Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Grateloupia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1560 KiB  
Review
Anti-Inflammatory Effects of Algae-Derived Biomolecules in Gut Health: A Review
by Alessia Brizzi, Rosaria Margherita Rispoli, Giuseppina Autore and Stefania Marzocco
Int. J. Mol. Sci. 2025, 26(3), 885; https://doi.org/10.3390/ijms26030885 - 21 Jan 2025
Cited by 2 | Viewed by 2328
Abstract
Under physiological conditions, the inflammatory response acts as a biological defense against tissue damage or infection, and is rapidly resolved once the infection is cleared. However, chronic inflammatory diseases, including inflammatory bowel disease (IBD), have become increasingly widespread in the last decades, placing [...] Read more.
Under physiological conditions, the inflammatory response acts as a biological defense against tissue damage or infection, and is rapidly resolved once the infection is cleared. However, chronic inflammatory diseases, including inflammatory bowel disease (IBD), have become increasingly widespread in the last decades, placing a burden on the quality of life of affected people and on healthcare systems worldwide. Available drug therapies are often ineffective due to the chronic nature of these diseases, and prolonged administration of drugs can result in severe side effects for the patient or a lack of efficacy. In addition, there is the growing problem of bacterial resistance to synthetic antibiotics. Together, these factors have led to a strong research focus on the discovery of natural products capable of treating IBD. Recently, there has been a growing interest in compounds derived from marine sources, mainly algae, due to their bioactive secondary metabolites with anti-inflammatory properties well known in the literature. Based on this evidence, this review aimed to evaluate the anti-inflammatory potential of algae-derived biomolecules in IBD. In particular, interesting species from green algae (e.g., Chlorella vulgaris and Ulva pertusa), brown algae (e.g., Macrocystis pyrifera and Ecklonia cava) and red algae (e.g., Porphyra tenera and Grateloupia turuturu) are included in this review due to their proven anti-inflammatory properties. For this purpose, an extensive literature search was conducted using several databases. The results suggest that both macroalgae and microalgae have remarkable potential for IBD therapy due to the anti-inflammatory and antioxidant activities of their bioactive compounds. However, while the preclinical evidence is encouraging, further and long-term clinical studies are needed to better understand their mechanisms of action in order to determine the true efficacy of marine algae in the treatment of IBD. Full article
Show Figures

Figure 1

13 pages, 1454 KiB  
Article
Jasmonates and Ethylene Shape Floridoside Synthesis during Carposporogenesis in the Red Seaweed Grateloupia imbricata
by Pilar Garcia-Jimenez, Diana del Rosario-Santana and Rafael R. Robaina
Mar. Drugs 2024, 22(3), 115; https://doi.org/10.3390/md22030115 - 28 Feb 2024
Cited by 2 | Viewed by 2340
Abstract
Floridoside is a galactosyl–glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis [...] Read more.
Floridoside is a galactosyl–glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages—namely, fertile, fertilized, and fertile—under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides. Full article
(This article belongs to the Special Issue Characterization of Bioactive Components in Edible Algae 3rd Edition)
Show Figures

Figure 1

11 pages, 1014 KiB  
Article
Complete Mitogenome Sequencing, Annotation, and Phylogeny of Grateloupia turuturu, a Red Alga with Intronic cox1 Gene
by Maheshkumar Prakash Patil, Jong-Oh Kim, Young-Ryun Kim, Seokjin Yoon and Kyunghoi Kim
Life 2023, 13(8), 1642; https://doi.org/10.3390/life13081642 - 28 Jul 2023
Cited by 3 | Viewed by 1907
Abstract
The mitochondrial genome (mitogenome) is essential for identifying species and tracing genetic variation, gene patterns, and evolutionary studies. Here, the mitogenome of Grateloupia turuturu was sequenced on the Illumina sequencing platform. This circular mitogenome (28,265 bp) contains 49 genes, including three rRNAs, twenty [...] Read more.
The mitochondrial genome (mitogenome) is essential for identifying species and tracing genetic variation, gene patterns, and evolutionary studies. Here, the mitogenome of Grateloupia turuturu was sequenced on the Illumina sequencing platform. This circular mitogenome (28,265 bp) contains 49 genes, including three rRNAs, twenty transfer RNAs (tRNAs), and twenty-six protein-coding genes (PCGs). Nucleotide composition indicates biased AT (68.8%) content. A Group II intronic sequence was identified between two exons of the cox1 gene, and this sequence comprises an open reading frame (ORF) that encodes a hypothetical protein. The gene content, annotation, and genetic makeup are identical to those of Halymeniaceae members. The complete mitogenome sequences of the Grateloupia and Polyopes species were used in a phylogenetic analysis, which revealed that these two genera are monophyletic and that G. turuturu and G. elliptica are closely related. This newly constructed mitogenome will help us better understand the general trends in the development of cox1 introns in Halymeniaceae, as well as the evolution of red algal mitogenomes within the Rhodophyta and among diverse algal species. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

27 pages, 418 KiB  
Article
Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea
by Babita Choudhary, Deepesh Khandwal, Nirmala Kumari Gupta, Jaykumar Patel and Avinash Mishra
Plants 2023, 12(12), 2302; https://doi.org/10.3390/plants12122302 - 13 Jun 2023
Cited by 17 | Viewed by 3352
Abstract
Foods enriched with nutritional compounds and biological activities, especially antioxidants, are considered healthier for human and/or animal consumption. Seaweeds are rich sources of biologically active metabolites and are used as functional foods. In this study, proximate compositions, physicobiochemical characteristics and oil oxidative stability [...] Read more.
Foods enriched with nutritional compounds and biological activities, especially antioxidants, are considered healthier for human and/or animal consumption. Seaweeds are rich sources of biologically active metabolites and are used as functional foods. In this study, proximate compositions, physicobiochemical characteristics and oil oxidative stability were analyzed for 15 abundant tropical seaweeds (four green—Acrosiphonia orientalis, Caulerpa scalpelliformis, Ulva fasciata, Ulva lactuca; six brown—Iyengaria stellata, Lobophora variegate, Padina boergesenii, Sargassum linearifolium, Spatoglossum asperum, Stoechospermum marginatum; and five red—Amphiroa anceps, Grateloupia indica, Halymenia porphyriformis, Scinaia carnosa, Solieria chordalis). All seaweeds were analyzed for the proximate composition, including moisture content, ash content, total sugar content, total proteins, total lipids, crude fiber, carotenoid content, total chlorophyll content, proline, iodine content, nitrogen-free extract, total phenolic content and total flavonoid content. Green seaweeds showed higher nutritional proximate composition, followed by brown and red seaweeds. Among the different seaweeds, Ulva, Caulerpa, Sargassum, Spatoglossum and Amphiroa showed high nutritional proximate composition compared to other seaweeds. High cation scavenging, free radical scavenging and total reducing activities were observed for Acrosiphonia, Caulerpa, Ulva, Sargassum, Spatoglossum and Iyengaria. It was also observed that 15 tropical seaweeds contained negligible amounts of antinutritional compounds, including tannic acid, phytic acid, saponins, alkaloids and terpenoids. Nutritionally, green and brown seaweeds provided higher sources of energy (150–300 calories per 100 g) compared to red seaweeds (80–165 calories per 100 g). Additionally, this study also confirmed that tropical seaweeds improved the oxidative stability of food oils and, therefore, might be recommended as natural antioxidant additives. The overall results confirm that tropical seaweeds are potential sources of nutrition and antioxidants and may be explored as functional food, dietary supplementation or animal feed. Additionally, they may also be explored as food supplements for fortifying food products, as food toppings or for garnishing and seasoning foods. However, a human or animal toxicity analysis is required before any conclusive recommendation for daily food or feed intake can be made. Full article
(This article belongs to the Special Issue Seaweed Biology: Focusing on Food, Materials and Bioenergy)
14 pages, 2763 KiB  
Article
Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds
by Pedro Catalão Moura, Jorge Manuel Fernandes, Mário Sousa Diniz, Viktor Fetter and Valentina Vassilenko
Metabolites 2023, 13(6), 713; https://doi.org/10.3390/metabo13060713 - 31 May 2023
Cited by 6 | Viewed by 2337
Abstract
The inclusion of seaweeds in daily-consumption food is a worthy-of-attention challenge due to their high nutritional value and potential health benefits. In this way, their composition, organoleptic profile, and toxicity must be assessed. This work focuses on studying the volatile organic compounds (VOCs) [...] Read more.
The inclusion of seaweeds in daily-consumption food is a worthy-of-attention challenge due to their high nutritional value and potential health benefits. In this way, their composition, organoleptic profile, and toxicity must be assessed. This work focuses on studying the volatile organic compounds (VOCs) emitted by three edible seaweeds, Grateloupia turuturu, Codium tomentosum, and Bifurcaria bifurcata, with the aim of deepening the knowledge regarding their organoleptic profiles. Nine samples of each seaweed were prepared in glass vials, and the emitted headspace was analyzed, for the first time, with a gas chromatography—ion mobility spectrometry device, a highly sensitive technology. By statistically processing the collected data through PCA, it was possible to accurately differentiate the characteristic patterns of the three seaweeds with a total explained variance of 98%. If the data were pre-processed through PLS Regression, the total explained variance increased to 99.36%. The identification of 13 VOCs was accomplished through a developed database of compounds. These outstanding values in addition to the identification of the main emissions of VOCs and the utilization of a never-before-used technology prove the capacity of GC-IMS to differentiate edible seaweeds based solely on their volatile emissions, increase the knowledge regarding their organoleptic profiles, and provide an important step forward in the inclusion of these highly nutritional ingredients in the human diet. Full article
Show Figures

Figure 1

16 pages, 1519 KiB  
Article
Physiological Impacts of Nitrogen Starvation and Subsequent Recovery on the Red Seaweed Grateloupia turuturu (Halymeniaceae, Rhodophyta)
by Yining Chen, Lan Lan, Jing Zhang, Qiaohan Wang, Yan Liu, Huiru Li, Qingli Gong and Xu Gao
Sustainability 2023, 15(9), 7032; https://doi.org/10.3390/su15097032 - 22 Apr 2023
Cited by 5 | Viewed by 2046
Abstract
Grateloupia turuturu is a potential aquaculture species as it has a significant number of high-valued compounds. The purpose of this study was to evaluate the physiobiochemical performances of G. turuturu under nitrogen deficiency and resupply. In this study, G. turuturu was exposed to [...] Read more.
Grateloupia turuturu is a potential aquaculture species as it has a significant number of high-valued compounds. The purpose of this study was to evaluate the physiobiochemical performances of G. turuturu under nitrogen deficiency and resupply. In this study, G. turuturu was exposed to different lengths of nitrogen starvation (from 0 to 28 days) and subsequently subjected to a 21-day nitrogen-recovery period. The nitrate and ammonium uptake rates, growth rates, and nitrogenous compounds of G. turuturu were periodically measured. The results showed that the nitrogen-starved G. turururu absorbed ammonium much faster than nitrate after nitrogen recovery. Furthermore, an overcompensatory uptake of ammonium was induced via nitrogen deficiency in a short phase after nitrogen resupply. The time and rates of depletion of different compositions varied during nitrogen starvation. Specifically, pigment contents decreased faster than protein and total nitrogen contents, and the reduction rate of protein was the lowest. After nitrogen resupply, though G. turuturu gradually recovered, growth rates and pigments from long-term nitrogen starvations could not recover enough to reach their original values. Our study reveals the physiological changing processes of G. turuturu during nitrogen starvation and recovery and provides baseline information aiding in the development of strategies for G. turuturu cultivation. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seaweeds)
Show Figures

Figure 1

12 pages, 1764 KiB  
Article
The Brown Alga Bifurcaria bifurcata Presents an Anthelmintic Activity on All Developmental Stages of the Parasitic Nematode Heligmosomoides polygyrus bakeri
by Morgane Miclon, Élise Courtot, Fabrice Guégnard, Océane Lenhof, Leslie Boudesocque-Delaye, Maria Matard-Mann, Pi Nyvall Collén, Philippe Castagnone-Sereno and Cédric Neveu
Pathogens 2023, 12(4), 540; https://doi.org/10.3390/pathogens12040540 - 30 Mar 2023
Cited by 4 | Viewed by 2137
Abstract
The current control of gastrointestinal (GI) parasitic nematodes mainly relies on the widespread use of anthelmintics, which has inevitably led to resistance. Therefore, there is an urgent need to find new sources of antiparasitic compounds. Macroalgae represent a rich source of active molecules [...] Read more.
The current control of gastrointestinal (GI) parasitic nematodes mainly relies on the widespread use of anthelmintics, which has inevitably led to resistance. Therefore, there is an urgent need to find new sources of antiparasitic compounds. Macroalgae represent a rich source of active molecules and are widely described as having medicinal properties. In the present study, we investigated the potential anthelmintic activity of aqueous extracts from three species of algae (Bifurcaria bifurcata, Grateloupia turuturu and Osmundea pinnatifida) on the murine parasite Heligmosomoides polygyrus bakeri. Using a set of complementary in vitro tests, including larval development assays, egg hatching tests and nematicidal activity assays on larvae and adults, we report the nematicidal activity of aqueous extracts of B. bifurcata. In addition, aqueous extract fractionation using liquid/liquid partitioning with a solvent of increasing polarity was performed in order to identify the groups of active molecules underlying the anthelmintic activity. Non-polar extracts (heptane, ethyl acetate) demonstrated high anthelmintic potential, highlighting the role of non-polar metabolites such as terpenes. Here, we highlight the strong anthelmintic potential of the brown alga B. bifurcata on a mouse model of GI parasites, thus confirming the strong interest in algae as natural alternatives for the control of parasitic nematodes. Full article
(This article belongs to the Special Issue Parasites: Epidemiology, Treatment and Control)
Show Figures

Figure 1

16 pages, 1656 KiB  
Article
Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu
by Cécile Le Guillard, Jean-Pascal Bergé, Claire Donnay-Moreno, Josiane Cornet, Jean-Yves Ragon, Joël Fleurence and Justine Dumay
Mar. Drugs 2023, 21(4), 213; https://doi.org/10.3390/md21040213 - 28 Mar 2023
Cited by 10 | Viewed by 3050
Abstract
Enzyme-assisted extraction (EAE) and ultrasound-assisted extraction (UAE) are both recognized as sustainable processes, but little has been done on the combined process known as ultrasound-assisted enzymatic hydrolysis (UAEH), and even less on seaweed. The present study aimed to optimize the UAEH of the [...] Read more.
Enzyme-assisted extraction (EAE) and ultrasound-assisted extraction (UAE) are both recognized as sustainable processes, but little has been done on the combined process known as ultrasound-assisted enzymatic hydrolysis (UAEH), and even less on seaweed. The present study aimed to optimize the UAEH of the red seaweed Grateloupia turuturu for the extraction of R-phycoerythrin (R-PE) directly from the wet biomass by applying a response surface methodology based on a central composite design. Three parameters were studied: the power of ultrasound, the temperature and the flow rate in the experimental system. Data analysis demonstrated that only the temperature had a significant and negative effect on the R-PE extraction yield. Under the optimized conditions, the R-PE kinetic yield reached a plateau between 90 and 210 min, with a yield of 4.28 ± 0.09 mg·g−1 dry weight (dw) at 180 min, corresponding to a yield 2.3 times higher than with the conventional phosphate buffer extraction on freeze-dried G. turuturu. Furthermore, the increased release of R-PE, carbohydrates, carbon and nitrogen can be associated with the degradation of G. turuturu constitutive polysaccharides, as their average molecular weights had been divided by 2.2 in 210 min. Our results thus demonstrated that an optimized UAEH is an efficient method to extract R-PE from wet G. turuturu without the need for expensive pre-treatment steps found in the conventional extraction. UAEH represents a promising and sustainable approach that should be investigated on biomasses where the recovery of added-value compounds needs to be improved. Full article
Show Figures

Figure 1

17 pages, 1829 KiB  
Article
Effects of Nitrogen Source and Concentration on the Growth and Biochemical Composition of the Red Seaweed Grateloupia turuturu (Halymeniaceae, Rhodophyta)
by Qiaohan Wang, Lan Lan, Huiru Li, Qingli Gong and Xu Gao
Sustainability 2023, 15(5), 4210; https://doi.org/10.3390/su15054210 - 26 Feb 2023
Cited by 12 | Viewed by 3156
Abstract
Seaweeds, as biofilters that remediate seawater eutrophication, have been widely applied in integrated cultivations for both ecological and economic benefits. Although Grateloupia turuturu (Rhodophyta) is considered as a qualified species in integrated maricultivation, its growth and biochemical performance under different nitrogen conditions are [...] Read more.
Seaweeds, as biofilters that remediate seawater eutrophication, have been widely applied in integrated cultivations for both ecological and economic benefits. Although Grateloupia turuturu (Rhodophyta) is considered as a qualified species in integrated maricultivation, its growth and biochemical performance under different nitrogen conditions are still unknown. Here, we cultured G. turuturu under two nitrogen sources (nitrate and ammonium) at six concentrations (0, 25, 50, 100, 200, and 400 µM) to investigate its growth and nitrogenous compounds (total and inorganic nitrogen, soluble protein, amino acids, and pigments) as well as the allocation pattern of nitrogen storage pools. Our results showed that G. turuturu was well acclimated to high concentrations of both nitrogen sources, and algal age played an important role in the preference of nitrogen sources. Most of the biochemical compositions in G. turuturu increased significantly with the increased concentrations of nitrogen, except for the protein and nitrate contents. Protein and residual organic nitrogen (RON, mainly amino acids) were found to be the two main nitrogen storage pools in G. turuturu. Our study revealed that G. turuturu can produce more profitable compositions at high nitrogen concentrations, making it a profitably promising biofilter to remediate eutrophication. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seaweeds)
Show Figures

Figure 1

16 pages, 1964 KiB  
Article
S-Assimilation Influences in Carrageenan Biosynthesis Genes during Ethylene-Induced Carposporogenesis in Red Seaweed Grateloupia imbricata
by Diana del Rosario-Santana, Rafael R. Robaina and Pilar Garcia-Jimenez
Mar. Drugs 2022, 20(7), 436; https://doi.org/10.3390/md20070436 - 29 Jun 2022
Cited by 3 | Viewed by 2759
Abstract
The synthesis of cell-wall sulfated galactans proceeds through UDP galactose, a major nucleotide sugar in red seaweed, whilst sulfate is transported through S-transporters into algae. Moreover, synthesis of ethylene, a volatile plant growth regulator that plays an important role in red seaweed reproduction, [...] Read more.
The synthesis of cell-wall sulfated galactans proceeds through UDP galactose, a major nucleotide sugar in red seaweed, whilst sulfate is transported through S-transporters into algae. Moreover, synthesis of ethylene, a volatile plant growth regulator that plays an important role in red seaweed reproduction, occurs through S-adenosyl methionine. This means that sulfur metabolism is involved in reproduction events as well as sulfated galactan synthesis of red seaweed. In this work we study the effects of methionine and MgSO4 on gene expression of polygalactan synthesis through phosphoglucomutase (PGM) and galactose 1 phosphate uridyltransferase (GALT) and of sulfate assimilation (S-transporter and sulfate adenylyltransferase, SAT) using treatment of ethylene for 15 min, which elicited cystocarp development in Grateloupia imbricata. Also, expressions of carbohydrate sulfotransferase and galactose-6-sulfurylase in charge of the addition and removal of sulfate groups to galactans backbone were examined. Outstanding results occurred in the presence of methionine, which provoked an increment in transcript number of genes encoding S-transporter and assimilation compared to controls regardless of the development stage of thalli. Otherwise, methionine diminished the transcript levels of PGM and GALT and expressions are associated with the fertilization stage of thalli of G. imbricata. As opposite, methionine and MgSO4 did not affect the transcript number of carbohydrate sulfotransferase and galactose-6-sulfurylase. Nonetheless, differential expression was obtained for sulfurylases according to the development stages of thalli of G. imbricata. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain)
Show Figures

Figure 1

18 pages, 3665 KiB  
Article
Variable Optimization of Seaweed Spectral Response Characteristics and Species Identification in Gouqi Island
by Jianqu Chen, Xunmeng Li, Kai Wang, Shouyu Zhang, Jun Li, Jian Zhang and Weicheng Gao
Sensors 2022, 22(13), 4656; https://doi.org/10.3390/s22134656 - 21 Jun 2022
Cited by 6 | Viewed by 3240
Abstract
Probing the coverage and biomass of seaweed is necessary for achieving the sustainable utilization of nearshore seaweed resources. Remote sensing can realize dynamic monitoring on a large scale and the spectral characteristics of objects are the basis of remote sensing applications. In this [...] Read more.
Probing the coverage and biomass of seaweed is necessary for achieving the sustainable utilization of nearshore seaweed resources. Remote sensing can realize dynamic monitoring on a large scale and the spectral characteristics of objects are the basis of remote sensing applications. In this paper, we measured the spectral data of six dominant seaweed species in different dry and wet conditions from the intertidal zone of Gouqi Island: Ulva pertusa, Sargassum thunbergii, Chondrus ocellatus, Chondria crassiaulis Harv., Grateloupia filicina C. Ag., and Sargassum fusifarme. The different seaweed spectra were identified and analyzed using a combination of one-way analysis of variance (ANOVA), support vector machines (SVM), and a fusion model comprising extreme gradient boosting (XGBoost) and SVM. In total, 14 common spectral variables were used as input variables, and the input variables were filtered by one-way ANOVA. The samples were divided into a training set (266 samples) and a test set (116 samples) at a ratio of 3:1 for input into the SVM and fusion model. The results showed that when the input variables were the normalized difference vegetation index (NDVI), ratio vegetation index (RVI), Vre, Abe, Rg, Lre, Lg, and Lr and the model parameters were g = 1.30 and c = 2.85, the maximum discrimination rate of the six different wet and dry states of seaweed was 74.99%, and the highest accuracy was 93.94% when distinguishing between the different seaweed phyla (g = 6.85 and c = 2.55). The classification of the fusion model also shows similar results: The overall accuracy is 73.98%, and the mean score of the different seaweed phyla is 97.211%. In this study, the spectral data of intertidal seaweed with different dry and wet states were classified to provide technical support for the monitoring of coastal zones via remote sensing and seaweed resource statistics. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 2990 KiB  
Article
Novel Antioxidant Peptides from Grateloupia livida Hydrolysates: Purification and Identification
by Xiao Hu, Chuang Pan, Miaomiao Cai, Laihao Li, Xianqing Yang, Huan Xiang and Shengjun Chen
Foods 2022, 11(10), 1498; https://doi.org/10.3390/foods11101498 - 20 May 2022
Cited by 18 | Viewed by 2936
Abstract
Grateloupia livida protein was hydrolyzed with various proteases (alkaline protease, Protamex and neutral protease) to obtain anti-oxidative peptides. Antioxidant activity of the enzymatic hydrolysates was evaluated by the DPPH radical scavenging, ABTS radical scavenging and reducing power assays. The results suggested that hydrolysates [...] Read more.
Grateloupia livida protein was hydrolyzed with various proteases (alkaline protease, Protamex and neutral protease) to obtain anti-oxidative peptides. Antioxidant activity of the enzymatic hydrolysates was evaluated by the DPPH radical scavenging, ABTS radical scavenging and reducing power assays. The results suggested that hydrolysates obtained by neutral protease 1 h hydrolysis displayed the highest antioxidant activity (DPPH IC50 value of 3.96 mg/mL ± 0.41 mg/mL, ABTS IC50 value of 0.88 ± 0.13 mg/mL and reducing power of 0.531 ± 0.012 at 8 mg/mL), and had low molecular weight distribution (almost 99% below 3 kDa). Three fractions (F1–F3) were then isolated from the hydrolysates by using semi-preparative RP-HPLC, and the fraction F3 showed the highest antioxidant ability. Four antioxidant peptides were identified as LYEEMKESKVINADK, LEADNVGVVLMGDGR, LIDDSFGTDAPVPERL, and GLDELSEEDRLT from the F3 by LC-MS/MS. Online prediction showed that the four peptides possessed good water solubility, non-toxic and non-allergenic characteristics. Moreover, the LYEEMKESKVINADK exhibited the highest antioxidant ability. Molecular docking revealed that these peptides could all well bind with Kelch-like ECH-associated protein 1 (Keap1), among which LYEEMKESKVINADK had the lowest docking energy (−216.878 kcal/mol). These results demonstrated that the antioxidant peptides from Grateloupia livida could potentially be used as natural antioxidant. Full article
(This article belongs to the Special Issue Research and Development of Functional Peptide in Foods)
Show Figures

Figure 1

11 pages, 4541 KiB  
Article
The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice
by José Almeida, Tiago Ferreira, Susana Santos, Maria J. Pires, Rui M. Gil da Costa, Rui Medeiros, Margarida M.S.M. Bastos, Maria J. Neuparth, Ana I. Faustino-Rocha, Helena Abreu, Rui Pereira, Mário Pacheco, Isabel Gaivão, Eduardo Rosa and Paula A. Oliveira
Nutrients 2021, 13(12), 4529; https://doi.org/10.3390/nu13124529 - 17 Dec 2021
Cited by 4 | Viewed by 3608
Abstract
The role of dietary profiles in promoting or reducing the risk of multiple types of cancer is increasingly clear, driving the search for balanced foods and nutraceuticals. The red seaweed Grateloupia turuturu has been used as human food showing a balanced nutritional profile. [...] Read more.
The role of dietary profiles in promoting or reducing the risk of multiple types of cancer is increasingly clear, driving the search for balanced foods and nutraceuticals. The red seaweed Grateloupia turuturu has been used as human food showing a balanced nutritional profile. This study aims to test in vivo chemopreventive effects of G. turuturu against cutaneous pre-malignant lesions in transgenic mice for the human papillomavirus type 16 (HPV16). Forty-four female HPV+/− or HPV−/− mice received a standard diet or were supplemented with 10% G. turuturu for 22 consecutive days. Cutaneous lesions (ear and chest skin) were identified histologically. Complementarily, the weights and histology of internal organs as well as blood biochemical and DNA integrity parameters were also assessed. G. turuturu consistently reduced the incidence of epidermal dysplasia induced by HPV16 on both cutaneous sites. Moreover, biochemical, DNA integrity and histological analyses confirmed G. turuturu edibility as no signs of toxicity were found. Dietary supplementation with G. turuturu is an effective and safe chemopreventive strategy in this model. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

13 pages, 1429 KiB  
Article
Photosynthetic Characteristics of Three Cohabitated Macroalgae in the Daya Bay, and Their Responses to Temperature Rises
by Xiaohan Shi, Dinghui Zou, Shanshan Hu, Guangming Mai, Zengling Ma and Gang Li
Plants 2021, 10(11), 2441; https://doi.org/10.3390/plants10112441 - 12 Nov 2021
Cited by 9 | Viewed by 2310
Abstract
Biochemical compositions and photosynthetic characteristics of three naturally cohabitated macroalgae, Ulva fasciata, Sargassum hemiphyllum and Grateloupia livida, were comparably explored in the field conditions in Daya Bay, northern South China Sea, as well as their responses to temperature rise. Chlorophyll a [...] Read more.
Biochemical compositions and photosynthetic characteristics of three naturally cohabitated macroalgae, Ulva fasciata, Sargassum hemiphyllum and Grateloupia livida, were comparably explored in the field conditions in Daya Bay, northern South China Sea, as well as their responses to temperature rise. Chlorophyll a (Chl a) and carotenoids contents of U. fasciata were 1.00 ± 0.15 and 0.57 ± 0.08 mg g−1 in fresh weight (FW), being about one- and two-fold higher than that of S. hemiphyllum and G. livida; and the carbohydrate content was 20.3 ± 0.07 mg g−1 FW, being about three- and one-fold higher, respectively. Throughout the day, the maximal photochemical quantum yield (FV/FM) of Photosystem II (PS II) of these three macroalgae species decreased from morning to noon, then increased to dusk and kept steady at nighttime. Consistently, the rapid light curve-derived light utilization efficiency (α) and maximum relative electron transfer rate (rETRmax) were lower at noon than that at morning- or night-time. The FV/FM of U. fasciata (varying from 0.78 to 0.32) was 38% higher than that of G. livida throughout the day, and that of S. hemiphyllum was intermediate. The superoxide dismutase (SOD) and catalase (CAT) activities in U. fasciata were lower than that in S. hemiphyllum and G. livida. Moreover, the rises in temperature species-specifically mediated the damage (k) caused by stressful high light and the corresponding repair (r) to photosynthetic apparatus, making the r/k ratio increase with the rising temperature in U. fasciata, unchanged in S. hemiphyllum but decreased in G. livida. Our results indicate that U. fasciata may compete with S. hemiphyllum or G. livida and dominate the macroalgae community under aggravatedly warming future in the Daya Bay. Full article
Show Figures

Figure 1

11 pages, 2169 KiB  
Article
Anti-Inflammatory Azaphilones from the Edible Alga-Derived Fungus Penicillium sclerotiorum
by Hui-Chun Wang, Tzu-Yi Ke, Ya-Chen Ko, Jue-Jun Lin, Jui-Sheng Chang and Yuan-Bin Cheng
Mar. Drugs 2021, 19(10), 529; https://doi.org/10.3390/md19100529 - 22 Sep 2021
Cited by 18 | Viewed by 3650
Abstract
To discover the new medical entity from edible marine algae, our continuously natural product investigation focused on endophytes from marine macroalgae Grateloupia sp. Two new azaphilones, 8a-epi-hypocrellone A (1), 8a-epi-eupenicilazaphilone C (2), together with five [...] Read more.
To discover the new medical entity from edible marine algae, our continuously natural product investigation focused on endophytes from marine macroalgae Grateloupia sp. Two new azaphilones, 8a-epi-hypocrellone A (1), 8a-epi-eupenicilazaphilone C (2), together with five known azaphilones, hypocrellone A (3), eupenicilazaphilone C (4), ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (5), sclerotiorin (6), and isochromophilone IV (7) were isolated from the alga-derived fungus Penicillium sclerotiorum. The structures of isolated azaphilones (17) were elucidated by spectrometric identification, especially HRESIMS, CD, and NMR data analyses. Concerning bioactivity, cytotoxic, anti-inflammatory, and anti-fibrosis activities of those isolates were evaluated. As a result, compound 1 showed selective toxicity toward neuroblastoma cell line SH-SY5Y among seven cancer and one fibroblast cell lines. 20 μM of compounds 1, 3, and 7 inhibited the TNF-α-induced NFκB phosphorylation but did not change the NFκB activity. Compounds 2 and 6 respectively promoted and inhibited SMAD-mediated transcriptional activities stimulated by TGF-β. Full article
Show Figures

Graphical abstract

Back to TopTop