Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = Ground-Based InSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 19346 KB  
Article
Three-Dimensional Intelligent Understanding and Preventive Conservation Prediction for Linear Cultural Heritage
by Ruoxin Wang, Ming Guo, Yaru Zhang, Jiangjihong Chen, Yaxuan Wei and Li Zhu
Buildings 2025, 15(16), 2827; https://doi.org/10.3390/buildings15162827 - 8 Aug 2025
Viewed by 391
Abstract
This study proposes an innovative method that integrates multi-source remote sensing technologies and artificial intelligence to meet the urgent needs of deformation monitoring and ecohydrological environment analysis in Great Wall heritage protection. By integrating synthetic aperture radar (InSAR) technology, low-altitude oblique photogrammetry models, [...] Read more.
This study proposes an innovative method that integrates multi-source remote sensing technologies and artificial intelligence to meet the urgent needs of deformation monitoring and ecohydrological environment analysis in Great Wall heritage protection. By integrating synthetic aperture radar (InSAR) technology, low-altitude oblique photogrammetry models, and the three-dimensional Gaussian splatting model, an integrated air–space–ground system for monitoring and understanding the Great Wall is constructed. Low-altitude tilt photogrammetry combined with the Gaussian splatting model, through drone images and intelligent generation algorithms (e.g., generative adversarial networks), quickly constructs high-precision 3D models, significantly improving texture details and reconstruction efficiency. Based on the 3D Gaussian splatting model of the AHLLM-3D network, the integration of point cloud data and the large language model achieves multimodal semantic understanding and spatial analysis of the Great Wall’s architectural structure. The results show that the multi-source data fusion method can effectively identify high-risk deformation zones (with annual subsidence reaching −25 mm) and optimize modeling accuracy through intelligent algorithms (reducing detail error by 30%), providing accurate deformation warnings and repair bases for Great Wall protection. Future studies will further combine the concept of ecological water wisdom to explore heritage protection strategies under multi-hazard coupling, promoting the digital transformation of cultural heritage preservation. Full article
Show Figures

Figure 1

25 pages, 58070 KB  
Article
An Underground Goaf Locating Framework Based on D-InSAR with Three Different Prior Geological Information Conditions
by Kewei Zhang, Yunjia Wang, Feng Zhao, Zhanguo Ma, Guangqian Zou, Teng Wang, Nianbin Zhang, Wenqi Huo, Xinpeng Diao, Dawei Zhou and Zhongwei Shen
Remote Sens. 2025, 17(15), 2714; https://doi.org/10.3390/rs17152714 - 5 Aug 2025
Viewed by 305
Abstract
Illegal mining operations induce cascading ecosystem degradation by causing extensive ground subsidence, necessitating accurate underground goaf localization for effectively induced-hazard mitigation. The conventional locating method applied the synthetic aperture radar interferometry (InSAR) technique to obtain ground deformation to estimate underground goaf parameters, and [...] Read more.
Illegal mining operations induce cascading ecosystem degradation by causing extensive ground subsidence, necessitating accurate underground goaf localization for effectively induced-hazard mitigation. The conventional locating method applied the synthetic aperture radar interferometry (InSAR) technique to obtain ground deformation to estimate underground goaf parameters, and the locating accuracy was crucially contingent upon the appropriateness of nonlinear deformation function models selection and the precision of geological parameters acquisition. However, conventional model-driven underground goaf locating frameworks often fail to sufficiently integrate prior geological information during the model selection process, potentially leading to increased positioning errors. In order to enhance the operational efficiency and locating accuracy of underground goaf, deformation model selection must be aligned with site-specific geological conditions under varying cases of prior information. To address these challenges, this study categorizes prior geological information into three different hierarchical levels (detailed, moderate, and limited) to systematically investigate the correlations between model selection and prior information. Subsequently, field validation was carried out by applying two different non-linear deformation function models, Probability Integral Model (PIM) and Okada Dislocation Model (ODM), with three different prior geological information conditions. The quantitative performance results indicate that, (1) under a detailed prior information condition, PIM achieves enhanced dimensional parameter estimation accuracy with 6.9% reduction in maximum relative error; (2) in a moderate prior information condition, both models demonstrate comparable estimation performance; and (3) for a limited prior information condition, ODM exhibits superior parameter estimation capability showing 3.4% decrease in maximum relative error. Furthermore, this investigation discusses the influence of deformation spatial resolution, the impacts of azimuth determination methodologies, and performance comparisons between non-hybrid and hybrid optimization algorithms. This study demonstrates that aligning the selection of deformation models with different types of prior geological information significantly improves the accuracy of underground goaf detection. The findings offer practical guidelines for selecting optimal models based on varying information scenarios, thereby enhancing the reliability of disaster evaluation and mitigation strategies related to illegal mining. Full article
Show Figures

Figure 1

48 pages, 18119 KB  
Article
Dense Matching with Low Computational Complexity for Disparity Estimation in the Radargrammetric Approach of SAR Intensity Images
by Hamid Jannati, Mohammad Javad Valadan Zoej, Ebrahim Ghaderpour and Paolo Mazzanti
Remote Sens. 2025, 17(15), 2693; https://doi.org/10.3390/rs17152693 - 3 Aug 2025
Viewed by 421
Abstract
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation [...] Read more.
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation as its core component. Matching strategies in radargrammetry typically follow local, global, or semi-global methodologies. Local methods, while having higher accuracy, especially in low-texture SAR images, require larger kernel sizes, leading to quadratic computational complexity. Conversely, global and semi-global models produce more consistent and higher-quality disparity maps but are computationally more intensive than local methods with small kernels and require more memory (RAM). In this study, inspired by the advantages of local matching algorithms, a computationally efficient and novel model is proposed for extracting corresponding pixels in SAR-intensity stereo images. To enhance accuracy, the proposed two-stage algorithm operates without an image pyramid structure. Notably, unlike traditional local and global models, the computational complexity of the proposed approach remains stable as the input size or kernel dimensions increase while memory consumption stays low. Compared to a pyramid-based local normalized cross-correlation (NCC) algorithm and adaptive semi-global matching (SGM) models, the proposed method maintains good accuracy comparable to adaptive SGM while reducing processing time by up to 50% relative to pyramid SGM and achieving a 35-fold speedup over the local NCC algorithm with an optimal kernel size. Validated on a Sentinel-1 stereo pair with a 10 m ground-pixel size, the proposed algorithm yields a DEM with an average accuracy of 34.1 m. Full article
Show Figures

Graphical abstract

23 pages, 30771 KB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 588
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

38 pages, 6652 KB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 658
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

26 pages, 20113 KB  
Article
Enhanced Detection of Permafrost Deformation with Machine Learning and Interferometric SAR Along the Qinghai–Tibet Engineering Corridor
by Peng Fan, Hong Lin, Zhengjia Zhang and Heming Deng
Remote Sens. 2025, 17(13), 2231; https://doi.org/10.3390/rs17132231 - 29 Jun 2025
Viewed by 492
Abstract
Interferometric synthetic aperture radar (InSAR) plays a significant role in monitoring permafrost deformation. However, owing to environmental constraints in permafrost regions, some regions exhibit temporal incoherence, which results in deformation with fewer measurement points and difficulties with deformation automatic detection. In this study, [...] Read more.
Interferometric synthetic aperture radar (InSAR) plays a significant role in monitoring permafrost deformation. However, owing to environmental constraints in permafrost regions, some regions exhibit temporal incoherence, which results in deformation with fewer measurement points and difficulties with deformation automatic detection. In this study, a full-coverage deformation rate map of the 10 km buffer of the Qinghai–Tibet Engineering Corridor (QTEC) was generated by combining nine driving factors and the deformation rate of the 5 km buffer along the QTEC based on three machine learning methods. The importance of the factors contributing to ground deformation was explored. The experimental results show that support vector regression (SVR) yielded the best performance (R2 = 0.98, RMSE = 0.76 mm/year, MAE = 0.74 mm/year). The 10 km buffer of deformation data obtained not only preserved the original deformation data well, but it also filled the blank areas in the deformation map. Subsequently, we trained the Faster R-CNN model on the deformation rate map simulated by SVR and used it for the automatic detection of permafrost thaw settlement areas. The results showed that the Faster R-CNN could identify the permafrost thawing slump quickly and accurately. More than 300 deformation areas along the QTEC were detected through our proposed method, with some of these areas located near thaw slump and thermokarst lake regions. This study confirms the significant potential of combining InSAR and deep learning techniques for permafrost degradation monitoring applications. Full article
Show Figures

Figure 1

23 pages, 17995 KB  
Article
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
by Chuanjun Wu, Jiali Hou, Peng Shen, Sai Wang, Gang Chen and Lu Zhang
Remote Sens. 2025, 17(13), 2140; https://doi.org/10.3390/rs17132140 - 22 Jun 2025
Viewed by 440
Abstract
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for [...] Read more.
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for sub-canopy terrain estimation based on a one-dimensional lookup table (LUT) that links forest height to unpenetrated depth. The approach begins by applying an optimal normal matrix approximation to constrain the complex coherence measurements. Subsequently, the difference between the PolInSAR Digital Terrain Model (DTM) derived from the Random Volume over Ground (RVoG) model and the LiDAR DTM is defined as the unpenetrated depth. A nonlinear iterative optimization algorithm is then employed to estimate forest height, from which a fundamental mapping between forest height and unpenetrated depth is established. This mapping can be used to correct the bias in sub-canopy terrain estimation based on the PolInSAR RVoG model, even with only a small amount of sparse LiDAR DTM data. To validate the effectiveness of the method, experiments were conducted using fully polarimetric P-band airborne SAR data acquired by the European Space Agency (ESA) during the AfriSAR campaign over the Mabounie region in Gabon, Africa, in 2016. The experimental results demonstrate that the proposed method effectively mitigates terrain estimation errors caused by insufficient signal penetration or the limitation of single-interferometric geometry. Further analysis reveals that the availability of sufficient and precise forest height data significantly improves sub-canopy terrain accuracy. Compared with LiDAR-derived DTM, the proposed method achieves an average root mean square error (RMSE) of 5.90 m, representing an accuracy improvement of approximately 38.3% over traditional RVoG-derived InSAR DTM retrieval. These findings further confirm that there exist unpenetrated phenomena in single-baseline low-frequency PolInSAR-derived DTMs of tropical forested areas. Nevertheless, when sparse LiDAR topographic data is available, the integration of fully PolInSAR data with LUT-based compensation enables improved sub-canopy terrain retrieval. This provides a promising technical pathway with single-baseline configuration for spaceborne missions, such as ESA’s BIOMASS mission, to estimate sub-canopy terrain in tropical-rainforest regions. Full article
Show Figures

Graphical abstract

25 pages, 32212 KB  
Article
Remote Sensing of Seismic Signals via Enhanced Moiré-Based Apparatus Integrated with Active Convolved Illumination
by Adrian A. Moazzam, Anindya Ghoshroy, Durdu Ö. Güney and Roohollah Askari
Remote Sens. 2025, 17(12), 2032; https://doi.org/10.3390/rs17122032 - 12 Jun 2025
Viewed by 741
Abstract
The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation [...] Read more.
The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation sites, significantly limiting their applicability. To overcome these constraints, this study introduces a Moiré-based apparatus augmented with active convolved illumination (ACI). The system leverages the displacement-magnifying properties of Moiré patterns to achieve high precision in detecting subtle ground movements. Additionally, ACI effectively mitigates atmospheric fluctuations, reducing the distortion and alteration of measurement signals caused by these fluctuations. We validated the performance of this integrated solution through over 1900 simulations under diverse turbulence intensities. The results illustrate the synergistic capabilities of the Moiré apparatus and ACI in preserving the fidelity of Moiré fringes, enabling reliable displacement measurements even under conditions where passive methods fail. This study establishes a cost-effective, scalable, and non-invasive framework for remote seismic monitoring, offering transformative potential across geophysics, volcanology, structural analysis, metrology, and other domains requiring precise displacement measurements under extreme conditions. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

19 pages, 9445 KB  
Article
The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring
by Jinbao Zhang, Wei Duan, Xikai Fu, Ye Yun and Xiaolei Lv
Remote Sens. 2025, 17(8), 1374; https://doi.org/10.3390/rs17081374 - 11 Apr 2025
Cited by 1 | Viewed by 566
Abstract
In recent decades, the interferometric synthetic aperture radar (InSAR) technique has emerged as a powerful tool for monitoring ground subsidence and geohazards. Various satellite SAR systems with different modes, such as Sentinel-1 and Lutan-1, have produced abundant SAR datasets with wide coverage and [...] Read more.
In recent decades, the interferometric synthetic aperture radar (InSAR) technique has emerged as a powerful tool for monitoring ground subsidence and geohazards. Various satellite SAR systems with different modes, such as Sentinel-1 and Lutan-1, have produced abundant SAR datasets with wide coverage and large historical archives, which have significantly influenced long-term deformation monitoring applications. However, large-scale InSAR data have posed significant challenges to conventional InSAR methods. These issues include the computational burden and storage of multi-temporal InSAR (MT-InSAR) methods, as well as temporal decorrelation for coherent scatterers with long temporal baselines. In this study, we propose a stepwise MT-InSAR with a temporal coherent scatterer method to address these problems. First, a batch sequential method is introduced in the algorithm by grouping the SAR dataset in the time domain based on the average coherence distribution and then applying permanent scatterer interferometry to each temporal subset. Second, a multi-layer network is employed to estimate deformation for partially coherent scatterers using small baseline subset interferograms, with permanent scatterer deformation parameters as the reference. Finally, the final deformation rate and displacement time series were obtained by incorporating all the temporal subsets. The proposed method efficiently generates high-density InSAR deformation measurements for long-time series analysis. The proposed method was validated using 9 years of Sentinel-1 data with 229 SAR images from Jakarta, Indonesia. The deformation results were compared with those of conventional methods and global navigation satellite system data to confirm the effectiveness of the proposed method. Full article
Show Figures

Figure 1

25 pages, 7700 KB  
Article
The First Experimental Validation of a Communication Base Station as a Ground-Based SAR for Deformation Monitoring
by Jiabao Xi, Zhiyong Suo and Jingjing Ti
Remote Sens. 2025, 17(7), 1129; https://doi.org/10.3390/rs17071129 - 22 Mar 2025
Cited by 2 | Viewed by 669
Abstract
Integrated Sensing and Communication (ISAC) is an important trend for future commutation networks. The Communication Base Station (CBS) can be used as a Ground-Based Synthetic Aperture Radar (GB-SAR). By using Synthetic Aperture Radar (SAR) images obtained at a different time, GB-SAR will have [...] Read more.
Integrated Sensing and Communication (ISAC) is an important trend for future commutation networks. The Communication Base Station (CBS) can be used as a Ground-Based Synthetic Aperture Radar (GB-SAR). By using Synthetic Aperture Radar (SAR) images obtained at a different time, GB-SAR will have the ability to detect millimeter-level ground deformations with Interferometric SAR (InSAR) processing through a phase difference operation. In this paper, we investigated the observation and performance for millimeter-level ground deformation detection based on the CBS with Differential InSAR (D-InSAR) for the first time. Building on the characteristics of short temporal sampling intervals, an in-depth investigation was conducted into the process of detecting deformations using the CBS. A practical experimental scenario was established, and the high coherence between adjacent images resulting from short temporal sampling intervals was leveraged to enhance the phase Signal-to-Noise Ratios (SNRs) through time series Differential Interferometric Phase sample averaging. On this basis, the first experimental result is given, which indicates that CBS can accurately capture millimeter-level deformations with a maximum error of 0.3437 mm. The experimental results confirm the feasibility and accuracy of employing CBSs as GB-SAR systems for monitoring ground deformations. Full article
Show Figures

Figure 1

22 pages, 7397 KB  
Article
Integrated GNSS and InSAR Analysis for Monitoring the Shoulder Structures of the MOSE System in Venice, Italy
by Massimo Fabris and Mario Floris
Remote Sens. 2025, 17(6), 1059; https://doi.org/10.3390/rs17061059 - 17 Mar 2025
Viewed by 1248
Abstract
Ground-based global navigation satellite system (GNSS) and remote sensing interferometric synthetic aperture radar (InSAR) techniques have proven to be very useful for deformation monitoring. GNSS provides high-precision data but only at a limited number of points, whereas InSAR allows for a much denser [...] Read more.
Ground-based global navigation satellite system (GNSS) and remote sensing interferometric synthetic aperture radar (InSAR) techniques have proven to be very useful for deformation monitoring. GNSS provides high-precision data but only at a limited number of points, whereas InSAR allows for a much denser distribution of measurement points, though only in areas with high and consistent signal backscattering. This study aims to integrate these two techniques to overcome their respective limitations and explore their potential for effective monitoring of critical infrastructure, ensuring the protection of people and the environment. The proposed approach was applied to monitor deformations of the shoulder structures of the MOSE (MOdulo Sperimentale Elettromeccanico) system, the civil infrastructure designed to protect Venice and its lagoon from high tides. GNSS data were collected from 36 continuous GNSS (CGNSS) stations located at the corners of the emerged shoulder structures in the Treporti, San Nicolò, Malamocco, and Chioggia barriers. Velocities from February 2021/November 2022 to June 2023 were obtained using daily RINEX data and Bernese software. Three different processing strategies were applied, utilizing networks composed of the 36 MOSE stations and eight other continuous GNSS stations from the surrounding area (Padova, Venezia, Treviso, San Donà, Rovigo, Taglio di Po, Porto Garibaldi, and Porec). InSAR data were sourced from the European ground motion service (EGMS) of the Copernicus program and the Veneto Region database. Both services provide open data related to the line of sight (LOS) velocities derived from Sentinel-1 satellite imagery using the persistent scatterers interferometric synthetic aperture radar (PS-InSAR) approach. InSAR velocities were calibrated using a reference CGNSS station (Venezia) and validated with the available CGNSS data from the external network. Subsequently, the velocities were compared along the LOS at the 36 CGNSS stations of the MOSE system. The results showed a strong agreement between the velocities, with approximately 70% of the comparisons displaying differences of less than 1.5 mm/year. These findings highlight the great potential of satellite-based monitoring and the effectiveness of combining GNSS and InSAR techniques for infrastructure deformation analysis. Full article
Show Figures

Figure 1

26 pages, 1291 KB  
Article
InSAR-RiskLSTM: Enhancing Railway Deformation Risk Prediction with Image-Based Spatial Attention and Temporal LSTM Models
by Baihang Lyu, Ziwen Zhang and Heinz D. Fill
Appl. Sci. 2025, 15(5), 2371; https://doi.org/10.3390/app15052371 - 23 Feb 2025
Viewed by 1146
Abstract
Railway infrastructure faces significant operational threats due to ground deformation risks from natural and anthropogenic sources, posing serious challenges to safety and maintenance. Traditional monitoring methods often fail to capture the complex spatiotemporal patterns of railway deformation, leading to delayed responses and increased [...] Read more.
Railway infrastructure faces significant operational threats due to ground deformation risks from natural and anthropogenic sources, posing serious challenges to safety and maintenance. Traditional monitoring methods often fail to capture the complex spatiotemporal patterns of railway deformation, leading to delayed responses and increased risks of infrastructure failure. To address these limitations, this study introduces InSAR-RiskLSTM, a novel framework that leverages the high-resolution and wide-coverage capabilities of Interferometric Synthetic Aperture Radar (InSAR) to enhance railway deformation risk prediction. The primary objective of this study is to develop an advanced predictive model that accurately captures both temporal dependencies and spatial susceptibilities in railway deformation processes. The proposed InSAR-RiskLSTM framework integrates Long Short-Term Memory (LSTM) networks with spatial attention mechanisms to dynamically prioritize high-risk regions and improve predictive accuracy. By combining image-based spatial attention for deformation hotspot identification with advanced temporal modeling, the approach ensures more reliable and proactive risk assessment. Extensive experiments on real-world railway datasets demonstrate that InSAR-RiskLSTM achieves superior predictive performance compared to baseline models, underscoring its robustness and practical applicability. The results highlight its potential to contribute to proactive railway maintenance and risk mitigation strategies by providing early warnings for infrastructure vulnerabilities. This work advances the integration of image-based methods within cyber–physical systems, offering practical tools for safeguarding critical railway networks. Full article
Show Figures

Figure 1

18 pages, 16129 KB  
Article
Revisiting the 2020 Mw 6.8 Elaziğ, Türkiye Earthquake with Physics-Based 3D Numerical Simulations Constrained by Geodetic and Seismic Observations
by Zhongqiu He, Yuchen Zhang, Wenqiang Wang, Zijia Wang, T. C. Sunilkumar and Zhenguo Zhang
Remote Sens. 2025, 17(4), 720; https://doi.org/10.3390/rs17040720 - 19 Feb 2025
Cited by 2 | Viewed by 836
Abstract
Dynamic rupture simulations of earthquakes offer crucial insights into the physical mechanisms of driving fault slip and seismic hazards. By incorporating non-planar fault models that accurately represent subsurface structures, this study provides a realistic depiction of the rupture processes of the 2020 Mw [...] Read more.
Dynamic rupture simulations of earthquakes offer crucial insights into the physical mechanisms of driving fault slip and seismic hazards. By incorporating non-planar fault models that accurately represent subsurface structures, this study provides a realistic depiction of the rupture processes of the 2020 Mw 6.8 Elazığ, Türkiye earthquake, influenced by geometric complexities. Initially, we determined its coseismic slip on the non-planar fault using near-field strong motion and InSAR observations. Subsequently, we established the heterogeneous initial stress on the fault plane based on the coseismic slip and integrated it into the dynamic rupture modeling to assess physics-based ground motion and seismic hazards. The numerical simulations utilized the curved grid finite-difference method (CGFDM), which effectively models rupture dynamics with heterogeneities in fault geometry, initial stress, and other factors. Our synthetic surface deformation and seismograms align well with the observational data obtained from InSAR and seismic instruments. We observed localized occurrences of supershear rupture during fault propagation. Furthermore, the intensity distribution we simulated closely aligns with the actual observations. These findings highlight the critical role of source heterogeneity in seismic hazard assessment, advancing our understanding of fault dynamics and enhancing predictive capabilities. Full article
Show Figures

Figure 1

19 pages, 25570 KB  
Article
Surface Multi-Hazard Effects of Underground Coal Mining in Mountainous Regions
by Xuwen Tian, Xin Yao, Zhenkai Zhou and Tao Tao
Remote Sens. 2025, 17(1), 122; https://doi.org/10.3390/rs17010122 - 2 Jan 2025
Cited by 2 | Viewed by 1404
Abstract
Underground coal mining induces surface subsidence, which in turn impacts the stability of slopes in mountainous regions. However, research that investigates the coupling relationship between surface subsidence in mountainous regions and the occurrence of multiple surface hazards is scarce. Taking a coal mine [...] Read more.
Underground coal mining induces surface subsidence, which in turn impacts the stability of slopes in mountainous regions. However, research that investigates the coupling relationship between surface subsidence in mountainous regions and the occurrence of multiple surface hazards is scarce. Taking a coal mine in southwestern China as a case study, a detailed catalog of the surface hazards in the study area was created based on multi-temporal satellite imagery interpretation and Unmanned aerial vehicle (UAV) surveys. Using interferometric synthetic aperture radar (InSAR) technology and the logistic subsidence prediction method, this study investigated the evolution of surface subsidence induced by underground mining activities and its impact on the triggering of multiple surface hazards. We found that the study area experienced various types of surface hazards, including subsidence, landslides, debris flows, sinkholes, and ground fissures, due to the effects of underground mining activities. The InSAR monitoring results showed that the maximum subsidence at the back edge of the slope terrace was 98.2 mm, with the most severe deformation occurring at the mid-slope of the mountain, where the maximum subsidence reached 139.8 mm. The surface subsidence process followed an S-shaped curve, comprising the stages of initial subsidence, accelerated subsidence, and residual subsidence. Additionally, the subsidence continued even after coal mining operations concluded. Predictions derived from the logistic model indicate that the duration of residual surface subsidence in the study area is approximately 1 to 2 years. This study aimed to provide a scientific foundation for elucidating the temporal and spatial variation patterns of subsidence induced by underground coal mining in mountainous regions and its impact on the formation of multiple surface hazards. Full article
Show Figures

Graphical abstract

20 pages, 15815 KB  
Article
Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR
by Xiaomeng Wang, Wenjun Zhang, Jialun Cai, Xiaowen Wang, Zhouhang Wu, Jing Fan, Yitong Yao and Binlin Deng
Sensors 2025, 25(1), 66; https://doi.org/10.3390/s25010066 - 26 Dec 2024
Cited by 2 | Viewed by 930
Abstract
The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local [...] Read more.
The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from −60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations. Full article
Show Figures

Figure 1

Back to TopTop