodynamics in Heart Failure. N. Engl. J. Med. 1999, 341, 577–585. [Google Scholar] [PubMed]
- Kalra, P.R.; Anker, S.D.; Coats, A.J.S. Water and Sodium Regulation in Chronic Heart Failure: The Role of Natriuretic Peptides and Vasopressin. Cardiovasc. Res. 2001, 51, 495–509. [Google Scholar]
- Kerkelä, R.; Ulvila, J.; Magga, J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J. Am. Heart Assoc. 2015, 4, e002423. [Google Scholar] [CrossRef]
- Potter, L.R.; Abbey-Hosch, S.; Dickey, D.M. Natriuretic Peptides, Their Receptors, and Cyclic Guanosine Monophosphate-Dependent Signaling Functions. Endocr. Rev. 2006, 27, 47–72. [Google Scholar] [CrossRef]
- Matthay, M.A. Resolution of Pulmonary Edema Thirty Years of Progress. Am. J. Respir. Crit. Care Med. 2014, 189, 1301–1308. [Google Scholar] [CrossRef]
- Mason, R.J. Biology of Alveolar Type II Cells. Respirology 2006, 11, 12–15. [Google Scholar] [CrossRef]
- Saldias, F.J.; Azzam, Z.S.; Ridge, K.M.; Yeldandi, A.; Rutschman, D.H.; Schraufnagel, D.; Sznajder, J.I.; Saldías, F.J.; Azzam, Z.S.; Ridge, K.M.; et al. Alveolar Fluid Reabsorption Is Impaired by Increased Left Atrial Pressures in Rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2001, 281, L591–L597. [Google Scholar]
- Hochberg, I.; Abassi, Z.; Azzam, Z.S. Patterns of Alveolar Fluid Clearance in Heart Failure. Int. J. Cardiol. 2008, 130, 125–130. [Google Scholar] [CrossRef]
- Frank, J.A.; Wang, Y.; Osorio, O.; Matthay, M.A. Beta-Adrenergic Agonist Therapy Accelerates the Resolution of Hydrostatic Pulmonary Edema in Sheep and Rats. J. Appl. Physiol. 2000, 89, 1255–1265. [Google Scholar] [PubMed]
- Azzam, Z.S.; Adir, Y.; Welch, L.; Chen, J.; Winaver, J.; Factor, P.; Krivoy, N.; Hoffman, A.; Sznajder, J.I.; Abassi, Z. Alveolar Fluid Reabsorption Is Increased in Rats with Compensated Heart Failure. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 291, L1094–L1100. [Google Scholar] [PubMed]
- Olivera, W.; Ridge, K.; Wood, L.D.; Sznajder, J.I. ANF Decreases Active Sodium Transport and Increases Alveolar Epithelial Permeability in Rats. J. Appl. Physiol. 1993, 75, 1581–1586. [Google Scholar]
- Khoury, E.E.; Kinaneh, S.; Aronson, D.; Amir, O.; Ghanim, D.; Volinsky, N.; Azzam, Z.; Abassi, Z. Natriuretic Peptides System in the Pulmonary Tissue of Rats with Heart Failure: Potential Involvement in Lung Edema and Inflammation. Oncotarget 2018, 9, 21715–21730. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.M.; Olson, D.R.; Thomas, B.C. Serum and Glucocorticoid-Regulated Kinase Modulates Nedd4-2-Mediated Inhibition of the Epithelial Na+ Channel. J. Biol. Chem. 2002, 277, 5–8. [Google Scholar] [CrossRef]
- Bhalla, V.; Daidié, D.; Li, H.; Pao, A.C.; LaGrange, L.P.; Wang, J.; Vandewalle, A.; Stockand, J.D.; Staub, O.; Pearce, D. Serum- and Glucocorticoid-Regulated Kinase 1 Regulates Ubiquitin Ligase Neural Precursor Cell-Expressed, Developmentally down-Regulated Protein 4-2 by Inducing Interaction with 14-3-3. Mol. Endocrinol. 2005, 19, 3073–3084. [Google Scholar] [CrossRef]
- Nagaki, K.; Yamamura, H.; Shimada, S.; Saito, T.; Hisanaga, S.I.; Taoka, M.; Isobe, T.; Ichimura, T. 14-3-3 Mediates Phosphorylation-Dependent Inhibition of the Interaction between the Ubiquitin E3 Ligase Nedd4-2 and Epithelial Na+ Channels. Biochemistry 2006, 45, 6733–6740. [Google Scholar] [CrossRef]
- Azzam, Z.S.; Sznajder, J.I. Rambam Maimonides Medical Journal Lung Edema Clearance: Relevance to Patients with Lung Injury. Rambam Maimonides Med. J. 2015, 6, e0025. [Google Scholar] [CrossRef]
- Aperia, A.; Holtbäck, U.; Syrén, M.; Svensson, L.B.; Fryckstedt, J.; Greengard, P. Activation/Deactivation of Renal Na +, K + -ATPase: A Final Common Pathway for Regulation of Natriuresis. FASEB J. 1994, 8, 436–439. [Google Scholar] [CrossRef]
- Bełtowski, J.; Górny, D.; Marciniak, A. The Mechanism of Na+, K+-ATPase Inhibition by Atrial Natriuretic Factor in Rat Renal Medulla. J. Physiol. Pharmacol. 1998, 49, 271–283. [Google Scholar] [PubMed]
- Theilig, F.; Wu, Q. ANP-Induced Signaling Cascade and Its Implications in Renal Pathophysiology. Am. J. Physiol.-Ren. Physiol. 2015, 308, F1047–F1055. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.-J.; Hao, Y.; Cao, F.; Yan, S.-F.; Li, H.; Wang, Q.; Cheng, B.-H.; Ying, B.-Y.; Smith, F.G.; Jin, S.-W. Protectin DX Increases Alveolar Fluid Clearance in Rats with Lipopolysaccharide-Induced Acute Lung Injury. Exp. Mol. Med. 2018, 50, 49. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.M. Down-Regulating Destruction: Phosphorylation Regulates the E3 Ubiquitin Ligase Nedd4-2. Sci. Signal. 2009, 2, pe41. [Google Scholar] [CrossRef]
- Hamm, L.L.; Feng, Z.; Hering-Smith, K.S. Regulation of Sodium Transport by ENaC in the Kidney. Curr. Opin. Nephrol. Hypertens. 2010, 19, 98–105. [Google Scholar] [CrossRef]
- He, H.; Huang, C.; Chen, Z.; Huang, H.; Wang, X.; Chen, J. An Outlined Review for the Role of Nedd4-1 and Nedd4-2 in Lung Disorders. Biomed. Pharmacother. 2020, 125, 109983. [Google Scholar] [CrossRef]
- Vollmar, A.M. The Role of Atrial Natriuretic Peptide in the Immune System. Peptides 2005, 26, 1086–1094. [Google Scholar] [CrossRef]
- Abassi, Z.; Goltsman, I.; Karram, T.; Winaver, J.; Hoffman, A. Aortocaval Fistula in Rat: A Unique Model of Volume-Overload Congestive Heart Failure and Cardiac Hypertrophy. J. Biomed. Biotechnol. 2011, 2011, 729497. [Google Scholar] [CrossRef]
- Kuhn, M. Endothelial Actions of Atrial and B-Type Natriuretic Peptides. Br. J. Pharmacol. 2012, 66, 522–531. [Google Scholar] [CrossRef]
- Dodd-o, J.M.; Hristopoulos, M.L.; Kibler, K.; Gutkowska, J.; Mukaddam-Daher, S.; Gonzalez, A.; Welsh-Servinsky, L.E.; Pearse, D.B. The Role of Natriuretic Peptide Receptor-A Signaling in Unilateral Lung Ischemia-Reperfusion Injury in the Intact Mouse. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2008, 294, L714–L723. [Google Scholar] [CrossRef]
- Abassi, Z.A.; Kelly, G.; Golomb, E.; Klein, H.; Keiser, H.R. Losartan Improves the Natriuretic Response to ANF in Rats with High-Output Heart Failure. J. Pharmacol. Exp. Ther. 1994, 268, 224–230. [Google Scholar] [PubMed]
- Ismael-Badarneh, R.; Guetta, J.; Klorin, G.; Berger, G.; Abu-Saleh, N.; Abassi, Z.; Azzam, Z.S. The Role of Angiotensin II and Cyclic AMP in Alveolar Active Sodium Transport. PLoS ONE 2015, 10, e0134175. [Google Scholar] [CrossRef]
- Jain, L.; Chen, X.J.; Brown, L.A.; Eaton, D.C. Nitric Oxide Inhibits Lung Sodium Transport through a CGMP-Mediated Inhibition of Epithelial Cation Channels. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1998, 274, L475–L484. [Google Scholar] [CrossRef]
- Boase, N.A.; Rychkov, G.Y.; Townley, S.L.; Dinudom, A.; Candi, E.; Voss, A.K.; Tsoutsman, T.; Semsarian, C.; Melino, G.; Koentgen, F.; et al. Respiratory Distress and Perinatal Lethality in Nedd4-2-Deficient Mice. Nat. Commun. 2011, 2, 287. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.H.; Dinudom, A.; Sanchez-Perez, A.; Kumar, S.; Cook, D.I. Akt Mediates the Effect of Insulin on Epithelial Sodium Channels by Inhibiting Nedd4-2. J. Biol. Chem. 2007, 282, 29866–29873. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Velazquez, E.J.; Morrow, D.A.; DeVore, A.D.; Duffy, C.I.; Ambrosy, A.P.; McCague, K.; Rocha, R.; Braunwald, E. Angiotensin–Neprilysin Inhibition in Acute Decompensated Heart Failure. N. Engl. J. Med. 2019, 380, 539–548. [Google Scholar] [CrossRef]
- Tsutsui, H.; Albert, N.M.; Coats, A.J.S.; Anker, S.D.; Bayes-Genis, A.; Butler, J.; Chioncel, O.; Defilippi, C.R.; Drazner, M.H.; Felker, G.M.; et al. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur. J. Heart Fail. 2023, 25, 616–631. [Google Scholar] [CrossRef]
- Rutschman, D.H.; Olivera, W.; Sznajder, J.I. Active Transport and Passive Liquid Movement in Isolated Perfused Rat Lungs. J. Appl. Physiol. 1993, 75, 1574–1580. [Google Scholar]
- Dobbs, L.G.; Gonzalez, R.; Matthay, M.A.; Carter, E.P.; Allen, L.; Verkman, A.S. Highly Water-Permeable Type I Alveolar Epithelial Cells Confer High Water Permeability between the Airspace and Vasculature in Rat Lung. Proc. Natl. Acad. Sci. USA 1998, 95, 2991–2996. [Google Scholar]
- Ridge, K.M.; Dada, L.; Lecuona, E.; Bertorello, A.M.; Katz, A.I.; Mochly-Rosen, D.; Sznajder, J.I. Dopamine-Induced Exocytosis of Na, K-ATPase Is Dependent on Activation of Protein Kinase C-ε and -δ. Mol. Biol. Cell 2002, 13, 1381–1389. [Google Scholar] [PubMed]
- Guetta, J.; Klorin, G.; Tal, R.; Berger, G.; Ismael-Badarneh, R.; Bishara, B.; Sabo, E.; Abassi, Z.; Azzam, Z.S. Vasopressin-2 Receptor Antagonist Attenuates the Ability of the Lungs to Clear Edema in an Experimental Model. Am. J. Respir. Cell Mol. Biol. 2012, 47, 583–588. [Google Scholar] [CrossRef] [PubMed]
αENaC | F (5’-TCCTGCAACCAGGCGAATTA-3’) R (5’-TCAGGGACAGACCGTTGTTG-3’) |
αNa+, K+-ATPase | F (5’-TGCTCCGACAAGACTGGAAC-3’) R (5’-GTCAAAGGAGACCCCACTCTG-3’) |
GAPDH | F (5′-GTGCCAGCCTCGTCTCATAG-3′) R (5′-GAGAAGGCAGCCCTGGTAAC-3′) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knany, Y.; Kinaneh, S.; Khoury, E.E.; Zohar, Y.; Abassi, Z.; Azzam, Z.S. The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure. Int. J. Mol. Sci. 2025, 26, 3374. https://doi.org/10.3390/ijms26073374
Knany Y, Kinaneh S, Khoury EE, Zohar Y, Abassi Z, Azzam ZS. The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure. International Journal of Molecular Sciences. 2025; 26(7):3374. https://doi.org/10.3390/ijms26073374
Chicago/Turabian StyleKnany, Yara, Safa Kinaneh, Emad E. Khoury, Yaniv Zohar, Zaid Abassi, and Zaher S. Azzam. 2025. "The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure" International Journal of Molecular Sciences 26, no. 7: 3374. https://doi.org/10.3390/ijms26073374
APA StyleKnany, Y., Kinaneh, S., Khoury, E. E., Zohar, Y., Abassi, Z., & Azzam, Z. S. (2025). The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure. International Journal of Molecular Sciences, 26(7), 3374. https://doi.org/10.3390/ijms26073374