Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Proximate Composition Analysis
2.2.1. Determination of Moisture Content, Ash Content, Total Proteins and Total Carbohydrates
2.2.2. Determination of Crude Fiber Content
2.2.3. Determination of Total Lipids
2.2.4. Estimation of Nitrogen-Free Extract
2.2.5. Determination of Proline Content
2.2.6. Determination of Chlorophyll Content
2.2.7. Total Phenolic Content
2.2.8. Total Flavonoid Content
2.2.9. Determination of Mineral Content
2.2.10. Estimation of Iodine Content
2.3. Physicochemical Analyses
2.3.1. Determination of Water-Swelling Capacity
2.3.2. Estimation of Water-Holding Capacity
2.3.3. Determination of Oil-Holding Capacity
2.4. Estimation of Oxidation Stability of Oil under Accelerated Conditions
2.4.1. Determination of Peroxide Value
2.4.2. Determination of p-Anisidine Value
2.4.3. Determination of Conjugated Dienes
2.4.4. Determination of Total Oxidation Value
2.4.5. Determination of Thiobarbituricacid-Reactive Substance Value
2.5. Biological Activity
2.5.1. Total Antioxidant Activity
2.5.2. Scavenging Activity
2.5.3. Reducing Activity
2.6. Antinutritional Activities
2.6.1. Tannin Estimation
2.6.2. Phytic Acid Determination
2.6.3. Determination of Saponins
2.6.4. Determination of Alkaloids
2.6.5. Determination of Terpenoids
2.7. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Physicochemical Characterization
3.3. Oxidation Stability of Oil from Seaweed Supplementation under Accelerated Conditions
3.4. Biological Activity
3.5. Antinutritional Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F.J. Proximate Composition and Nutritional Value of Three Macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Fishery and Aquaculture Statistics. Global Production Statistics 1950–2019. In FAO Fisheries Division. FishStaJ—Software for Fishery and Aquaculture Statistical Time Series. 2021. Available online: www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 1 September 2022).
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; GarridoGamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular No. 1229; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem. 2017, 221, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, B.; Chauhan, O.P.; Mishra, A. Edible Seaweeds: A Potential Novel Source of Bioactive Metabolites and Nutraceuticals with Human Health Benefits. Front. Mar. Sci. 2021, 8, 740054. [Google Scholar] [CrossRef]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Tanna, B.; Mishra, A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Uribe, E.; Vega-Gálvez, A.; García, V.; Pastén, A.; López, J.; Goñi, G. Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J. Appl. Phycol. 2019, 31, 1967–1979. [Google Scholar] [CrossRef]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Mahrose, K.M.; Michalak, I. Seaweeds for animal feed, current status, challenges, and opportunities. In Sustainable Global Resources of Seaweeds; Ranga Rao, A., Ravishankar, G.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 357–379. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; Fisheries Technical Paper No. 441; FAO: Rome, Italy, 2003; p. 105. [Google Scholar]
- FAO. The Global Status of Seaweed Production, Trade and Utilization; Globefish Research Programme; FAO: Rome, Italy, 2018; Volume 124, p. 120. [Google Scholar]
- Pereira, L. Edible Seaweeds of the World; CRC Press: Boca Raton, FL, USA, 2016; p. 463. [Google Scholar] [CrossRef]
- Mishra, A. Algal Functional Foods and Nutraceuticals: Benefits, Opportunities, and Challenges; Bentham Science Publishers Pte. Ltd.: Singapore, 2022. [Google Scholar] [CrossRef]
- D’Armas, H.; Jaramillo, C.; D’Armas, M.; Echavarría, A.; Valverde, P. Proximate composition of several green, brown and red seaweeds from the coast of Ecuador. Rev. De Biol. Trop. 2019, 67, 61–68. [Google Scholar] [CrossRef]
- Rosemary, T.; Arulkumar, A.; Paramasivam, S.; Mondragon-Portocarrero, A.; Miranda, J.M. Biochemical, Micronutrient and Physicochemical Properties of the Dried Red Seaweeds Gracilaria edulis and Gracilaria corticata. Molecules 2019, 24, 2225. [Google Scholar] [CrossRef] [Green Version]
- Aakre, I.; Evensen, L.T.; Kjellevold, M.; Dahl, L.; Henjum, S.; Alexander, J.; Madsen, L.; Markhus, M.W. Iodine Status and Thyroid Function in a Group of Seaweed Consumers in Norway. Nutrients 2020, 12, 3483. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2001; (No. 33); Food & Agriculture: Rome, Italy, 2001. [Google Scholar]
- Roleda, M.Y.; Skjermo, J.; Marfaing, H.; Jonsdottir, R.; Rebours, C.; Gietl, A.; Stengel, D.; Nitschke, U. Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: Inherent variations determine species-specific daily allowable consumption. Food Chem. 2018, 254, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Agregán, R.; Munekata, P.E.; Domínguez, R.; Carballo, J.; Franco, D.; Lorenzo, J.M. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Res. Int. 2017, 99, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-J.; Yang, F.-J.; Yang, L.; Zu, Y.-G. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil. Chem. Central J. 2018, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F.; Liu, F. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem. 2010, 118, 656–662. [Google Scholar] [CrossRef]
- Tanna, B.; Choudhary, B.; Mishra, A. Metabolite profiling, antioxidant, scavenging and anti-proliferative activities of selected tropical green seaweeds reveal the nutraceutical potential of Caulerpa spp. Algal Res. 2018, 36, 96–105. [Google Scholar] [CrossRef]
- Tanna, B.; Brahmbhatt, H.R.; Mishra, A. Phenolic, flavonoid, and amino acid compositions reveal that selected tropical seaweeds have the potential to be functional food ingredients. J. Food Process. Preserv. 2019, 43, e14266. [Google Scholar] [CrossRef]
- Tanna, B.; Choudhary, B.; Mishra, A.; Chauhan, O.P.; Patel, M.K.; Shokralla, S.; El-Abedin, T.K.Z.; Elansary, H.O.; Mahmoud, E.A. Antioxidant, Scavenging, Reducing, and Anti-Proliferative Activities of Selected Tropical Brown Seaweeds Confirm the Nutraceutical Potential of Spatoglossum asperum. Foods 2021, 10, 2482. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Expert Meeting on Food Safety for Seaweed—Current Status and Future Perspectives; Food Safety and Quality Series No. 13; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Tanna, B.; Yadav, S.; Mishra, A. Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of Caulerpa species. Mol. Biol. Rep. 2020, 47, 7403–7411. [Google Scholar] [CrossRef]
- Jha, B.; Reddy, C.R.K.; Thakur, M.C.; Rao, M.U. Seaweeds of India: The Diversity and Distribution of Seaweeds of Gujarat Coast; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 3. [Google Scholar] [CrossRef]
- Rohani-Ghadikolaei, K.; Abdulalian, E.; Ng, W.-K. Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J. Food Sci. Technol. 2012, 49, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Syad, A.N.; Shunmugiah, K.P.; Kasi, P.D. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed. Prev. Nutr. 2013, 3, 139–144. [Google Scholar] [CrossRef]
- Nunraksa, N.; Rattanasansri, S.; Praiboon, J.; Chirapart, A. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds. J. Appl. Phycol. 2019, 31, 683–690. [Google Scholar] [CrossRef]
- Gosch, B.J.; Magnusson, M.; Paul, N.A.; de Nys, R. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy 2012, 4, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, N.; Dhandapani, R. Proximate composition and amino acid profile of five green algal seaweeds from Mandapam Coastal regions, Tamil Nadu, India. Pharma Innov. J. 2018, 7, 400–403. [Google Scholar]
- Muraguri, E.N.; Wakibia, J.G.; Kinyuru, J. Chemical Composition and Functional Properties of Selected Seaweeds from the Kenya Coast. J. Food Res. 2016, 5, 114. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction Coefficients of Chlorophyll a and b in N,N-Dimethylformamide and 80% Acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [Green Version]
- Chamovitz, D.; Sandmann, G.; Hirschberg, J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J. Biol. Chem. 1993, 268, 17348–17353. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Admassu, H.; Abera, T.; Abraha, B.; Yang, R.; Zhao, W. Proximate, mineral and amino acid composition of dried laver (Porphyra spp.) seaweed. J. Acad. Ind. Res. (JAIR) 2018, 6, 149–154. [Google Scholar]
- Leiterer, M.; Truckenbrodt, D.; Franke, K. Determination of iodine species in milk using ion chromatographic separation and ICP-MS detection. Eur. Food Res. Technol. 2001, 213, 150–153. [Google Scholar] [CrossRef]
- Nitschke, U.; Stengel, D.B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem. 2015, 172, 326–334. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.; Cheung, P.C. Nutritional evaluation of some subtropical red and green seaweeds: Part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Mishra, A.; Patel, M.K.; Jha, B. Non-targeted metabolomics and scavenging activity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food. J. Funct. Foods 2015, 13, 21–31. [Google Scholar] [CrossRef]
- Patel, M.K.; Mishra, A.; Jha, B. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk). Front. Plant Sci. 2016, 7, 431. [Google Scholar] [CrossRef] [Green Version]
- Tanna, B.; Choudhary, B.; Mishra, A.; Yadav, S.; Chauhan, O.; Elansary, H.O.; Shokralla, S.; El-Abedin, T.K.Z.; Mahmoud, E.A. Biochemical and Anti-proliferative activities of seven abundant tropical red seaweeds confirm nutraceutical potential of Grateloupia indica. Arab. J. Chem. 2022, 15, 103868. [Google Scholar] [CrossRef]
- Hazra, B.; Biswas, S.; Mandal, N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement. Altern. Med. 2008, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.; Mishra, G.; Saxena, A.; Vishwakarma, K.R. A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia belerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian J. Pharm. Clin. Res. 2013, 6, 148–149. [Google Scholar]
- Gao, Y.; Shang, C.; Maroof, M.A.S.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, J.W.; Buss, G.R. A Modified Colorimetric Method for Phytic Acid Analysis in Soybean. Crop. Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Hamdani, A.M.; Wani, I.A.; Bhat, N.A.; Masoodi, F. Chemical composition, total phenolic content, antioxidant and antinutritional characterisation of exudate gums. Food Biosci. 2018, 23, 67–74. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Liu, K. Effects of sample size, dry ashing temperature and duration on determination of ash content in algae and other biomass. Algal Res. 2019, 40, 101486. [Google Scholar] [CrossRef]
- Kasimala, M.B.; Mebrahtu, L.; Mehari, A.; Tsighe, K.N. Proximate composition of three abundant species of seaweeds from red sea coast in Massawa, Eritrea. J. Algal Biomass Util. 2017, 8, 44–49. [Google Scholar]
- Ahmad, F.; Sulaiman, M.R.; Saimon, W.; Yee, C.F.; Matanjun, P. Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Sci. 2012, 31, 85–96. [Google Scholar]
- Rioux, L.-E.; Turgeon, S.L. Seaweed carbohydrates. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 141–192. [Google Scholar] [CrossRef]
- Olsson, J.; Toth, G.B.; Albers, E. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. J. Appl. Phycol. 2020, 32, 3305–3317. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Ozogul, Y. Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast. Oceanologia 2013, 55, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Kaliaperumal, N.; Chennubhotla, V.S.; Kalimuthu, S.; Ramalingam, J.R.; Selvaraj, M.; Najmuddin, M. Chemical composition of seaweeds. CMFRI Bull. 1987, 41, 31–51. [Google Scholar]
- Chen, K.; Rios, J.; Pérez-Gálvez, A.; Roca, M. Comprehensive chlorophyll composition in the main edible seaweeds. Food Chem. 2017, 228, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Kumar, M.; Mishra, G.; Sahoo, D. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals. Bioresour. Technol. 2017, 226, 132–144. [Google Scholar] [CrossRef]
- Suryaningrum, L.H.; Samsudin, R. Nutritional value and mineral content of seaweed from Binuangeun Beach, Indonesia and potential use as fish feed in-gredient. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 429, p. 012064. [Google Scholar] [CrossRef]
- Kylin, H. Über das Vorkommen von Jodiden. Bromiden und Jodidoxidasenbei den Meeresalgen. Hoppe-Seylor’s Z. Physiol. Chem. 1930, 186, 50–84. [Google Scholar] [CrossRef]
- Hou, X.; Malencheko, A.; Kucera, J.; Dahlgaard, H.; Nielsen, S. Iodine-129 in thyroid and urine in Ukraine and Denmark. Sci. Total. Environ. 2003, 302, 63–73. [Google Scholar] [CrossRef]
- Hou, X.; Hansen, V.; Aldahan, A.; Possnert, G.; Lind, O.C.; Lujaniene, G. A review on speciation of iodine-129 in the environmental and biological samples. Anal. Chim. Acta 2009, 632, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Cofrades, S.; López-López, I.; Solas, M.; Bravo, L.; Jiménez-Colmenero, F. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci. 2008, 79, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Jannat-Alipour, H.; Rezaei, M.; Shabanpour, B.; Tabarsa, M. Edible green seaweed, Ulva intestinalis as an ingredient in surimi-based product: Chemical composition and physicochemical properties. J. Appl. Phycol. 2019, 31, 2529–2539. [Google Scholar] [CrossRef]
- Benjama, O.; Masniyom, P. Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Sonklanakarin J. Sci. Technol. 2012, 34, 223–230. [Google Scholar]
- Kinsella, J.E.; Melachouris, N. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. Nutr. 1976, 7, 219–280. [Google Scholar] [CrossRef]
- Voutsinas, L.P.; Nakai, S. A simple turbidimetric method for determining the fat binding capacity of proteins. J. Agric. Food Chem. 1983, 31, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Segovia, I.; Lerma-García, M.J.; Fuentes, A.; Barat, J.M. Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Karatela, S.; Ward, N.I.; Zeng, I.S.; Paterson, J. Status and interrelationship of toenail elements in Pacific children. J. Trace Elements Med. Biol. 2018, 46, 10–16. [Google Scholar] [CrossRef]
- Muñoz, I.L.; Díaz, N.F. Minerals in edible seaweed: Health benefits and food safety issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1592–1607. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, A.; Peña-Vázquez, E.; Bermejo-Barrera, P. Significance of the presence of trace and ultra trace elements in seaweeds. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; Kim, S., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 116–170. [Google Scholar] [CrossRef]
- Airanthi, M.W.-A.; Hosokawa, M.; Miyashita, K. Comparative Antioxidant Activity of Edible Japanese Brown Seaweeds. J. Food Sci. 2011, 76, C104–C111. [Google Scholar] [CrossRef]
- Tanna, B.; Mishra, A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Farasat, M.; Khavari-Nejad, R.A.; Nabavi, S.M.B.; Namjooyan, F. Antioxidant activity, total phenolics and fla-vonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran. J. Pharm. Res. 2014, 13, 163–170. [Google Scholar]
- Ling, A.L.M.; Md Yasir, S.; Matanjun, P.; Bakar, M.F.A. Antioxidant activity, total phenolic and flavonoid contents of selected commercial seaweeds of Sabah, Malaysia. Int. J. Pharm. Phytopharm. Res. 2013, 3, 234–236. [Google Scholar]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Meenakshi, S.; Gnanambigai, D.M.; Mozhi, S.T.; Arumugam, M.; Balasubramanian, T. Total flavonoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Glob. J. Pharmacol. 2009, 3, 59–62. [Google Scholar]
- McIntyre, T.M.; Hazen, S.L. Lipid Oxidation and Cardiovascular Disease: Introduction to a Review Series. Circ. Res. 2010, 107, 1167–1169. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Farvin, K.H.S.; Jacobsen, C. Antioxidant Activity of Seaweed Extracts: In Vitro Assays, Evaluation in 5% Fish Oil-in-Water Emulsions and Characterization. J. Am. Oil Chem. Soc. 2015, 92, 571–587. [Google Scholar] [CrossRef]
- Karadağ, A.; Hermund, D.B.; Jensen, L.H.S.; Andersen, U.; Jónsdóttir, R.; Kristinsson, H.G.; Alasalvar, C.; Jacobsen, C. Oxidative stability and microstructure of 5% fish-oil-enriched granola bars added natural antioxidants derived from brown alga Fucus vesiculosus. Eur. J. Lipid Sci. Technol. 2017, 119, 1500578. [Google Scholar] [CrossRef]
- Kindleysides, S.; Quek, S.-Y.; Miller, M.R. Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chem. 2012, 133, 1624–1631. [Google Scholar] [CrossRef]
- Lee, S.S.; Esa, N.M.; Loh, S.P. In Vitro Inhibitory Activity of Selected Legumes against Pancreatic Lipase. J. Food Biochem. 2015, 39, 485–490. [Google Scholar] [CrossRef]
- Addisu, S.; Assefa, A. Role of plant containing saponin on livestock production: A review. Adv. Biol. Res. 2016, 10, 309–314. [Google Scholar]
- Ercan, P.; El, S.N. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem. 2016, 205, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, L.B.A.B. Saponin-based, biological-active surfactants from plants. In Application and Characterization of Surfactants; Najjar, R., Ed.; Intech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Leelavathi, M.S.; Prasad, M.P. Comparative analysis of phytochemical compounds of marine algae isolated from Gulf of Mannar. World J. Pharm. Pharm. Sci. 2015, 4, 640–654. [Google Scholar]
- De Oliveira, M.N.; Freitas, A.L.P.; Carvalho, A.F.U.; Sampaio, T.M.T.; Farias, D.F.; Teixeira, D.I.A.; Gouveia, S.T.; Pereira, J.G.; Sena, M.M.D.C.C.D. Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceará, Brazil. Food Chem. 2009, 115, 254–259. [Google Scholar] [CrossRef]
Green Seaweeds | Brown Seaweeds | Red Seaweeds | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACR | CAU | UF | UL | IYN | LOB | PAD | SAR | SPA | STO | AMP | GRA | HAL | SCI | SOL | |
MC | 19 ± 2 a | 20 ± 1 a | 27 ± 1 b | 25 ± 1 b | 18 ± 2 a | 22 ± 1 a | 14 ± 1 c | 14 ± 1 c | 21 ± 2 a | 20 ± 1 a | 9 ± 1 d | 21 ± 1 a | 19 ± 1 a | 21 ± 2 a | 22 ± 2 a |
AC | 22 ± 2 a | 15 ± 2 b | 27 ± 1 b | 16 ± 2 b | 51 ± 2 d | 24 ± 2 a | 32 ± 2 e | 24 ± 2 a | 32 ± 1 e | 29 ± 2 e | 71 ± 2 f | 39 ± 2 g | 17 ± 1 b | 46 ± 2 h | 42 ± 2 h |
TS | 16 ± 2 a,c | 23 ± 2 b | 36 ± 1 d | 56 ± 2 e | 9 ± 1 f | 12 ± 2 c,f | 26 ± 1 b | 53 ± 3 e | 49 ± 1 e | 39 ± 2 d | 9 ± 1 f | 12 ± 1 c | 22 ± 1 b | 30 ± 1 g | 18 ± 1 a |
TP | 7 ±1 a | 6 ± 1 a,c | 7 ± 1 a | 6 ± 1 a,c | 5 ± 1 c,d | 3 ± 0.4 b | 6 ± 1 a,c | 7 ± 1 a | 5 ± 1 c,d | 10 ± 1 e | 3 ± 0.5 b | 7 ± 1 a | 3 ± 1 b | 2 ± 0.1 f | 4 ± 1 b,d |
TL | 3.0 ± 0.2 a | 4.0 ± 0.5 b | 4.0 ± 0.5 b | 1.0 ± 0.5 c | 7.0 ± 0.5 d | 1.0 ± 0.3 c | 5.0 ± 0.6 b | 1.0 ± 0.3 c | 7.0 ± 0.8 d | 2.0 ± 0.3 e | 3.0 ± 0.1 a | 2.0 ± 0.5 e | 1.0 ± 0.4 c | 3.0 ± 1.0 a | 2.0 ± 0.6 c,e |
CF | 27.0 ± 0.5 a | 24.0 ± 2.2 b | 11.0 ± 0.1 c | 11.0 ± 0.9 c | 9.0 ± 0.2 d | 18.0 ± 0.5 e | 11.0 ± 0.5 c | 12.0 ± 0.5 f | 13.0 ± 0.8 f | 13.0± 0.7 f | 2.0 ± 0.2 g | 2.0 ± 0.1 g | 3.0 ± 0.2 h | 5.0 ± 0.5 i | 4.0 ± 0.1 j |
CC | 11.00 ± 0.01 a | 8.00 ± 0.01 b | 0.50 ± 0.01 c | 0.80 ± 0.02 g | 0.70 ± 0.01 i | 1.40 ± 0.01 d | 0.50 ± 0.01 c | 3.0 ± 0.1 e | 1.00 ± 0.01 d | 2.00 ± 0.01 f | 0.30 ± 0.01 e | 0.30 ± 0.08 e | 0.20 ± 0.01 h | 0.70 ± 0.01 i | 0.20 ± 0.01 h |
TC | 7.00 ± 0.05 a | 3.00 ± 0.05 d,e | 10.00 ± 0.04 g | 14.00 ± 0.11 h | 1.50 ± 0.02 f | 1.50 ± 0.01 f | 4.00 ± 0.05 c,d | 34.00 ± 0.27 j | 2.50 ± 0.05 e | 5.00 ± 0.02 b,c | 13.00 ± 0.15 i | 41.00 ± 0.35 k | 7.00 ± 0.05 a | 1.50 ± 0.01 f | 6.00 ± 0.05 a,b |
Pro | 3.0 ± 0.1 a | 5.0 ± 0.1 b | 17.0 ± 0.5 c | 14.0 ± 4.5 c,d,e,f | 6.0 ± 0.2 g | 13.0 ± 0.3 d | 11.0 ± 0.5 e | 8.0 ± 0.2 h | 2.0 ± 0.3 i | 15.0 ± 0.5 f | 2.0 ± 0.2 i | 6.0 ± 0.1 g | 5.0 ± 0.1 b | 11.0 ± 0.3 e | 14.0 ± 0.7 d,f |
I | 15 ± 1 a | 4 ± 1 b | 9 ± 1 c | 30 ± 11 d,f | 8 ± 1 e | 60 ± 6 g | 8 ± 1 e | 41 ± 2 d | 33 ± 2 f | 30 ± 1 f | 5 ± 1 b | 1.0 ± 0.1 h | 2.0 ± 0.1 i | 2.0 ± 0.3 i | 4 ± 1 b |
NFE | 41 ± 3 a | 51 ± 2 b | 51 ± 3 b | 66 ± 4 c | 26 ± 2 d | 54 ± 4 b | 46 ± 6 a,b | 56 ± 3 b | 43 ± 5 a | 46 ± 3 a,b | 21 ± 3 d | 50 ± 5 a,b | 75 ± 8 c | 45 ± 8 a | 48 ± 4 a,b |
TPC | 107 ± 1 a | 26 ± 1 b | 23 ± 4 b,c | 22 ± 1 c | 61 ± 1 d | 9 ± 1 e | 24 ± 1 b,c | 61 ± 1 d | 47 ± 1 f | 42 ± 1 g | 5 ± 1 h | 23 ± 1 b,c | 10 ± 1 e | 31 ± 1 i | 23 ± 2 b,c |
TFC | 277 ± 3 a | 25 ± 5 f | 54 ± 10 h,i,k | 56 ± 9 h,k | 39 ± 4 i | 74 ± 16 h,j | 156 ± 10 b | 200 ± 18 c | 290 ± 4 d | 128 ± 2 e | 41 ± 6 k | 74 ± 14 h,j | 18 ± 1 g | 95 ± 15 j | 19 ± 6 f,g |
Cal. | 173 ± 12 a,d | 200 ± 18 a,b | 230 ± 10 b | 155 ± 15 d | 137 ± 7 e | 105 ± 13 c | 195 ± 12 a | 273 ± 16 g | 305 ± 15 g | 240 ± 13 e | 79 ± 7 f | 98 ± 8 c | 115 ± 8 c | 165 ± 12 d | 114 ± 11 c |
Green Seaweeds | Brown Seaweeds | Red Seaweeds | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACR | CAU | UF | UL | IYN | LOB | PAD | SAR | SPA | STO | AMP | GRA | HAL | SCI | SOL | |
Microelements | |||||||||||||||
Na | 1400 ± 125 a | 600 ± 110 b | 2200 ± 100 c | 2000 ± 100 c | 11,000 ± 250 d | 6800 ± 120 e | 5300 ± 120 f | 7000 ± 130 e | 1500 ± 170 g | 5500 ± 270 f | 275 ± 20 h | 2800 ± 50 i | 2700 ± 30 i | 1400 ± 70 a | 7400 ± 50 j |
K | 4400 ± 120 a | 9300 ± 250 b | 8800 ± 300 b | 3000 ± 220 c | 11,700 ± 400 d | 7250 ± 140 e | 5300 ± 260 f | 6800 ± 190 g | 16,000 ± 400 h | 11,300 ± 260 d | 860 ± 90 i | 22,350 ± 300 j | 5800 ± 50 j | 25,200 ± 220 k | 16,800 ± 200 h |
Mg | 1400 ± 100 a | 800 ± 100 c | 4800 ± 130 d | 4600 ± 130 d | 1700 ± 110 e | 1300 ± 150 a,b | 4000 ± 100 f | 900 ± 75 g | 1700 ± 100 e | 1200 ± 100 b | 5000 ± 50 h | 1400 ± 20 a | 2200 ± 80 i | 4000 ± 80 j | 2100 ± 80 i |
Ca | 270 ± 30 a | 44 ± 7 b | 160 ± 30 d | 62 ± 20 b,c | 820 ± 35 e | 300 ± 30 a | 200 ± 30 d | 300 ± 20 a | 80 ± 15 c | 160 ± 30 d | 3500 ± 50 f | 60 ± 10 b,c | 85 ± 15 c | 70 ± 10 c | 45 ± 10 b |
Trace elements | |||||||||||||||
Fe | 2.00 ± 0.01 a | 0.50 ± 0.01 b | - | 0.40 ± 0.01 b,c | 6.00 ± 0.12 d | 0.80 ± 0.04 e | 0.50 ± 0.01 b | 0.30 ± 0.01 c | 0.10 ± 0.01 f | 0.40 ± 0.02 b,c | 36 ± 10 g | 0.40 ± 0.01 b,c | 1.00 ± 0.01 h | - | 0.20 ± 0.01 f |
Zn | 2.20 ± 0.01 a | 2.00 ± 0.01 a | 3.00 ± 0.01 b | 4.00 ± 0.01 b | 2.60 ± 1.20 a,b | 1.40 ± 0.13 c | 12.00 ± 2.45 e | 2.50 ± 1.10 a,b | 1.50 ± 0.44 a,c | 1.50 ± 0.69 a,c | 0.80 ± 0.01 d | 1.10 ± 0.01 c | 3.00 ± 0.01 b | 2.20 ± 0.01 a | 1.40 ± 0.01 a,c |
Cu | - | - | - | - | 0.10 ± 0.05 a | - | - | - | - | - | - | - | 0.30 ± 0.01 b | - | - |
Mn | 2.20 ± 0.02 a | 0.20 ± 0.01 b | 4.40 ± 0.02 c | 1.80 ± 0.01 a | 9.5 ± 2.0 d | 0.80 ± 0.03 e | 32.0 ± 3.6 f | 16.0 ± 3.3 g | 0.90 ± 0.02 e | 1.5 ± 0.6 e | - | 0.60 ± 0.01 e | 1.10 ± 0.02 e | 0.90 ± 0.01 e | 1.30 ± 0.01 e |
Co | 0.30 ± 0.01 a | - | - | 0.20 ± 0.01 a | - | 0.10 ± 0.01 a | 0.20 ± 0.01 a | 0.90 ± 0.01 b | - | - | - | 0.10 ± 0.01 a | 11.80 ± 1.40 c | 2.70 ± 1.10 d | |
As | - | - | - | - | - | 0.90 ± 0.01 a | - | 1.30 ± 0.96 a | - | 0.40 ± 0.05 b | - | 0.10 ± 0.01 c | 0.20 ± 0.01 c | - | 0.10 ± 0.01 c |
Mo | - | - | - | - | - | - | 0.40 ± 0.01 a | - | - | - | - | 0.20 ± 0.01 b | - | 0.10 ± 0.02 b | - |
Cd | - | - | - | - | - | - | - | 0.10 ± 0.01 | - | - | - | - | - | - | - |
Hg/Pb | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
B | - | - | - | - | 10 ± 1 a,b | 7 ± 1 b | 13 ± 6 a,b,c | 14 ± 2 a | 5 ± 1 d | 12 ± 2 a | 4 ± 1 d | 4 ± 1 d | 5 ± 1 d | 14 ± 3 a,c | 16 ± 1 c |
Cr | - | - | - | - | 0.50 ± 0.01 a | - | 1.00 ± 0.91 a | - | 0.10 ± 0.01 b | 0.10 ± 0.01 b | - | 0.10 ± 0.01 b | 0.10 ± 0.01 b | - | - |
Ni | - | - | - | - | 1.50 ± 0.44 a | 0.10 ± 0.01 b | 0.40 ± 0.01 c,d | 0.60 ± 0.01 d | - | 0.30 ± 0.01 c | 0.10 ± 0.01 b | - | - | - | 0.10 ± 0.01 b |
Na/K | 0.3 | 0.07 | 0.3 | 0.7 | 1 | 1 | 1 | 1 | 0.1 | 0.5 | 0.3 | 0.1 | 0.5 | 0.05 | 0.4 |
Green Seaweeds | Brown Seaweeds | Red Seaweeds | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACR | CAU | UF | UL | IYN | LOB | PAD | SAR | SPA | STO | AMP | GRA | HAL | SCI | SOL | |
WSC | 2.0 ± 0.2 a,b | 1.0 ± 0.2 a | 5.0 ± 0.5 c | 3.0 ±0.3 b | 2.0 ± 0.2 a,b | 5.0 ± 0.3 c | 3.0 ± 0.2 b | 3.0 ± 0.2 b | 1.0 ± 0.3 a | 4.0 ± 0.4 c | 1.0 ± 0.2 a | 7.0 ±0.4 d | 22.0 ± 0.5 d | 1.5 ± 0.4 a | 6.0 ± 0.3 d |
WHC | 8.00 ± 0.02 a | 7.00 ± 0.04 a,b | 7.00 ± 0.02 a,b | 6.00 ± 0.04 b | 6.0 ± 0.01 b | 6.00 ± 0.03 b | 7.00 ± 0.01 a,b | 7.00 ± 0.01 a,b | 6.00 ± 0.02 b | 6.00 ± 0.05 b | 5.00 ± 0.02 c | 6.00 ± 0.02 b | 6.00 ± 0.04 b | 6.00 ± 0.02 b | 6.00 ± 0.01 b |
OHC | 8.00 ± 0.03 a,c | 9.00 ± 0.03 a | 7.00 ± 0.02 c | 7.00 ± 0.03 c | 7.00 ± 0.05 c | 7.00 ± 0.01 c | 7.00 ± 0.01 c | 7.00 ± 0.03 c | 7.00 ± 0.02 c | 7.00 ± 0.01 c | 7.00 ± 0.01 c | 7.00 ± 0.01 c | 7.00 ± 0.03 c | 7.00 ± 0.03 c | 7.00 ± 0.02 c |
0 Days | 3rd Day | 6th Day | 9th Day | 12th Day | 15th Day | |
---|---|---|---|---|---|---|
Blank | 10 | 48 ± 4 a,b | 220 ± 15 a | 244 ± 17 a | 392 ± 27 a | 568 ± 39 a |
BHT | 10 | 40 ± 3 a | 228 ± 16 a | 164 ± 11 b | 280 ± 19 b | 468 ± 32 b |
Green seaweeds | ||||||
ACR | 10 | 52 ± 4 b | 192 ± 13 a,b | 84 ± 16 c | 120 ± 8 c | 152 ± 10 c |
CAU | 10 | 56 ± 5 b | 172 ± 12 b | 176 ± 12 b | 296 ± 20 b | 340 ± 23 e |
UF | 10 | 48 ± 3 b | 176 ± 12 b | 208 ± 14 b | 376 ± 26 a | 400 ± 27 b |
UL | 10 | 40 ± 2 a | 208 ± 14 a,b | 188 ± 13 b | 288 ± 20 b | 308 ± 20 e |
Brown seaweeds | ||||||
IYN | 10 | 48 ± 5 a,b | 128 ± 9 c | 132 ± 9 d | 208 ± 14 d | 268 ± 17 f |
LOB | 10 | 48 ± 4 a,b | 168 ± 11 b | 208 ± 14 b | 320 ± 22 b | 392 ± 23 b |
PAD | 10 | 40 ± 3 a | 172 ± 12 b | 184 ± 13 b | 288 ± 20 b | 312 ± 19 e |
SAR | 10 | 40 ± 2 a | 120 ± 8 c | 152 ± 10 b | 184 ± 13 d | 224 ± 14 g |
SPA | 10 | 44 ± 4 a,b | 172 ± 11 b | 160 ± 12 b | 236 ± 16 e | 296 ± 19 e,f |
STO | 10 | 40 ± 4 a | 176 ± 12 b | 176 ± 11 b | 308 ± 21 b | 352 ± 22 e |
Red seaweeds | ||||||
AMP | 10 | 52 ± 4 b | 172 ± 13 b | 208 ± 14 b | 312 ± 21 b | 420 ± 24 b,d |
GRA | 10 | 48 ± 3 a,b | 184 ± 13 b | 168 ± 11 b | 348 ± 24 b | 360 ± 21 e |
HAL | 10 | 48 ± 2 a,b | 204 ± 14 a,b | 216 ± 15 a,b | 304 ± 21 b | 472 ± 23 d |
SCI | 10 | 48 ± 3 a,b | 156 ± 11 b | 156 ± 11 b | 196 ± 13 d | 300 ± 18 e |
SOL | 10 | 52 ± 4 b | 200 ± 14 a,b | 200 ± 12 b | 320 ± 20 b | 388 ± 16 b |
0 Days | 3rd Day | 6th Day | 9th Day | 12th Day | 15th Day | |
---|---|---|---|---|---|---|
Blank | 6.6 | 20.0 ± 8.3 a | 25.7 ± 9.8 a | 31.4 ± 4.2 a | 40.9 ± 2.4 a | 56.0 ± 1.3 a |
BHT | 6.6 | 18.4 ± 4.5 a | 24.2 ± 1.3 a | 29.9 ± 3.5 a | 39.0 ±0.8 a | 47.4 ± 5.4 b |
Green seaweeds | ||||||
ACR | 6.6 | 12.4 ± 2.4 a | 21.6 ± 1.8 a | 24.8 ± 3.4 a | 33.5 ± 3.9 a,b | 36.8 ± 2.7 c |
CAU | 6.6 | 15.1 ± 2.1 a | 22.4 ± 1.0 a | 28.2 ± 4.1 a | 32.0 ± 5.3 a,b | 45.2 ± 4.6 b |
UF | 6.6 | 11.0 ± 5.5 a | 21.8 ± 1.1 a | 26.0 ± 2.2 a | 38.7 ± 7.1 a,b | 44.4 ± 9.3 b,c |
UL | 6.6 | 13.4 ± 2.7 a | 21.2 ± 5.2 a | 29.3 ± 3.8 a | 35.1 ± 5.4 a,b | 46.0 ± 2.0 b |
Brown seaweeds | ||||||
IYN | 6.6 | 17.3 ± 1.3 a | 23.4 ± 4.2 a | 29.1 ± 5.6 a | 36.5 ± 1.2 a | 40.9 ± 1.2 b,c |
LOB | 6.6 | 12.8 ± 0.4 a | 19.9 ± 1.2 a | 22.3 ± 4.5 a | 39.1 ± 4.8 a | 46.4 ± 0.4 b |
PAD | 6.6 | 15.8 ± 4.7 a | 23.9 ± 4.1 a | 28.9 ± 1.1 a | 32.7 ± 2.7 a,b | 46.9 ± 6.7 b |
SAR | 6.6 | 12.6 ± 0.6 a | 20.8 ± 2.0 a | 27.0 ± 2.3 a | 30.4 ± 2.9 b | 40.4 ± 1.1 b |
SPA | 6.6 | 16.8 ± 5.3 a | 23.4 ± 6.2 a | 28.4 ± 2.2 a | 36.7 ± 5.6 a,b | 42.5 ± 0.8 b |
STO | 6.6 | 17.1 ± 0.8 a | 22.3 ± 2.4 a | 29.0 ± 1.2 a | 33.6 ± 8.8 a,b | 44.9 ± 1.1 b |
Red seaweeds | ||||||
AMP | 6.6 | 16.1 ± 2.1 a | 21.7 ± 3.0 a | 26.5 ± 4.3 a | 34.0 ± 5.1 a,b | 44.2 ± 10.4 b |
GRA | 6.6 | 16.7 ± 1.7 a | 19.2 ± 1.3 a | 26.7 ± 1.4 a | 38.3 ± 2.4 a | 46.5 ± 5.3 b |
HAL | 6.6 | 16.8 ± 0.5 a | 22.3 ± 1.4 a | 24.8 ± 1.8 a | 33.3 ± 2.6 a,b | 47.2 ± 5.7 b |
SCI | 6.6 | 18.3 ± 4.9 a | 21.6 ± 1.1 a | 28.7 ± 2.3 a | 37.5 ± 11.1 a,b | 43.2 ± 15.6 b |
SOL | 6.6 | 15.0 ± 1.5 a | 19.8 ± 1.4 a | 25.0 ± 3.0 a | 38.5 ± 1.5 a | 46.1 ± 1.2 b |
0 Days | 3rd Day | 6th Day | 9th Day | 12th Day | 15th Day | |
---|---|---|---|---|---|---|
Blank | 1.23 | 2.08 ± 0.01 a | 3.69 ± 0.01 a | 4.19 ± 0.03 a | 5.58 ± 0.02 a | 7.00 ± 0.10 a |
BHT | 1.23 | 1.83 ± 0.02 b | 3.28 ± 0.02 b | 4.02 ± 0.02 a | 4.58 ± 0.01 b | 6.68 ± 0.01 b |
Green seaweeds | ||||||
ACR | 1.23 | 1.19 ± 0.02 c | 2.28 ± 0.02 c | 3.26 ± 0.02 b,c | 3.32 ± 0.01 d | 4.53 ± 0.04 c |
CAU | 1.23 | 1.72 ± 0.04 d,g | 3.16 ± 0.02 e | 2.95 ± 0.03 e | 4.48 ± 0.03 e | 4.88 ± 0.09 d |
UF | 1.23 | 1.73 ± 0.02 d | 2.78 ± 0.02 f | 3.27 ± 0.04 b | 3.85 ± 0.09 f,g | 4.68 ± 0.04 e |
UL | 1.23 | 1.64 ± 0.01 e | 2.95 ± 0.01 g | 3.58 ± 0.01 f | 4.58 ± 0.02 b | 5.20 ± 0.03 f |
Brown seaweeds | ||||||
IYN | 1.23 | 1.25 ± 0.04 c | 2.24 ± 0.01 c | 3.23 ± 0.02 d | 3.46 ± 0.02 h | 4.64 ± 0.04 g |
LOB | 1.23 | 1.71 ± 0.05 g | 2.53 ± 0.01 h | 3.34 ± 0.02 g | 4.43 ± 0.04 i | 4.96 ± 0.34 h |
PAD | 1.23 | 1.68 ± 0.01 f | 3.28 ± 0.01 b | 3.34 ± 0.02 g | 4.94 ± 0.03 j | 4.67 ± 0.03 e |
SAR | 1.23 | 1.19 ± 0.02 c | 2.29 ± 0.02 c | 3.25 ± 0.02 c | 3.67 ± 0.01 k | 4.95 ± 0.32 h,i |
SPA | 1.23 | 1.30 ± 0.03 h | 2.31 ± 0.01 c | 3.25 ± 0.01 c | 3.45 ± 0.02 h | 4.48 ± 0.03 j |
STO | 1.23 | 1.77 ± 0.03 i | 2.87 ± 0.03 f | 3.40 ± 0.01 h | 3.97 ± 0.03 g | 4.73 ± 0.02 k |
Red seaweeds | ||||||
AMP | 1.23 | 1.84 ± 0.02 b | 3.17 ± 0.03 e | 3.85 ± 0.01 i | 4.58 ± 0.07 b | 5.24 ± 0.03 f |
GRA | 1.23 | 1.71 ± 0.01 g | 2.65 ± 0.01 h | 3.73 ± 0.03 j | 4.56 ± 0.03 c | 4.96 ± 0.05 h |
HAL | 1.23 | 1.78 ± 0.01 i | 2.94 ± 0.04 g | 3.67 ± 0.07 k | 4.39 ± 0.04 l | 4.89 ± 0.02 d |
SCI | 1.23 | 1.38 ± 0.05 k | 2.40 ± 0.02 i | 3.24 ± 0.02 d | 3.79 ± 0.01 f | 4.91 ± 0.01 l |
SOL | 1.23 | 1.78 ± 0.03 i | 3.00 ± 0.02 g | 3.72 ± 0.02 l | 4.44 ± 0.02 i | 4.94 ± 0.03 i |
0 Days | 3rd Day | 6th Day | 9th Day | 12th Day | 15th Day | |
---|---|---|---|---|---|---|
Blank | 26.6 | 116.0 ± 8.3 a | 460.0 ± 9.8 a | 519.4 ± 4.2 a | 824.9 ± 2.4 a | 1192.0 ± 8.5 a |
BHT | 26.6 | 98.4 ± 4.5 b,c | 480.2 ± 1.3 b | 357.9 ± 3.5 b | 599.0 ± 0.8 b | 983.4 ± 5.4 b |
Green seaweeds | ||||||
ACR | 26.6 | 116.4 ± 2.4 a | 405.6 ± 1.8 c | 192.8 ± 3.4 c | 273.5 ± 3.9 c | 340.8 ± 2.7 c |
CAU | 26.6 | 127.1 ± 2.1 | 366.4 ± 1.0 d | 380.2 ± 4.1 d | 624.0 ± 5.3 d | 725.2 ± 4.6 d |
UF | 26.6 | 107.0 ± 5.5 b | 373.8 ± 1.1 e | 442.0 ± 2.2 e | 790.7 ± 7.1 | 844.4 ± 9.3 e |
UL | 26.6 | 93.4 ± 2.7 c | 437.2 ± 5.2 f | 405.3 ± 3.8 f | 611.1 ± 5.4 d | 662.0 ± 2.0 f |
Brown seaweeds | ||||||
IYN | 26.6 | 113.3 ± 1.3 a | 279.4 ± 4.2 g | 293.1 ± 5.6 g | 452.5 ± 1.2 e | 576.9 ± 1.2 g |
LOB | 26.6 | 108.8 ± 0.4 a | 355.9 ± 1.2 h | 438.3 ± 4.5 e | 679.1 ± 4.8 f | 830.4 ± 0.4 e |
PAD | 26.6 | 95.8 ± 4.7 c | 367.9 ± 4.1 d | 396.9 ± 1.1 f | 608.7 ± 2.7 b | 670.9 ± 6.7 f |
SAR | 26.6 | 92.6 ± 0.6 c | 260.8 ± 2.0 g | 331.0 ± 2.3 h | 398.4 ± 2.9 g | 488.4 ± 1.1 h |
SPA | 26.6 | 104.8 ± 5.3 b | 367.4 ± 6.2 d | 348.4 ± 2.2 k | 508.7 ± 5.6 h | 634.5 ± 0.8 f |
STO | 26.6 | 97.1 ± 0.8 c | 374.3 ± 2.4 e | 381.0 ± 1.2 d | 649.6 ± 8.8 i | 748.9 ± 1.1 d |
Red seaweeds | ||||||
AMP | 26.6 | 120.1 ± 2.1 a | 365.7 ± 3.0 d | 442.5 ± 4.3 e | 658.0 ± 5.1 i | 884.2 ± 10.4 e |
GRA | 26.6 | 112.7 ± 1.7 a | 387.2 ± 1.3 i | 362.7 ± 1.4 i | 734.3 ± 2.4 j | 766.5 ± 5.3 d |
HAL | 26.6 | 112.8 ± 0.5 a | 430.3 ± 1.4 f | 456.8 ± 1.8 j | 641.3 ± 2.6 i | 991.2 ± 5.7 b |
SCI | 26.6 | 114.3 ± 4.9 a | 333.6 ± 1.1 j | 340.7 ± 2.3 k | 429.5 ± 11.1 e | 643.2 ± 15.6 f |
SOL | 26.6 | 119.0 ± 1.5 a | 419.8 ± 1.4 k | 425.0 ± 3.0 l | 678.5 ± 1.5 f | 822.1 ± 1.2 e |
0 Days | 3rd Day | 6th Day | 9th Day | 12th Day | 15th Day | |
---|---|---|---|---|---|---|
Blank | 0.009 | 0.049 ± 0.002 b | 0.078 ± 0.003 a | 0.276 ± 0.002 a | 0.367 ± 0.005 a | 0.454 ± 0.005 a |
BHT | 0.009 | 0.044 ±0.001 a | 0.070 ± 0.001 b | 0.248 ± 0.004 b | 0.339 ± 0.002 b | 0.397 ± 0.002 b |
Green seaweeds | ||||||
ACR | 0.009 | 0.017 ± 0.002 c | 0.045 ± 0.003 c | 0.150 ± 0.002 d | 0.281 ± 0.004 e | 0.333 ± 0.005 c |
CAU | 0.009 | 0.037 ± 0.002 d | 0.070 ± 0.003 b | 0.243 ± 0.008 b | 0.321 ± 0.001 c | 0.350 ± 0.001 e |
UF | 0.009 | 0.042 ± 0.002 a | 0.068 ± 0.001 b | 0.237 ± 0.005 b,c | 0.322 ± 0.002 c | 0.319 ± 0.017 c |
UL | 0.009 | 0.036 ± 0.001 d | 0.068 ± 0.001 b | 0.241 ± 0.002 b | 0.315 ± 0.001 d | 0.361 ± 0.004 e |
Brown seaweeds | ||||||
IYN | 0.009 | 0.025 ± 0.001 e | 0.057 ± 0.002 d | 0.188 ± 0.005 e,f | 0.312 ± 0.002 d | 0.345 ± 0.003 e |
LOB | 0.009 | 0.037 ± 0.001 d | 0.073 ± 0.007 a,b | 0.208 ± 0.017 e,h | 0.338 ± 0.003 b | 0.367 ± 0.003 f |
PAD | 0.009 | 0.039 ± 0.001 a,d | 0.068 ± 0.001 b | 0.232 ± 0.002 c | 0.335 ± 0.001 b | 0.340 ± 0.003 c,d |
SAR | 0.009 | 0.022 ± 0.001 | 0.053 ± 0.002 d | 0.167 ± 0.003 f | 0.296 ± 0.002 f | 0.344 ± 0.006 d,e |
SPA | 0.009 | 0.034 ± 0.001 | 0.050 ± 0.008 c,d | 0.205 ± 0.001 g | 0.305 ± 0.006 d | 0.351 ± 0.004 e |
STO | 0.009 | 0.038 ± 0.003 a,d | 0.064 ± 0.003 b | 0.214 ± 0.003 h | 0.334 ± 0.010 b,c | 0.353 ± 0.001 e |
Red seaweeds | ||||||
AMP | 0.009 | 0.032 ± 0.008 a,d | 0.067 ± 0.003 b | 0.214 ± 0.005 h | 0.331 ± 0.002 b | 0.308 ± 0.021 g |
GRA | 0.009 | 0.035 ± 0.011 a,b,d | 0.065 ± 0.003 b | 0.212 ± 0.007 g,h | 0.311 ± 0.012 d | 0.329 ± 0.021 h |
HAL | 0.009 | 0.034 ± 0.001 d | 0.070 ± 0.002 b | 0.230 ± 0.006 i | 0.325 ± 0.003 c | 0.355 ± 0.005 e |
SCI | 0.009 | 0.034 ± 0.001 d | 0.065 ± 0.001 b | 0.205 ± 0.001 g | 0.302 ± 0.003 f | 0.331 ± 0.003 h |
SOL | 0.009 | 0.039 ± 0.003 a | 0.071 ± 0.001 b | 0.256 ± 0.004 b | 0.310 ± 0.002 d | 0.362 ± 0.002 f |
Cation Scavenging Activity (ABTS) | Free Radical Scavenging Activity (DPPH) | Total Reducing Capacity (FRAP) | |
---|---|---|---|
Green seaweeds | |||
ACR | <1 | 2.0 ± 0.1 a | 1.6 ± 0.1 a |
CAU | 10.0 ± 1.5 a | 4.0 ± 0.1 b | 14.0 ± 1.0 b |
UF | 7.0 ± 0.2 b | 9.0 ± 1.0 c,d | 36.0 ± 4.0 c,d |
UL | 1.0 ± 0.1 h | 1.0 ± 0.2 f | 34.0 ± 0.1 d |
Brown seaweeds | |||
IYN | <1 | 7.0 ± 1.0 c | 5.0 ± 0.1 k |
LOB | 4.00 ± 0.05 e | 9.0 ± 0.5 d | 31.0 ± 0.1 c |
PAD | 6.0 ± 0.2 c | 10.0 ± 1.0 d,e | 31.0 ± 2.0 c |
SAR | <1 | 1.0 ± 0.5 f | 3.00 ± 0.05 e |
SPA | 2.0 ± 0.2 g | 5.0 ± 0.1 g | 4.00 ± 0.05 f |
STO | 3.00 ± 0.01 f | 3.0 ± 0.2 h | 4.00 ± 0.05 f |
Red seaweeds | |||
AMP | 4.0 ± 0.1 e | 21.0 ± 3.0 i | 74.0 ± 12.0 g |
GRA | 2.0 ± 0.1 g | 10.0 ± 0.1 d,e | 24.0 ± 0.2 h |
HAL | 10.0 ± 0.1 a | 27.0 ± 3.0 i | 49.0 ± 1.0 i |
SCI | 3.0 ± 0.1 f | 8.0 ± 1.0 c,d | 16.0 ± 0.5 b |
SOL | 8.0 ± 0. 1 d | 12.0 ± 1.0 e | 45.0 ± 1.0 j |
Green Seaweeds | Brown Seaweeds | Red Seaweeds | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACR | CAU | UF | UL | IYN | LOB | PAD | SAR | SPA | STO | AMP | GRA | HAL | SCI | SOL | |
TA | 3.5 ± 0.7 a,c | - | - | - | - | 1.5 ± 0.5 b | 5 ± 1.0 c,d | 5 ± 0.5 c,d | 3.0 ± 0.3 a | 6.0 ± 0.5 d | - | - | 2.0 ± 1.0 a,b | - | - |
PA | - | 12.0 ± 0.5 a | 6.0 ± 1.0 b,c | - | - | - | - | 5.0 ± 0.5 c | 7.0 ± 1.0 b | 2.0 ± 0.5 d | - | - | - | 24.0 ± 0.5 e | 4.0 ± 1.0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, B.; Khandwal, D.; Gupta, N.K.; Patel, J.; Mishra, A. Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea. Plants 2023, 12, 2302. https://doi.org/10.3390/plants12122302
Choudhary B, Khandwal D, Gupta NK, Patel J, Mishra A. Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea. Plants. 2023; 12(12):2302. https://doi.org/10.3390/plants12122302
Chicago/Turabian StyleChoudhary, Babita, Deepesh Khandwal, Nirmala Kumari Gupta, Jaykumar Patel, and Avinash Mishra. 2023. "Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea" Plants 12, no. 12: 2302. https://doi.org/10.3390/plants12122302
APA StyleChoudhary, B., Khandwal, D., Gupta, N. K., Patel, J., & Mishra, A. (2023). Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea. Plants, 12(12), 2302. https://doi.org/10.3390/plants12122302