Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Design
2.2. Predicted R-PE Extraction Yields
2.3. Validation of the Predicted R-PE Extraction Yield: UAEH Conducted under Optimized Conditions
2.3.1. R-Phycoerythrin Content
2.3.2. Seaweed Liquefaction
2.3.3. Further Biochemical Analyses of Optimized Soluble Fractions
3. Materials and methods
3.1. Materials
3.2. Ultrasound-Assisted Enzymatic Hydrolysis (UAEH)
3.2.1. Experimental System
3.2.2. Experimental Design
3.3. Conventional Extraction of R-PE
3.4. Analyses
3.4.1. R-Phycoerythrin (R-PE)
3.4.2. Determination of Seaweed Liquefaction
3.4.3. Elemental Composition: Carbon and Nitrogen
3.4.4. Soluble Carbohydrates
3.4.5. Weight-Average Molecular Weight (Mw) Determination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Delaney, A.; Frangoudes, K.; Ii, S.-A. Chapter 2—Society and Seaweed: Understanding the Past and Present. In Seaweed in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2016; pp. 7–40. ISBN 978-0-12802-772-1. [Google Scholar]
- Fleurence, J. Chapter 5—Seaweeds as Food. In Seaweed in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2016; pp. 149–167. ISBN 978-0-12802-772-1. [Google Scholar]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef]
- Stiger-Pouvreau, V.; Thouzeau, G. Marine Species Introduced on the French Channel-Atlantic Coasts: A Review of Main Biological Invasions and Impacts. Open J. Ecol. 2015, 5, 227–257. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, I.; Cotas, J.; Rodrigues, A.; Ferreira, D.; Osório, N.; Pereira, L. Extraction and Analysis of Compounds with Antibacterial Potential from the Red Alga Grateloupia turuturu. J. Mar. Sci. Eng. 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Ferreira, T.; Santos, S.; Pires, M.J.; da Costa, R.M.G.; Medeiros, R.; Bastos, M.M.S.M.; Neuparth, M.J.; Faustino-Rocha, A.I.; Abreu, H.; et al. The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice. Nutrients 2021, 13, 4529. [Google Scholar] [CrossRef] [PubMed]
- Félix, C.; Félix, R.; Carmona, A.M.; Januário, A.P.; Dias, P.D.M.; Vicente, T.F.L.; Silva, J.; Alves, C.; Pedrosa, R.; Novais, S.C.; et al. Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Appl. Sci. 2021, 11, 1650. [Google Scholar] [CrossRef]
- da Costa, E.; Melo, T.; Reis, M.; Domingues, P.; Calado, R.; Abreu, M.H.; Domingues, M.R. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia turuturu. Mar. Drugs 2021, 19, 414. [Google Scholar] [CrossRef]
- Garcia-Bueno, N.; Decottignies, P.; Turpin, V.; Dumay, J.; Paillard, C.; Stiger-Pouvreau, V.; Kervarec, N.; Pouchus, Y.-F.; Aitor Marin-Atucha, A.; Fleurence, J. Seasonal Antibacterial Activity of Two Red Seaweeds, Palmaria palmata and Grateloupia turuturu, on European Abalone Pathogen Vibrio harveyi. Aquat. Living Resour. 2014, 27, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Denis, C.; Morançais, M.; Li, M.; Deniaud, E.; Gaudin, P.; Wielgosz-Collin, G.; Barnathan, G.; Jaouen, P.; Fleurence, J. Study of the Chemical Composition of Edible Red Macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 2010, 119, 913–917. [Google Scholar] [CrossRef]
- Munier, M. Étude du Polymorphisme Pigmentaire de l’Algue Rouge Grateloupia turuturu au Travers de la Purification et de la Caractérisation de la R-Phycoérythrine en vue d’une Valorisation Industrielle. Ph.D. Thesis, Université de Nantes, Nantes, France, 2013. [Google Scholar]
- Le Guillard, C.; Bergé, J.-P.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.-Y.; Baron, R.; Fleurence, J.; Dumay, J. Soft Liquefaction of the Red Seaweed Grateloupia turuturu Yamada by Ultrasound-Assisted Enzymatic Hydrolysis Process. J. Appl. Phycol. 2016, 28, 2575–2585. [Google Scholar] [CrossRef] [Green Version]
- Munier, M.; Dumay, J.; Morançais, M.; Jaouen, P.; Fleurence, J. Variation in the Biochemical Composition of the Edible Seaweed Grateloupia turuturu Yamada Harvested from Two Sampling Sites on the Brittany Coast (France): The Influence of Storage Method on the Extraction of the Seaweed Pigment R-Phycoerythrin. J. Chem. 2013, 2013, 568548. [Google Scholar] [CrossRef] [Green Version]
- Kendel, M.; Couzinet-Mossion, A.; Viau, M.; Fleurence, J.; Barnathan, G.; Wielgosz-Collin, G. Seasonal Composition of Lipids, Fatty Acids, and Sterols in the Edible Red Alga Grateloupia turuturu. J. Appl. Phycol. 2013, 25, 425–432. [Google Scholar] [CrossRef]
- Plouguerné, E.; Hellio, C.; Deslandes, E.; Véron, B.; Stiger-Pouvreau, V. Anti-Microfouling Activities in Extracts of Two Invasive Algae: Grateloupia turuturu and Sargassum muticum: Botanica Marina. Bot. Mar. 2008, 51, 202–208. [Google Scholar] [CrossRef]
- Dumay, J.; Morançais, M. Chapter 9—Proteins and Pigments. In Seaweed in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2016; pp. 275–318. ISBN 978-0-12802-772-1. [Google Scholar]
- Dawes, C. Chapter 4—Macroalgae Systematics. In Seaweed in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2016; pp. 107–148. ISBN 978-0-12802-772-1. [Google Scholar]
- Dumay, J.; Morançais, M.; Munier, M.; Le Guillard, C.; Fleurence, J. Chapter Eleven—Phycoerythrins: Valuable Proteinic Pigments in Red Seaweeds. In Advances in Botanical Research; Sea Plants; Bourgougnon, N., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 71, pp. 321–343. ISBN 0065-2296. [Google Scholar]
- Morançais, M.; Mouget, J.-L.; Dumay, J. Chapter 7—Proteins and Pigments. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 145–175. ISBN 978-0-12811-405-6. [Google Scholar]
- Sudhakar, M.P.; Jagatheesan, A.; Perumal, K.; Arunkumar, K. Methods of Phycobiliprotein Extraction from Gracilaria crassa and Its Applications in Food Colourants. Algal Res. 2015, 8, 115–120. [Google Scholar] [CrossRef]
- Sekar, S.; Chandramohan, M. Phycobiliproteins as a Commodity: Trends in Applied Research, Patents and Commercialization. J. Appl. Phycol. 2008, 20, 113–136. [Google Scholar] [CrossRef]
- Munier, M.; Morançais, M.; Dumay, J.; Jaouen, P.; Fleurence, J. One-Step Purification of R-Phycoerythrin from the Red Edible Seaweed Grateloupia turuturu. J. Chromatogr. B 2015, 992, 23–29. [Google Scholar] [CrossRef]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical Factors Affecting the Stability of Two Pigments: R-Phycoerythrin of Grateloupia turuturu and B-Phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407. [Google Scholar] [CrossRef]
- Denis, C.; Ledorze, C.; Jaouen, P.; Fleurence, J. Comparison of Different Procedures for the Extraction and Partial Purification of R-Phycoerythrin from the Red Macroalga Grateloupia turuturu. Bot. Mar. 2009, 52, 278–281. [Google Scholar] [CrossRef]
- Denis, C.; Massé, A.; Fleurence, J.; Jaouen, P. Concentration and Pre-Purification with Ultrafiltration of a R-Phycoerythrin Solution Extracted from Macro-Algae Grateloupia turuturu: Process Definition and up-Scaling. Sep. Purif. Technol. 2009, 69, 37–42. [Google Scholar] [CrossRef]
- Dumay, J.; Morançais, M.; Nguyen, H.P.T.; Fleurence, J. Extraction and Purification of R-Phycoerythrin from Marine Red Algae. Methods Mol. Biol. 2015, 1308, 109–117. [Google Scholar] [CrossRef]
- Dumay, J.; Clément, N.; Morançais, M.; Fleurence, J. Optimization of Hydrolysis Conditions of Palmaria palmata to Enhance R-Phycoerythrin Extraction. Bioresour. Technol. 2013, 131, 21–27. [Google Scholar] [CrossRef]
- Nguyen, H.P.T.; Morançais, M.; Fleurence, J.; Dumay, J. Mastocarpus stellatus as a Source of R-Phycoerythrin: Optimization of Enzyme Assisted Extraction Using Response Surface Methodology. J. Appl. Phycol. 2017, 29, 1563–1570. [Google Scholar] [CrossRef]
- Mensi, F.; Ksouri, J.; Seale, E.; Romdhane, M.; Fleurence, J. A Statistical Approach for Optimization of R-Phycoerythrin Extraction from the Red Algae Gracilaria verrucosa by Enzymatic Hydrolysis Using Central Composite Design and Desirability Function. J. Appl. Phycol. 2012, 24, 915–926. [Google Scholar] [CrossRef]
- Denis, C.; Morançais, M.; Gaudin, P.; Fleurence, J. Effect of Enzymatic Digestion on Thallus Degradation and Extraction of Hydrosoluble Compounds from Grateloupia turuturu. Bot. Mar. 2009, 52, 262–267. [Google Scholar] [CrossRef]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Chapter 9—Extraction of Biomolecules from Seaweeds. In Seaweed Sustainability; Troy, B.K.T.J., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 243–269. ISBN 978-0-12418-697-2. [Google Scholar]
- Michalak, I.; Chojnacka, K. Algal Extracts: Technology and Advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Jokic, S.; Šubaric, D.; Jerkovic, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs 2018, 16, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Guillard, C.; Dumay, J.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.-Y.; Fleurence, J.; Bergé, J.-P. Ultrasound-Assisted Extraction of R-Phycoerythrin from Grateloupia turuturu with and without Enzyme Addition. Algal Res. 2015, 12, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Maran, J.P.; Priya, B.; Nivetha, C.V. Optimization of Ultrasound-Assisted Extraction of Natural Pigments from Bougainvillea glabra Flowers. Ind. Crops Prod. 2015, 63, 182–189. [Google Scholar] [CrossRef]
- Dey, S.; Rathod, V.K. Ultrasound Assisted Extraction of β-Carotene from Spirulina platensis. Ultrason. Sonochem. 2013, 20, 271–276. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of Extraction of Natural Products Using Ultrasonic Irradiations—A Review of Current Status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Wang, F.; Guo, X.-Y.; Zhang, D.-N.; Wu, Y.; Wu, T.; Chen, Z.-G. Ultrasound-Assisted Extraction and Purification of Taurine from the Red Algae Porphyra yezoensis. Ultrason. Sonochem. 2015, 24, 36–42. [Google Scholar] [CrossRef]
- Fidelis, G.P.; Gomes Camara, R.B.; Queiroz, M.F.; Santos Pereira Costa, M.S.; Santos, P.C.; Oliveira Rocha, H.A.; Costa, L.S. Proteolysis, NaOH and Ultrasound-Enhanced Extraction of Anticoagulant and Antioxidant Sulfated Polysaccharides from the Edible Seaweed, Gracilaria birdiae. Molecules 2014, 19, 18511–18526. [Google Scholar] [CrossRef] [Green Version]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction and Characterization of Protein from Irish Brown Seaweed Ascophyllum nodosum. Food Res. Int. 2016, 99, 1021–1027. [Google Scholar] [CrossRef]
- Kadam, S.U.; O’Donnell, C.P.; Rai, D.K.; Hossain, M.B.; Burgess, C.M.; Walsh, D.; Tiwari, B.K. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef] [Green Version]
- Flórez-Fernández, N.; López-García, M.; González-Muñoz, M.J.; Vilariño, J.M.L.; Domínguez, H. Ultrasound-Assisted Extraction of Fucoidan from Sargassum muticum. J. Appl. Phycol. 2017, 29, 1553–1561. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of Ultrasound Assisted Extraction of Bioactive Components from Brown Seaweed Ascophyllum nodosum Using Response Surface Methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef]
- Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-Assisted Enzymatic Extraction and Antioxidant Activity of Polysaccharides from Pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [Google Scholar] [CrossRef]
- Leaes, E.X.; Zimmermann, E.; Souza, M.; Ramon, A.P.; Mezadri, E.T.; Dal Prá, V.; Terra, L.M.; Mazutti, M.A. Ultrasound-Assisted Enzymatic Hydrolysis of Cassava Waste to Obtain Fermentable Sugars. Biosyst. Eng. 2013, 115, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, G.; Zhang, J.; Jia, S.; Li, F.; Wang, Y.; Wu, S. Response Surface Optimization of Ultrasound-Assisted Enzymatic Extraction Polysaccharides from Lycium barbarum. Carbohydr. Polym. 2014, 110, 278–284. [Google Scholar] [CrossRef]
- Lunelli, F.C.; Sfalcin, P.; Souza, M.; Zimmermann, E.; Dal Prá, V.; Foletto, E.L.; Jahn, S.L.; Kuhn, R.C.; Mazutti, M.A. Ultrasound-Assisted Enzymatic Hydrolysis of Sugarcane Bagasse for the Production of Fermentable Sugars. Biosyst. Eng. 2014, 124, 24–28. [Google Scholar] [CrossRef]
- Korzen, L.; Pulidindi, I.N.; Israel, A.; Abelson, A.; Gedanken, A. Single Step Production of Bioethanol from the Seaweed Ulva rigida Using Sonication. RSC Adv. 2015, 5, 16223–16229. [Google Scholar] [CrossRef]
- Romarís-Hortas, V.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Ultrasound-Assisted Enzymatic Hydrolysis for Iodinated Amino Acid Extraction from Edible Seaweed before Reversed-Phase High Performance Liquid Chromatography–Inductively Coupled Plasma-Mass Spectrometry. J. Chromatogr. A 2013, 1309, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Povedano, M.M.; Luque de Castro, M.D. A Review on Enzyme and Ultrasound: A Controversial but Fruitful Relationship. Anal. Chim. Acta 2015, 889, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yachmenev, V.; Condon, B.; Klasson, T.; Lambert, A. Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound. J. Biobased Mater. Bioenergy 2009, 3, 25–31. [Google Scholar] [CrossRef]
- De Souza Soares, A.; Augusto, P.E.D.; de Castro Leite Júnior, B.R.; Nogueira, C.A.; Vieira, É.N.R.; de Barros, F.A.R.; Stringheta, P.C.; Ramos, A.M. Ultrasound Assisted Enzymatic Hydrolysis of Sucrose Catalyzed by Invertase: Investigation on Substrate, Enzyme and Kinetics Parameters. LWT 2019, 107, 164–170. [Google Scholar] [CrossRef]
- Priya; Gogate, P.R. Ultrasound-Assisted Intensification of Activity of Free and Immobilized Enzymes: A Review. Ind. Eng. Chem. Res. 2021, 60, 9650–9668. [Google Scholar] [CrossRef]
- Gisbert, M.; Barcala, M.; Rosell, C.M.; Sineiro, J.; Moreira, R. Aqueous Extracts Characteristics Obtained by Ultrasound-Assisted Extraction from Ascophyllum nodosum Seaweeds: Effect of Operation Conditions. J. Appl. Phycol. 2021, 33, 3297–3308. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Liu, C.; Yang, S.; Li, X. Ultrasound Complex Enzymes Assisted Extraction and Biochemical Activities of Polysaccharides from Epimedium Leaves. Process Biochem. 2012, 47, 2040–2050. [Google Scholar] [CrossRef]
- Liao, N.; Zhong, J.; Ye, X.; Lu, S.; Wang, W.; Zhang, R.; Xu, J.; Chen, S.; Liu, D. Ultrasonic-Assisted Enzymatic Extraction of Polysaccharide from Corbicula fluminea: Characterization and Antioxidant Activity. LWT-Food Sci. Technol. 2015, 60, 1113–1121. [Google Scholar] [CrossRef]
- Galland-Irmouli, A.V.; Pons, L.; Luçon, M.; Villaume, C.; Mrabet, N.T.; Guéant, J.L.; Fleurence, J. One-Step Purification of R-Phycoerythrin from the Red Macroalga Palmaria palmata Using Preparative Polyacrylamide Gel Electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 2000, 739, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, M.-M.; Chen, P.-L.; Cao, Y.-Y.; Tan, X.-L. Optimization of Ultrasonic-Assisted Enzymatic Hydrolysis for the Extraction of Luteolin and Apigenin from Celery. J. Food Sci. 2011, 76, C680–C685. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, X.; Wang, L.; Zhou, S.; Feng, H.; Chen, W.N.; Lau, R. Ultrasound Assisted Extraction of Carbohydrates from Microalgae as Feedstock for Yeast Fermentation. Bioresour. Technol. 2013, 128, 337–344. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Deenu, A.; Naruenartwongsakul, S.; Kim, S.M. Optimization and Economic Evaluation of Ultrasound Extraction of Lutein from Chlorella vulgaris. Biotechnol. Bioprocess Eng. 2013, 18, 1151–1162. [Google Scholar] [CrossRef]
- Baghel, R.S. Developments in Seaweed Biorefinery Research: A Comprehensive Review. Chem. Eng. J. 2022, 454, 140177. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Connell, S.; O’Donnell, C.P. Effect of Ultrasound Pretreatment on the Extraction Kinetics of Bioactives from Brown Seaweed (Ascophyllum nodosum). Sep. Sci. Technol. 2015, 50, 670–675. [Google Scholar] [CrossRef]
- Fleurence, J.; Massiani, L.; Guyader, O.; Mabeau, S. Use of Enzymatic Cell Wall Degradation for Improvement of Protein Extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. J. Appl. Phycol. 1995, 7, 393–397. [Google Scholar] [CrossRef]
- Joubert, Y.; Fleurence, J. Simultaneous Extraction of Proteins and DNA by an Enzymatic Treatment of the Cell Wall of Palmaria palmata (Rhodophyta). J. Appl. Phycol. 2008, 20, 55–61. [Google Scholar] [CrossRef]
- Fleurence, J. The Enzymatic Degradation of Algal Cell Walls: A Useful Approach for Improving Protein Accessibility? J. Appl. Phycol. 1999, 11, 313–314. [Google Scholar] [CrossRef]
- Hardouin, K.; Bedoux, G.; Burlot, A.-S.; Nyvall-Collén, P.; Bourgougnon, N. Chapter Ten—Enzymatic Recovery of Metabolites from Seaweeds: Potential Applications. In Advances in Botanical Research; Sea Plants; Bourgougnon, N., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 71, pp. 279–320. [Google Scholar]
- Amano, H.; Noda, H. Proteins of Protoplasts from Red Alga Porphyra yezoensis. Nippon Suisan Gakkaishi 1990, 56, 1859–1864. [Google Scholar] [CrossRef]
- Kornprobst, J.-M. Substances Naturelles d’Origine Marine: Chimiodiversité, Pharmacodiversité, Biotechnologies; Tec & Doc Lavoisier: Paris, France, 2005; Volume 1. [Google Scholar]
- Petit, A.-C.; Noiret, N.; Guezennec, J.; Gondrexon, N.; Colliec-Jouault, S. Ultrasonic Depolymerization of an Exopolysaccharide Produced by a Bacterium Isolated from a Deep-Sea Hydrothermal Vent Polychaete Annelid. Ultrason. Sonochem. 2007, 14, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pétrier, C.; Gondrexon, N.; Boldo, P. Ultrasons et sonochimie. Tech. L’ingénieur Sci. Fondam. 2008, AFP4, 15. [Google Scholar] [CrossRef]
- Cheung, Y.-C.; Siu, K.-C.; Liu, Y.-S.; Wu, J.-Y. Molecular Properties and Antioxidant Activities of Polysaccharide–Protein Complexes from Selected Mushrooms by Ultrasound-Assisted Extraction. Process Biochem. 2012, 47, 892–895. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Ma, H.; He, R. Effect of Ultrasonic Degradation on In Vitro Antioxidant Activity of Polysaccharides from Porphyra yezoensis (Rhodophyta). Food Sci. Technol. Int. 2008, 14, 479–486. [Google Scholar] [CrossRef]
- Tecson, M.G.; Abad, L.V.; Ebajo, V.D.; Camacho, D.H. Ultrasound-Assisted Depolymerization of Kappa-Carrageenan and Characterization of Degradation Product. Ultrason. Sonochem. 2021, 73, 105540. [Google Scholar] [CrossRef]
- Minard, F. Procédé de Photo-Stabilisation de Phycobiliprotéines dans un Extrait Aqueux, Compositions Contenant des Phycobiliprotéines Stabilisées et Utilisation de Phycobiliprotéines Stabilisées. France Patent WO2005065697A1, 21 July 2005. [Google Scholar]
- Michalak, I.; Chojnacka, K. Algae as Production Systems of Bioactive Compounds. Eng. Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Fleita, D.; El-Sayed, M.; Rifaat, D. Evaluation of the Antioxidant Activity of Enzymatically-Hydrolyzed Sulfated Polysaccharides Extracted from Red Algae; Pterocladia capillacea. LWT-Food Sci. Technol. 2015, 63, 1236–1244. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, X.; Zhang, Y.; He, R.; Ma, H. Ultrasonic Degradation, Purification and Analysis of Structure and Antioxidant Activity of Polysaccharide from Porphyra yezoensis Udea. Carbohydr. Polym. 2012, 87, 2046–2051. [Google Scholar] [CrossRef]
- Liu, L.-N.; Su, H.-N.; Yan, S.-G.; Shao, S.-M.; Xie, B.-B.; Chen, X.-L.; Zhang, X.-Y.; Zhou, B.-C.; Zhang, Y.-Z. Probing the PH Sensitivity of R-Phycoerythrin: Investigations of Active Conformational and Functional Variation. Biochim. Biophys. Acta (BBA)-Bioenerg. 2009, 1787, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Orta-Ramirez, A.; Merrill, J.E.; Smith, D.M. PH Affects the Thermal Inactivation Parameters of R-Phycoerythrin from Porphyra yezoensis. J. Food Sci. 2000, 65, 1046–1050. [Google Scholar] [CrossRef]
- Beer, S.; Eshel, A. Determining Phycoerythrin and Phycocyanin Concentration in Aqueous Crude Extracts of Red Algae. Aust. J. Mar. Freshw. Res. 1985, 36, 785–792. [Google Scholar] [CrossRef]
- Chaplin, M.F. Monosaccharides. In Carbohydrate Analysis: A Practical Approach; Chaplin, M.F., Kennedy, J.F., Eds.; IRL Press: Oxford, UK, 1986; pp. 1–36. ISBN 978-0-94794-644-9. [Google Scholar]
- Chopin, N.; Sinquin, C.; Ratiskol, J.; Zykwinska, A.; Weiss, P.; Cérantola, S.; Le Bideau, J.; Colliec-Jouault, S. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid. BioMed Res. Int. 2015, 2015, e508656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experiment N° | UAEH Conditions | R-PE Extraction Yields (mg·g−1 dw) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Power of Ultrasound (W) | Temperature (°C) | Flow Rate (L·h−1) | 0 min | 30 min | 60 min | 120 min | 180 min | 240 min | 300 min | 360 min | |
1 | 359 | 24 | 97 | 2.63 | 3.31 | 3.51 | 4.11 | 4.05 | 4.04 | 3.92 | 3.80 |
2 | 300 | 20 | 145 | 2.39 | 2.93 | 3.92 | 3.93 | 4.19 | 4.14 | 4.14 | 4.06 |
3 | 300 | 30 | 145 | 2.70 | 3.16 | 3.42 | 3.34 | 3.27 | 3.22 | 3.13 | 3.10 |
4 | 300 | 30 | 145 | 2.43 | 3.17 | 3.41 | 3.39 | 3.30 | 3.17 | 3.17 | 3.11 |
5 | 300 | 30 | 145 | 2.62 | 3.53 | 3.56 | 3.47 | 3.40 | 3.25 | 3.17 | 3.00 |
6 | 241 | 24 | 193 | 3.11 | 3.65 | 3.97 | 4.05 | 3.96 | 3.90 | 3.77 | 3.65 |
7 | 300 | 40 | 145 | 2.15 | 2.56 | 2.48 | 2.43 | 2.42 | 2.45 | 2.49 | 2.51 |
8 | 359 | 24 | 193 | 2.53 | 3.28 | 3.85 | 4.02 | 4.01 | 4.09 | 3.75 | 3.89 |
9 | 300 | 30 | 65 | 2.77 | 3.31 | 3.54 | 3.45 | 3.46 | 3.44 | 3.47 | 3.43 |
10 | 241 | 36 | 193 | 2.32 | 2.62 | 2.71 | 2.71 | 2.69 | 2.62 | 2.67 | 2.64 |
11 | 300 | 30 | 145 | 2.77 | 3.52 | 3.70 | 3.59 | 3.47 | 3.43 | 3.41 | 3.22 |
12 | 241 | 36 | 97 | 2.38 | 2.74 | 2.54 | 2.66 | 2.59 | 2.52 | 2.56 | 2.58 |
13 | 300 | 30 | 145 | 2.77 | 3.13 | 3.26 | 3.35 | 3.30 | 3.21 | 3.22 | 3.12 |
14 | 359 | 36 | 193 | 2.50 | NA 1 | 2.61 | 2.53 | 2.39 | 2.43 | 2.48 | 2.46 |
15 | 200 | 30 | 145 | 2.49 | 3.10 | 2.92 | 3.01 | 2.93 | 2.87 | 2.82 | 2.82 |
16 | 300 | 30 | 225 | 2.67 | 3.02 | 3.16 | 3.20 | 3.16 | 3.14 | 3.14 | 2.96 |
17 | 400 | 30 | 145 | 2.19 | 3.12 | 3.25 | 3.31 | 3.18 | 3.29 | 3.18 | 3.22 |
18 | 359 | 36 | 97 | 2.56 | 2.81 | 2.92 | 2.76 | 2.69 | 2.60 | 2.59 | 2.71 |
19 | 241 | 24 | 97 | 2.42 | 3.00 | 3.50 | 3.60 | 3.68 | 3.59 | 3.66 | 3.63 |
Time (min) | Equation of the Model | Adjusted R2 (%) | Optimized Conditions | Predicted Value (R-PE mg·g−1 dw) | ||
---|---|---|---|---|---|---|
P (W) | T (°C) | Q (L·h−1) | ||||
120 | 3.31235 − 0.535479 × T | 85.46 | 300 | 20 | 145 | 4.21 |
180 | 3.33989 − 0.585277 × T − 0.0958245 × P² | 92.07 | 300 | 20 | 145 | 4.32 |
240 | 3.23246 − 0.58251 × T | 88.17 | 300 | 20 | 145 | 4.21 |
Biochemical Analyses | Time | |
---|---|---|
T0 min | T210 min | |
Nitrogen extraction yield (%) | 32.88 ± 1.81 | 55.51 ± 1.36 *** |
Carbon extraction yield (%) | 22.78 ± 0.66 | 48.76 ± 1.53 *** |
Carbohydrates (mg·g−1 dw) | 44.31 ± 8.64 | 141.86 ± 20.86 ** |
Weight-average molecular weight (Mw) (kDa) | 1080 ± 51 | 493 ± 24 *** |
Levels of Independent Variable | Power of Ultrasound (W) | Temperature (°C) | Flow Rate (L·h−1) |
---|---|---|---|
−α | 200 | 20 | 65 |
−1 | 241 | 24 | 97 |
0 | 300 | 30 | 145 |
+1 | 359 | 36 | 193 |
+α | 400 | 40 | 225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Guillard, C.; Bergé, J.-P.; Donnay-Moreno, C.; Cornet, J.; Ragon, J.-Y.; Fleurence, J.; Dumay, J. Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu. Mar. Drugs 2023, 21, 213. https://doi.org/10.3390/md21040213
Le Guillard C, Bergé J-P, Donnay-Moreno C, Cornet J, Ragon J-Y, Fleurence J, Dumay J. Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu. Marine Drugs. 2023; 21(4):213. https://doi.org/10.3390/md21040213
Chicago/Turabian StyleLe Guillard, Cécile, Jean-Pascal Bergé, Claire Donnay-Moreno, Josiane Cornet, Jean-Yves Ragon, Joël Fleurence, and Justine Dumay. 2023. "Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu" Marine Drugs 21, no. 4: 213. https://doi.org/10.3390/md21040213
APA StyleLe Guillard, C., Bergé, J. -P., Donnay-Moreno, C., Cornet, J., Ragon, J. -Y., Fleurence, J., & Dumay, J. (2023). Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu. Marine Drugs, 21(4), 213. https://doi.org/10.3390/md21040213