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Abstract: Grateloupia livida protein was hydrolyzed with various proteases (alkaline protease, Pro-
tamex and neutral protease) to obtain anti-oxidative peptides. Antioxidant activity of the enzymatic
hydrolysates was evaluated by the DPPH radical scavenging, ABTS radical scavenging and reducing
power assays. The results suggested that hydrolysates obtained by neutral protease 1 h hydrolysis
displayed the highest antioxidant activity (DPPH IC50 value of 3.96 mg/mL ± 0.41 mg/mL, ABTS
IC50 value of 0.88 ± 0.13 mg/mL and reducing power of 0.531 ± 0.012 at 8 mg/mL), and had
low molecular weight distribution (almost 99% below 3 kDa). Three fractions (F1–F3) were then
isolated from the hydrolysates by using semi-preparative RP-HPLC, and the fraction F3 showed
the highest antioxidant ability. Four antioxidant peptides were identified as LYEEMKESKVINADK,
LEADNVGVVLMGDGR, LIDDSFGTDAPVPERL, and GLDELSEEDRLT from the F3 by LC-MS/MS.
Online prediction showed that the four peptides possessed good water solubility, non-toxic and
non-allergenic characteristics. Moreover, the LYEEMKESKVINADK exhibited the highest antioxidant
ability. Molecular docking revealed that these peptides could all well bind with Kelch-like ECH-
associated protein 1 (Keap1), among which LYEEMKESKVINADK had the lowest docking energy
(−216.878 kcal/mol). These results demonstrated that the antioxidant peptides from Grateloupia livida
could potentially be used as natural antioxidant.

Keywords: Grateloupia livida; hydrolysates; antioxidant peptides; purification; identification

1. Introduction

Free radicals are very unstable and tend to cause oxidative stress reactions. Excessive
free radicals can interact with unsaturated fatty acids, DNA, RNA and other substances in
the body, leading to many diseases that are harmful to the body’s health [1]. In addition,
the presence of free radicals can adversely affect the flavor and texture of foods. At
present, synthetic antioxidants such as propyl gallate (PG), butylhydroxy anisole (BHA) and
butylhydroxy toluene (BHT) have been applied in food and cosmetics, which can effectively
inhibit the oxidation of products and extend the shelf life of products [2]. However,
synthetic antioxidants have toxic and side effects. Using a large amount of synthetic
antioxidants will not only damage human organs, but will also affect the stability of
products. Therefore, it is very important to find safe and stable natural antioxidants instead
of synthetic antioxidants.
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In recent years, antioxidant peptides derived from food proteins have become one of
the research hotspots of functional peptides. Antioxidant peptides from natural protein
sources have the advantages of easy absorption, non-toxicity or low toxicity compared
with chemically synthesized drugs, and also have substantial advantages in activity and
stability [3,4]. Marine algae-derived proteins are gradually used in the preparation of
natural antioxidant peptides [5]. At present, researchers have prepared antioxidant active
peptides from a variety of marine algae, such as asparagus [6], spirulina [7] and so on.
The peptide AF isolated from the hydrolyzates of Pyropia columbina showed the lower IC50
value for ABTS free radical (IC50 = 0.6 mg/mL) and DPPH free radical (IC50 = 1.0 mg/mL)
scavenging [8]. The peptides obtained from Schizochytrium Limacinum by hydrolysis with
compound proteases (Protamex and Alcalase 2.4L) presented the potent DPPH radical
scavenging ability (IC50 = 1.28 mg/mL) [9].

The growth environment of marine algae is different from that of terrestrial plants,
which leads to the differences between specific nutrients and active substances. Moreover,
the nutritional value of marine algae was higher than that of terrestrial vegetables, especially
in protein composition and amino acid sequence [10]. The structure of antioxidant peptides
is simpler than that of their parent proteins, which endows them with greater stability under
adverse conditions such as high temperature and protease. They do not cause dangerous
immune responses and often exhibit enhanced nutritional and functional properties in
addition to antioxidant activity [11]. Therefore, marine algal protein may become an
important protein source of new antioxidant peptides.

Grateloupia livida (G. livida), belonging to Rhodophyta, Rhodophyceae, Gigartinales,
Halymeniaceae and Grateloupia, is well known as FoZucai in Guangdong province in
China. It is a kind of commercially important red macroalgal species, and widely distributed
in the intertidal zones of coastlines (in the South China Sea). Existing studies have proven
that the protein of Grateloupia livida (G. livida) is a good source of natural antioxidants, but
the research on the bioactive peptide of G. livida has not been reported. The results showed
that G. livida contained amino acids, proteins, sugars, terpenoids and other bioactive
components [12]. In fact, the essential amino acid content (EAA) of G. livida is 42.58% of
the total amino acid content (TAA), and the amino acid composition is good and balanced.
Phycoerythrin from G. livida can effectively enhance the antioxidant capacity of primary rat
astrocytes [13].

In the present study, alkaline protease, protamex and neutral protease were used to
hydrolyze the G. livida protein to obtain antioxidant peptides based on the preliminary
experiments, and the degree of hydrolysis at different hydrolysis time was determined. The
antioxidant activity of enzymatic hydrolysates at different hydrolysis time was evaluated
by DPPH radical scavenging activity, ABTS radical scavenging activity and reducing power.
Then, the peptides were separated and enriched by reversed-phase high-performance liquid
chromatography. The amino acid sequence of the component with high antioxidant activity
was analyzed by LC-MS/MS. Combined with the secondary mass spectrometry data
by mascot software, four polypeptides were identified. The physicochemical properties
(theoretical isoelectric point, hydrophilic average coefficient, water solubility, toxicity and
allergenicity) of the four polypeptides were predicted by an online database and analysis
tools. Molecular docking was used to further study the combination between the peptides
and Keap1. This study could provide a scientific and technical basis for further research on
the use of the antioxidant peptides from G. livida protein as health products or functional
food ingredients.

2. Materials and Methods
2.1. Materials

G. livida was collected from Nan Ao Island (116◦56′–117◦09′ E and 23◦23′–23◦29′ N).
Epiphytes were removed by hand and samples were dried at 25 ◦C, followed by hot
air-drying for further analysis. Alkaline protease (200 U/mg), Protamex (90 U/mg) and
neutral protease (100 U/mg) were purchased from Hefei Bomei Biotechnology Co., Ltd.
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(Hefei, China). Trifluoroacetic acid (TFA), acetonitrile, methanol, cytochrome C (12,400 Da)
and aprotinin (6411.24 Da) were bought from Shanghai Macklin Biochemical Co., Ltd.
(Shanghai, China). DPPH and L-oxidized glutathione (612.63 Da) were obtained from
Sigma Chemical Co. (St. Louis, MO, USA). Bacitracin (1422.69 Da) and reduced glutathione
(307.3 Da) were purchased in Guangzhou Qiyun Biotechnology Co., Ltd. (Guangzhou,
China). All other chemicals and reagents used were of analytical grade.

2.2. Preparation of G. Livida Protein

G. livida was dried in an oven at 60 ◦C to constant weight, and then crushed to a
powder form through a 120-mesh sieve. An appropriate amount of G. livida powder was
taken, and water was added to it according to the liquid–solid ratio of 160 mL/g. After
stirring evenly, ultrasonic treatment was carried out to break the cell wall. Ultrasonic
treatment conditions were set as follows: ultrasonic interval time 4 s, ultrasonic occurrence
time 4 s, ultrasonic whole time 60 min, and ultrasonic power 1440 W. The crude extract was
centrifuged at 3800× g at 4 ◦C for 15 min, and kept the supernatant. Under the ice bath
condition, ammonium sulfate was added to the supernatant until the saturation reached
65%. After precipitation for 2 h, centrifugation was carried out. The precipitation was taken
for dialysis desalination and freeze-dried to obtain the protein of G. livida.

2.3. Preparation of G. Livida Protein Hydrolysates

The lyophilized protein powder of G. livida was weighted and mixed with ultra-pure
water at the liquid–solid ratio of 100 mL/g. The pH was adjusted to the optimal conditions
for each protease (alkaline protease, Protamex and neutral protease). The protease was
added at the enzyme dosage of 10,000 U/g, and hydrolysis was carried out at the optimal
temperature for each protease. During enzymatic hydrolysis, the pH of the system was
adjusted once an hour to keep it within the optimal pH ± 0.02 range. After the hydrolysis,
the enzyme was inactivated in a water bath at 95 ◦C for 15 min. The enzyme was centrifuged
at 6800× g at 4 ◦C for 15 min after cooling. The supernatant was taken to measure the
degree of hydrolysis.

2.4. Determination of Degree of Hydrolysis

The content of amino nitrogen (AN) was determined by automatic potential titration.
Briefly, potassium hydrogen phthalate was used to calibrate the actual concentration of
1 mol/L NaOH. Then, hydrolysate (5 mL) was added to deionized water (100 mL) and
titrated with 1 mol/L NaOH to the pH value of 8.2. Thereafter, additional formaldehyde
solution (5 mL) was fully mixed and titrated with 1 mol/L NaOH to the pH value of 9.2.
The volume (mL) of NaOH consumed was recorded as V1. The same volume of deionized
water was used to take place the hydrolysate for the blank experiment, and the volume (mL)
of NaOH consumed was recorded as V2. AN was calculated according to the following
formulation: AN (g/mL) = (V1 − V2) × C × 0.014/5, where C is the actual concentration of
NaOH (mol/L), 0.014 is the mass (g) of nitrogen equivalent to 1 mL of 1 mol/L NaOH, and
5 is the volume (mL) of sample. The degree of hydrolysis (DH) was calculated as follows:

DH = (AN × V × 6.25)/m × 100% (1)

where AN is the content of amino nitrogen in the supernatant obtained by centrifugation of
protein hydrolysate, g/mL; V is the total volume of supernatant obtained by centrifugation
of protein hydrolysate, mL; m is the mass of the protein used for hydrolysis, g; and 6.25 is
the conversion coefficient of ammonia nitrogen.

2.5. Determination of Antioxidant Activity
2.5.1. Determination of Reducing Power

We referred to the experimental method of Oyaizu et al. [14] and slightly modified it;
1 mL phosphate-buffered solution (pH 6.6, 0.2 mol/L), 1 mL sample and 1 mL potassium
ferricyanide with a volume fraction of 1% were successively added into a 10 mL centrifuge
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tube. The mixed reaction solution was placed in a water bath at 50 ◦C for 20 min. Then,
1 mL trichloroacetic acid with 10% volume fraction was added, and the supernatant was
extracted after centrifugation at 10,600× g at 4 ◦C for 10 min. Finally, 1 mL of supernatant
was taken, into which 1 mL of deionized water and 0.2 mL of 0.1% ferric chloride solution
were added. After vortex mixing, the solution was placed in a water bath at 50 ◦C and kept
for 10 min. The absorbance was measured at 700 nm wavelength. The formula of reducing
force is as follows:

Reducing power = AEG − ABG (2)

where AEG is the absorbance in the presence of the hydrolysate and ABG is the absorbance
in the presence of 1 mL deionized water.

2.5.2. Determination of DPPH Radical Scavenging Rate

We referred to the experimental method of Boath et al. [15] and made some modifi-
cations. The lyophilized enzymatic hydrolysates were prepared into solutions with mass
concentrations of 1, 2, 4, 6 and 8 mg/mL, respectively. DPPH was dissolved in anhydrous
ethanol and prepared into 0.2 mmol/L solution.1 mL sample and 0.2 mL DPPH solution
were successively added into a 10 mL centrifuge tube. The mixed reaction solution was
placed in the dark at room temperature for 30 min, and the absorbance was measured at
517 nm wavelength. The sample was replaced by deionized water in the control group, and
the DPPH solution was replaced by anhydrous ethanol in the blank group. The calculation
formula of DPPH free radical scavenging rate is as follows:

DPPH radical scavenging rate = [1 − (A1 − A2)/A0] × 100% (3)

where A0 is the absorbances of the control group, A1 is the absorbances of the experimental
group, and A2 is the absorbances of the blank group.

2.5.3. Determination of ABTS Radical Scavenging Rate

The ABTS radical scavenging rate was determined according to the former report [16]
with some slight modification. A methanol solution of 50% was used to dissolve ABTS and
prepare a 7 mmol/L solution. The solution was mixed 1:1 with 2.45 mmol/L potassium
persulfate solution and placed in the dark at room temperature for 16 h to obtain ABTS
reserve solution. The ABTS working fluid was obtained by diluting the reserve solution
to an absorbance of 0.70 ± 0.02 at 734 nm before use. Successively, 1 mL sample solution
and 4 mL ABTS working solution were added into a 10 mL centrifuge tube, and the mixed
reaction solution was reacted for 10 min away from light. The absorbance was measured
at the wavelength of 734 nm. The ABTS working fluid was replaced by 50% methanol
solution and deionized water in the control group and the blank group, respectively. The
calculation formula of ABTS free radical scavenging rate is as follows:

ABTS radical scavenging rate = [1 − (A1 − A2)/A0] × 100% (4)

where A0 is the absorbances of the blank group; A1 is the absorbances of the experimental
group; and A2 is the absorbances of the control group.

2.6. High-Performance Size Exclusion Chromatography

With reference to the method of Gendis et al. [17], the desalted enzymatic hydrolysate
was dissolved in ultra-pure water and prepared into a solution of 2 mg/mL. The solution
was filtered with 0.22 µm filter membrane, and its molecular weight was determined by
high-performance size exclusion chromatography (LC-20AD, Shimadzu Co., Tokyo, Japan).
The chromatographic conditions were as follows: HPLC column TSK-GEL G2000SWXL
(7.8 mm × 300 mm, Tosoh Co., Tokyo, Japan); detection wavelength was 214 nm; mobile
phase A was 0.1% TFA aqueous solution, and mobile phase B was acetonitrile containing
0.1%TFA (A:B = 80:20); injection volume was 10µL; flow rate was 0.5 mL/min, and the
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total elution time was 40 min. Cytochrome C (12,400 Da), aprotinin (6411.24 Da), bacitracin
(1422.69 Da), L-oxidized glutathione (612.63 Da) and reduced glutathione (307.3 Da) were
chosen for molecular weight standards. The above standards were dissolved in mobile
phase B, quality of mixture concentration is 0.2 mg/mL of mixed standard solution. The
lyophilized powder of the enzymatic hydrolysate was prepared into a solution of 2 mg/mL
with ultra-pure water, and the samples were injected under the same conditions for analysis.

2.7. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)

According to the method of Sun et al. [18] with some modifications, the desalted
hydrolysates were collected and filtered with 0.22 µm microporous membrane. The prod-
ucts were further separated and purified by RP-HPLC. The peptide fraction was filtered
with a membrane (0.22 µm) before it was loaded into ZORBAX XDB-C18 (21.2 × 150 mm,
5 µm). The mobile phases used in the gradient elution consisted of eluent A consisting of
ultrapure water (v/v) and eluent B consisting of methanol. The column was eluted with
linear gradient from 1 to 1% mobile phase B from 0 to 3 min, 1 to 30% mobile phase B
from 3 to 8 min, 30 to 80% mobile phase B from 8 to 18 min, 80 to 40% mobile phase B
from 18 to 23 min, 40 to 10% mobile phase B from 23 to 28 min, 10 to 1% mobile phase
B from 28 to 33 min and 1 to 1% mobile phase B from 33 to 38 min at 3 mL/min. The
eluate was monitored at 268 nm. Each elution peak was collected for freeze-drying, and the
components with strong antioxidant activity were screened out with the index of reducing
power and IC50 of DPPH radical scavenging rate.

2.8. Identification of the Amino Acid Sequence by LC-MS/MS

G. livida antioxidant peptide was further analyzed regarding the amino acid sequence
and its accurate molecular weight by LC-MS/MS on Q Exactive Plus mass spectrom-
eter. The peptide solution was desalted and redissolved by Empore™ SPE Cartridges
C18 (Standard density), and the sample was injected into Acclaim PepMap C18 column
(75 µm × 150 mm) at a flow rate of 300 nL/min. The mobile phases used in the gradient
elution consisted of 0.1% formic acid in water (mobile phases A) and 0.1% formic acid in
CAN (mobile phases B). The column was eluted with linear gradient from 0 to 5% mobile
phases B from 0 to 5 min, 5 to 50% mobile phases B from 5 to 45 min, 50 to 90% mobile
phases B from 45 to 55 min, and 90 to 5% mobile phases B from 55 to 65 min. The mass
spectrometer was run under data-dependent acquisition mode, and automatically switched
between MS and MS/MS mode. The parameters were as follows: (1) MS: scan range
(m/z) = 100–2000; resolution = 70,000; AGC target = 3e6; maximum injection time = 40 ms;
(2) HCD-MS/MS: resolution = 17, 500; isolation window = 2.0; AGC target = 1e5; maximum
injection time = 60 ms; collision energy = 28. Tandem mass spectra were processed by MM
File Conversion. The amino acid sequence and its source can be obtained by searching in the
UniProt database (Rhodymeniophycidae: https://www.uniprot.org/taxonomy/2045261)
(accessed on 16 November 2021).

2.9. Property Prediction of the Identified Peptides and Their Antioxidant Ability

The parameters of physical and chemical properties of the identified peptides (theoret-
ical isoelectric point (PI), hydrophilic average coefficient (GRAY), water solubility, toxicity
and allergenicity) were evaluated in silico. The PI and GRAY of the peptides were de-
termined by the ProtParam tool on Expasy server (https://web.expasy.org/protparam)
(accessed on 20 December 2021). The water solubility of the peptides was determined
by Innovagen tool (http://www.innovagen.com/proteomics-tools) (accessed on 20 De-
cember 2021). Toxicity of the peptides was forecasted by ToxinPred tool (https://webs.
iiitd.edu.in/raghava/toxinpred/multi_submit.php) (accessed on 20 December 2021). The
allergenicity of the peptides was predicted by AllerTOP tool (https://www.ddg-pharmfac.
net/AllerTOP/index.html) (accessed on 20 December 2021). The identified peptides were
synthesized by GL Biochem (Shanghai, China) Ltd. for the evaluation of their antioxidant

https://www.uniprot.org/taxonomy/2045261
https://web.expasy.org/protparam
http://www.innovagen.com/proteomics-tools
https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.php
https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.php
https://www.ddg-pharmfac.net/AllerTOP/index.html
https://www.ddg-pharmfac.net/AllerTOP/index.html
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activity, and the antioxidant ability was determined according to 2.5.2 with the concentra-
tion at 0.5 mg/mL.

2.10. Molecular Docking Analysis

The X-ray crystal structure of keap1 (PDB ID: 2FLU) was obtained from the RCSB
Protein Data Bank (https://www.rcsb.org/) (accessed on 18 February 2022). All the water
molecules and the chain B (Nrf2) in Kelch-like ECH-associated protein 1 (keap1) were
removed sequentially by Pymol software, followed by adding the hydrogens. Then, the
modified keap1 and target peptide sequence were employed for docking simulation study
using online docking server (http://huanglab.phys.hust.edu.cn/hpepdock/) (accessed on
18 February 2022) and the best conformation was downloaded. Finally, Pymol software
was used to illustrate the interaction of the peptides of the best conformation with modified
keap1 by molecular docking.

2.11. Statistical Analysis

The assay for the samples was conducted in triplicates, and the results were expressed
as mean ± standard deviation. SPSS 22.0 software (IBM Corp., Armonk, NY, USA) was
used for data analysis. One-way analysis of variance (ANOVA, Tukey test) was used for
significance test (p < 0.05 was considered a significant difference).

3. Results and Discussion
3.1. DH and Antioxidant Activity of the Protein Enzymatic Hydrolysates

The degree of hydrolysis (DH) can directly reflect the breaking degree of protein pep-
tide bonds, and can be used as an important index to evaluate the extent of the enzymatic
degradation [19]. Each protease has a specific cleavage site and action conditions. When ap-
plied to the hydrolysis of the same protein, the degree of hydrolysis will be different, which
will also lead to the difference in the biological activity of the product. Najafian et al. [20]
obtained the antioxidant peptides from patin (Pangasius sutchi) myofibrillar protein by
hydrolysis, and found that the change trend of the antioxidant activity of the hydrolysate
was similar to that of the DH. Irshad et al. [21] prepared the antioxidant peptides from
bovine casein by hydrolysis, and found that the free radical scavenging activity of the
hydrolysate was positively correlated with the DH. Therefore, it is necessary to study the
degree of hydrolysis of protein under different conditions. As shown in Figure 1a, the DH
of all the hydrolysates was in a rising trend with the extension of enzymatic hydrolysis
time. Moreover, the DH of the hydrolysate prepared by Protamex was obviously higher
than that of the hydrolysate prepared by alkaline protease and neutral protease.

The antioxidant activity of the peptides is not only related to the chain length, but
also related to the composition of amino acids, amino acid sequence, side chain and
spatial conformation [22]. Therefore, in addition to analyzing the DH, it is still necessary
to verify the actual antioxidant activity of the enzymatic hydrolysates. The antioxidant
activities of peptides can be evaluated by determining their radical scavenging activity
and reducing power. The IC50 of radical (DPPH and ABTS radical) scavenging activity
and reducing power of the hydrolysates are shown in Figure 1b–d. It was found that there
was a large difference in the antioxidant activity of the hydrolysates prepared under the
different hydrolysis time. This may be due to the different chain length, molecular weight,
amino acids composition and sequence of the peptides obtianed from G. livida at different
enzymatic hydrolysis times, leading to different exposure level of special groups reacting
with free radicals, and finally resulting in differences in antioxidant activity of the enzymatic
hydrolysates. It was also found that the antioxidant activity of the hydrolysates prepared
by neutral protease (1 h hydrolysis) showed the highest antioxidant activities, which
presented strong DPPH radical scavenging activity (IC50 = 3.96 ± 0.41 mg/mL), ABTS
radical scavenging activity (IC50 = 0.88 ± 0.13 mg/mL), and reducing power (0.531 ± 0.012
at 8 mg/mL). Additionally, the antioxidant activities of the hydrolysates prepared by
different proteases were all stronger than that of unhydrolyzed G. livida protein (IC50 of

https://www.rcsb.org/
http://huanglab.phys.hust.edu.cn/hpepdock/
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ABTS radical scavenging rate was 3.96 ± 0.99 mg/mL), suggesting that the hydrolysis was
beneficial for improving the antioxidant activity of the G. livida protein. After the G. livida
protein was hydrolyzed by neutral protease (1 h hydrolysis), the protein yield was 78.12%,
and the DPPH radical scavenging activity of the hydrolysate was obviously lower than that
of the GSH (IC50 = 0.16 ± 0.08 mg/mL) because the obtained hydrolysate was a complex
mixture of various peptides. Finally, the G. livida protein hydrolysate prepared by neutral
protease (1 h hydrolysis) was selected for separation and purification in order to obtain
highly active antioxidant peptides.
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top of the same pattern (point or column) indicate the significant difference between the hydrolysates
obtained by the same protease at different hydrolysis times (p < 0.05).

3.2. Molecular Weight Distribution of the Enzymatic Hydrolysate

It is well known that the components with higher molecular weight have shorter
retention time in high performance size exclusion chromatography (HPSEC). The molecular
weight (MW) distribution of the hydrolysate with high antioxidant activity was determined
by HPSEC, using the retention time (min) as the horizontal coordinate (x) axis and the
lg MW of the standard substance as the vertical coordinate (y) axis to draw the standard
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curve. The linear regression equation of the standard curve was y = −0.1802x + 6.5707,
R2 = 0.9902.

As a previous study noted, peptides within the appropriate MW range can exert
free radical scavenging effects through hydrogen donor groups [23]. Figure 2 shows the
MW distribution of the G. livida protein hydrolysate prepared by neutral protease (1 h
hydrolysis). It can be seen that after hydrolysis of G. livida protein by neutral protease for 1
h, the MW of the resultant peptides was relatively small, and the MW of more than 99% of
the peptides in the hydrolysate was below 3000 Da. Among them, there were about 28.69%
of the peptides in the MW range of 1000–3000 Da, about 36.14% of the peptides in the MW
range of 500–1000 Da, and about 34.96% of the peptides with the MW below 500 Da.
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3.3. Semi-Preparative RP-HPLC Purification

The antioxidant peptides can be purified by the reversed-phase high-performance
liquid chromatography (RP-HPLC) based on the polarity [24]. In the present study, the G.
livida protein hydrolysate with high antioxidant activity was further separated and purified
by semi-preparative RP-HPLC.

As shown in Figure 3a, the elution was separated into three fractions (F1, F2 and
F3). The antioxidant activity of the fractions was shown in Figure 3b. Among these three
fractions, the fraction F3 (protein yield was 25.28%) exhibited the strongest antioxidant
activity (the IC50 of DPPH radical scavenging rate was 2.43± 0.59 mg/mL and the reducing
power was 0.263 ± 0.005 at 4 mg/mL), which was also obviously higher than that of the
crude hydrolysate. It has been proven that the eluting order of each fraction peak in the
RP-HPLC is correlated to its polarity. According to the linear gradient elution, the fraction
F3 eluted within a relatively longer retention time, suggesting that fraction F3 had high
antioxidant activity might be due to the high content of polar amino acids. The structural
characteristics of the antioxidant peptides in the fraction F3 were further identified.

3.4. Identification of Antioxidant Peptide by LC-MS/MS

Antioxidant activity of peptide is considered to be related to its molecular weight,
amino acid composition and sequence. The molecular weight and amino acid sequence of
the purified antioxidant peptides (fraction F3) were determined by liquid chromatography
tandem mass spectrometry (LC-MS/MS).

Figure 4a–d show the secondary mass spectrums of the antioxidant peptides. The
secondary mass spectra of y and b ions in each peptide had a high degree of matching
with the ions in mascot database, indicating that the identification results were accu-
rate. On the basis of LC–MS/MS analysis and database retrieval, four sequences with
12–16 amino acid residues and the molecular weight of the peptides are shown in Table 1.
The molecular weight of each peptide was in the range of 1376.72–1797.81 Da, and the
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theoretical molecular weight of these peptides was consistent with the actual molecular
weight. Moreover, the molecular weight of antioxidant peptides was similar to that of
VKAGFAWTANQQLS (1519 Da) from tuna [25] as well as that of LEEQQQTEDEQQDQL
(1860.85 Da) and YLEELHRLNAGY (1477.63 Da) from camel milk [26], which was in accor-
dance with the molecular weight range of food derived antioxidant peptides (usually from
500 to 1800 Da).
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Figure 3. Separation of G. livida hydrolysate by semi-preparative RP-HPLC and the antioxidant
activities of the peptide fractions. (a) Semi-preparative RP-HPLC; (b) The reducing power (at
4 mg/mL) and the IC50 of DPPH radical scavenging rate of the fractions. Different letters on the top
of the same pattern column indicate the significant difference between the fractions in the same test
(p < 0.05).
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Table 1. Antioxidant peptides from G. livida identified by LC–MS/MS.

Pepetide Sequence Molecular Weight (Da) Structure Formula

LYEEMKESKVINADK 1797.81
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that all these peptides had good water solubility. In order to further characterize the
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beverage, it is necessary to evaluate their potential toxicity and allergenicity [27]. The
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Finally, the identified peptides were synthesized, and the IC50 of DPPH radical scav-
enging activity of the peptides was investigated. It can be seen that the four peptides
possessed different DPPH radical scavenging activity with the order of LYEEMKESKV-
INADK > LEADNVGVVLMGDGR > LIDDSFGTDAPVPERL > GLDELSEEDRLT. The
former research claimed that the peptides which were rich in hydrophobic amino acids
and acidic acids could present higher antioxidant ability, and also that the repetitive di-
or tri-amino acid residues within a peptide could be related to the high antioxidant activ-
ity of peptide [28]. For the four identified peptides, all of them had hydrophobic amino
acids, acidic acids and repetitive di-amino acid residues. In addition, the fact that the LY-
EEMKESKVINADK had higher DPPH radical scavenging activity might be attributed to the
two fragments of LY and KVI, which could enhance the antioxidant ability according to the
calculation results in the BIOPEP database (https://biochemia.uwm.edu.pl/biopep-uwm/)
(accessed on 18 February 2022). The amino acid sequence and the presence of certain amino
acid residues (such as H, Y, W, F, C, and K) have also been shown to be determining factors
in the antioxidant capacity of peptides (designing antioxidant peptides based on the antiox-
idant properties of the amino acid side-chains), and V or L at N-terminus in peptides could
exhibit higher antioxidant ability. In the four peptides, only the LYEEMKESKVINADK pos-
sesses Y and K in the sequence, and also has the L at N-terminus, which was in accordance
with the result that LYEEMKESKVINADK had higher DPPH radical scavenging activity.

3.6. Molecular Docking Results of the Identified Peptides

Nuclear factor erythroid-2 related factor 2 (Nrf2) principally modulates endogenous
defense in response to oxidative stress in the body, which was negatively regulated by
Kelch-like ECH-associated protein 1 (Keap1) [29]. In common conditions, Keap1 can
bind to Nrf2 and result in the degradation of Nrf2. When cells are subjected to oxidative
stress, Nrf2 can activate the antioxidant enzyme system to protect the cells [30]. Nrf2
has been considered as a good transcription factor that protects the body from many
diseases. Hence, the molecules (such as peptides) that can bind to Keap1 would inhibit the
combination between Keap1 and Nrf2, which is beneficial for suppressing oxidative stress
in the body’s cells.

As shown in Figure 5a,e, LYEEMKESKVINADK formed six hydrogen bonds with
ARG415, ARG380, ASN382, HIS575, SER508 and ARG483 of Keap1 with docking energy
of −216.878 kcal/mol. As shown in Figure 5b,f, LEADNVGVVLMGDGR formed four
hydrogen bonds with ASP385, TYR334, ARG380 and ARG483 of Keap1 with a dock-
ing energy of −186.917 kcal/mol. In addition, LIDDSFGTDAPVPERL formed three hy-
drogen bonds with ARG483, HIS436 and ARG336 of Keap1 with a docking energy of
−207.665 kcal/mol (Figure 5c,g). Moreover, GLDELSEEDRLT formed six hydrogen bonds
with TYR334, SER363, ARG380, ASN382, ARG415 and GLN530 with a docking energy
of −171.876 kcal/mol (Figure 5d,h). The results suggested that LYEEMKESKVINADK
combined with Keap1 was more easy than the other three peptides due to the lowest
docking energy, which was in accord with its higher antioxidant activity.

It was also found that ARG380, ARG483, ARG415, ASN382 and TYR334 in the Keap1
were the main binding sites for the peptides according to the docking results. This might be
attributed to the functional groups such as guanidine group of ARG and aromatic nucleus
of TYR. The previous study also reported the importance of these amino acid residues in
conjugation [31]. It was suggested that the antioxidant peptides from G. livida might have a
good protection on the cells in terms of suppressing the oxidative stress.

https://biochemia.uwm.edu.pl/biopep-uwm/


Foods 2022, 11, 1498 13 of 15
Foods 2022, 11, 1498 13 of 15 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  

(g) (h) 
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Figure 5. Molecular docking results of LYEEMKESKVINADK (a,e), LEADNVGVVLMGDGR (b,f),
LIDDSFGTDAPVPERL (c,g), GLDELSEEDRLT (d,h). (a–d) reflect the surface docking simulations
between the peptides and Keap1, and (e–h) reflect the peptides binding with amino acid residues in
the Keap1 activity center.
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4. Conclusions

In the present study, Grateloupia livida hydrolysates were obtained by hydrolysis with
three proteases (alkaline protease, Protamex and neutral protease), respectively. Under
neutral protease treatment (1 h), the hydrolysates showed the highest antioxidant ability
and low molecular weight distribution (almost 99% below 3 kDa). Three fractions (F1–F3)
in the hydrolysates were then screened by using semi-preparative RP-HPLC, and four
antioxidant peptides were identified from the fraction (F3) with the highest antioxidant
activity by LC-MS/MS. Their amino acid sequences were verified as LYEEMKESKVINADK,
LEADNVGVVLMGDGR, LIDDSFGTDAPVPERL and GLDELSEEDRLT, respectively. On-
line prediction demonstrated that the four peptides possessed good water solubility, and
non-toxic and non-allergenic characteristics. In addition, it was found that the DPPH
radical scavenging activity of the LYEEMKESKVINADK was higher than that of the other
peptides. Molecular docking revealed that these peptides could all well bind with Keap1,
among which LYEEMKESKVINADK showed the lowest docking energy, suggesting that it
was more easily combined with Keap1. The present results indicated that the antioxidant
peptides from Grateloupia livida hydrolysates could be potentially used as an ingredient in
new functional foods. Further research work needs to be conducted on providing more
useful information regarding in vivo antioxidant activity to identify practical applications
for those peptides.
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