Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (469)

Search Parameters:
Keywords = Glycogen Synthase Kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 537 KiB  
Review
Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans?
by Tomasz Szkudelski, Katarzyna Szkudelska and Aleksandra Łangowska
Int. J. Mol. Sci. 2025, 26(15), 7391; https://doi.org/10.3390/ijms26157391 (registering DOI) - 31 Jul 2025
Viewed by 70
Abstract
Quercetin is a biologically active flavonoid compound that exerts numerous beneficial effects in humans and animals, including anti-diabetic activity. Its action has been explored in rodent models of type 1 and type 2 diabetes. It was revealed that quercetin mitigated diabetes-related hormonal and [...] Read more.
Quercetin is a biologically active flavonoid compound that exerts numerous beneficial effects in humans and animals, including anti-diabetic activity. Its action has been explored in rodent models of type 1 and type 2 diabetes. It was revealed that quercetin mitigated diabetes-related hormonal and metabolic disorders and reduced oxidative and inflammatory stress. Its anti-diabetic effects were associated with advantageous changes in the relevant enzymes and signaling molecules. Quercetin positively affected, among others, superoxide dismutase, catalase, glutathione peroxidase, glucose transporter-2, glucokinase, glucose-6-phosphatase, glycogen phosphorylase, glycogen synthase, glycogen synthase kinase-3β, phosphoenolpyruvate carboxykinase, silent information regulator-1, sterol regulatory element-binding protein-1, insulin receptor substrate 1, phosphoinositide 3-kinase, and protein kinase B. The available data support the conclusion that the action of quercetin was pleiotropic since it alleviates a wide range of diabetes-related disorders. Moreover, no side effects were observed during treatment with quercetin in rodents. Given that human diabetes affects a large part of the population worldwide, the results of animal studies encourage clinical trials to evaluate the potential of quercetin as an adjunct to pharmacological therapies. Full article
Show Figures

Figure 1

22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 378
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

21 pages, 4391 KiB  
Article
Thermal Cycling-Hyperthermia Attenuates Rotenone-Induced Cell Injury in SH-SY5Y Cells Through Heat-Activated Mechanisms
by Yu-Yi Kuo, Guan-Bo Lin, You-Ming Chen, Hsu-Hsiang Liu, Fang-Tzu Hsu, Yi Kung and Chih-Yu Chao
Int. J. Mol. Sci. 2025, 26(14), 6671; https://doi.org/10.3390/ijms26146671 - 11 Jul 2025
Viewed by 343
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail [...] Read more.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail to stop or reverse disease progression due to the severe side effects or the blood–brain barrier. This study aimed to investigate the neuroprotective effects of an intermittent heating approach, thermal cycling-hyperthermia (TC-HT), in an in vitro PD model using rotenone (ROT)-induced human neural SH-SY5Y cells. Our results revealed that TC-HT pretreatment conferred neuroprotective effects in the ROT-induced in vitro PD model using human SH-SY5Y neuronal cells, including reducing ROT-induced mitochondrial apoptosis and ROS accumulation in SH-SY5Y cells. In addition, TC-HT also inhibited the expression of α-syn and p-tau through heat-activated pathways associated with sirtuin 1 (SIRT1) and heat-shock protein 70 (Hsp70), involved in protein chaperoning, and resulted in the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β), which inhibit p-tau formation. These findings underscore the potential of TC-HT as an effective treatment for PD in vitro, supporting its further investigation in in vivo models with focused ultrasound (FUS) as a feasible heat-delivery approach. Full article
Show Figures

Figure 1

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 595
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

11 pages, 805 KiB  
Opinion
Balancing Immunity: GSK-3’s Divergent Roles in Dendritic Cell-Mediated T-Cell Priming and Memory Responses
by Chunmei Fu, Tianle Ma, Li Zhou, Qing-Sheng Mi and Aimin Jiang
Int. J. Mol. Sci. 2025, 26(13), 6078; https://doi.org/10.3390/ijms26136078 - 25 Jun 2025
Viewed by 359
Abstract
Glycogen synthase kinase-3 (GSK-3)—particularly the GSK-3β isoform—plays a pivotal role in regulating dendritic cell (DC) functions, including maturation, cytokine production, and antigen presentation. In immature DCs, GSK-3β is continuously active, and its inhibition has been shown to enhance DC maturation and function. As [...] Read more.
Glycogen synthase kinase-3 (GSK-3)—particularly the GSK-3β isoform—plays a pivotal role in regulating dendritic cell (DC) functions, including maturation, cytokine production, and antigen presentation. In immature DCs, GSK-3β is continuously active, and its inhibition has been shown to enhance DC maturation and function. As a key upstream kinase of β-catenin, GSK-3 inhibition activates β-catenin in both human and murine DCs—a pathway traditionally linked to its immunomodulatory effects. However, our recent findings challenge this paradigm by uncovering β-catenin-independent, dual roles of GSK-3β in DCs. Our study reveals that while GSK-3β enhances DC-mediated cross-priming of CD8 T cells, it concurrently impairs the generation of memory CD8 T cells. These findings have significant implications for vaccine development and cancer immunotherapy, where both effective T-cell priming and durable memory responses are critical. This mini-review provides an in-depth analysis of mechanistic insights into GSK-3β’s paradoxical functions and discusses potential strategies to fine-tune GSK-3 activity for optimized immunotherapeutic outcomes. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Immunotherapies—2nd Edition)
Show Figures

Figure 1

24 pages, 3712 KiB  
Article
Elucidation of Artemisinin as a Potent GSK3β Inhibitor for Neurodegenerative Disorders via Machine Learning-Driven QSAR and Virtual Screening of Natural Compounds
by Hassan H. Alhassan, Malvi Surti, Mohd Adnan and Mitesh Patel
Pharmaceuticals 2025, 18(6), 826; https://doi.org/10.3390/ph18060826 - 31 May 2025
Viewed by 671
Abstract
Background/Objectives: Glycogen synthase kinase-3 beta (GSK3β) is a key enzyme involved in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, contributing to tau hyperphosphorylation, amyloid-beta (Aβ) aggregation, and neuronal dysfunction. Methods: This study applied a machine learning-driven virtual screening approach to identify potent [...] Read more.
Background/Objectives: Glycogen synthase kinase-3 beta (GSK3β) is a key enzyme involved in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, contributing to tau hyperphosphorylation, amyloid-beta (Aβ) aggregation, and neuronal dysfunction. Methods: This study applied a machine learning-driven virtual screening approach to identify potent natural inhibitors of GSK3β. A dataset of 3092 natural compounds was analyzed using Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), with feature selection focusing on key molecular descriptors, including lipophilicity (ALogP: −0.5 to 5.0), hydrogen bond acceptors (0–10), and McGowan volume (0.5–2.5). RF outperformed SVM and KNN, achieving the highest test accuracy (83.6%), specificity (87%), and lowest RMSE (0.3214). Results: Virtual screening using AutoDock Vina and molecular dynamics simulations (100 ns, GROMACS 2022) identified artemisinin as the top GSK3β inhibitor, with a binding affinity of −8.6 kcal/mol, interacting with key residues ASP200, CYS199, and LEU188. Dihydroartemisinin exhibited a binding affinity of −8.3 kcal/mol, reinforcing its neuroprotective potential. Pharmacokinetic predictions confirmed favorable drug-likeness (TPSA: 26.3–70.67 Å2) and non-toxicity. Conclusions: While these findings highlight artemisinin-based inhibitors as promising candidates, experimental validation and structural optimization are needed for clinical application. This study demonstrates the effectiveness of machine learning and computational screening in accelerating neurodegenerative drug discovery. Full article
Show Figures

Figure 1

16 pages, 779 KiB  
Article
Exploring the Neuroprotective Properties of Celery (Apium graveolens Linn) Extract Against Amyloid-Beta Toxicity and Enzymes Associated with Alzheimer’s Disease
by Layla Mohamud Dirie, Tahire Yurdakul, Sevim Isik and Shirin Tarbiat
Molecules 2025, 30(10), 2187; https://doi.org/10.3390/molecules30102187 - 16 May 2025
Viewed by 1347
Abstract
Celery (Apium graveolens L.), one of the numerous members of the Apiaceae family, has been traditionally used as food and medicine due to its nutraceutical properties. Nevertheless, understanding the neuroprotective effects of this species requires evaluation through different mechanisms relevant to Alzheimer’s [...] Read more.
Celery (Apium graveolens L.), one of the numerous members of the Apiaceae family, has been traditionally used as food and medicine due to its nutraceutical properties. Nevertheless, understanding the neuroprotective effects of this species requires evaluation through different mechanisms relevant to Alzheimer’s disease (AD) treatment. This study explored the neuroprotective potential of ethanolic extracts of celery leaves. Liquid chromatography and mass spectrometry-based metabolomics analysis of the extract revealed the existence of a diverse array of secondary metabolites, including phenolic acids, hydroxycinnamic acid, flavonoids, flavonoid O-glycosides, flavonol, glycosides, and isoflavones. Celery extract protects human neuroblastoma SH-SY5Y cells against 15 µM amyloid-beta (Aβ1–42) toxicity, enhancing their vitality from 67% to 81.74% at 100 µg/mL. The extract inhibited the enzymes associated with AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glycogen synthase kinase 3 beta (GSK3β), cyclooxygenase 1 (COX-1), and cyclooxygenase 2 (COX-2) with IC50 values of 21.84, 61.27, 45.94, 34.1, and 52.2 µg/mL, respectively. In conclusion, celery leaf extract components may be potential therapeutic candidates for AD prevention and treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

30 pages, 7740 KiB  
Article
Protective Effects of Lotus Seedpod Extract on Hepatic Lipid and Glucose Metabolism via AMPK-Associated Mechanisms in a Mouse Model of Metabolic Syndrome and Oleic Acid-Induced HepG2 Cells
by Hui-Hsuan Lin, Pei-Rong Yu, Chiao-Yun Tseng, Ming-Shih Lee and Jing-Hsien Chen
Antioxidants 2025, 14(5), 595; https://doi.org/10.3390/antiox14050595 - 16 May 2025
Viewed by 865
Abstract
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod [...] Read more.
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod extract (LSE) in alleviating MetS and MASLD-related hepatic disturbances. In vivo, mice subjected to a high-fat diet (HFD) and streptozotocin (STZ) injection were supplemented with LSE or simvastatin for 6 weeks. Obesity indicators included body weight and epididymal fat, while insulin resistance was measured by fasting serum glucose, serum insulin, homeostasis model assessment–insulin resistance index (HOMA-IR), and oral glucose tolerance (OGTT). Also, the levels of serum lipid profiles and blood pressure were evaluated. Adipokines, proinflammatory cytokines, liver fat droplets, and peri-portal fibrosis were analyzed to clarify the mechanism of MetS. LSE significantly reduced the HFD/STZ-induced MetS markers better than simvastatin, as demonstrated by hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects. In vitro, LSE improved oleic acid (OA)-triggered phenotypes of MASLD in hepatocyte HepG2 cells by reducing lipid accumulation and enhancing cell viability. This effect might be mediated through proteins involved in lipogenesis that are downregulated by adenosine monophosphate-activated protein kinase (AMPK). In addition, LSE reduced reactive oxygen species (ROS) generation and glycogen levels, as demonstrated by enhancing insulin signaling involving reducing insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation and increasing glycogen synthase kinase 3 beta (GSK3β) and protein kinase B (PKB) expression. These benefits were dependent on AMPK activation, as confirmed by the AMPK inhibitor compound C. These results indicate that LSE exhibits protective effects against MetS-caused toxicological disturbances in hepatic carbohydrate and lipid metabolism, potentially contributing to its efficacy in preventing MASLD or MetS. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Graphical abstract

14 pages, 3709 KiB  
Article
Artemisiae Iwayomogii Herba Protects Dopaminergic Neurons Against 1-Methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity in Models of Parkinson’s Disease
by Hanbyeol Lee, In Gyoung Ju, Jin Hee Kim, Yujin Choi, Seungmin Lee, Hi-Joon Park and Myung Sook Oh
Nutrients 2025, 17(10), 1672; https://doi.org/10.3390/nu17101672 - 14 May 2025
Viewed by 635
Abstract
Background/Objectives: Parkinson’s disease (PD) is a common neurodegenerative disease characterized by motor symptoms caused by the loss of dopaminergic neurons. While the pathophysiology of PD is still not fully understood, it is recognized that oxidative stress plays a major role in its progression. [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a common neurodegenerative disease characterized by motor symptoms caused by the loss of dopaminergic neurons. While the pathophysiology of PD is still not fully understood, it is recognized that oxidative stress plays a major role in its progression. Previous studies have shown that the aerial parts of Artemisia iwayomogi Kitamura (AIK) possess medicinal properties, including antioxidant activity. This study aimed to investigate whether AIK can alleviate neuronal loss and motor symptoms in a PD model and to explore its therapeutic mechanisms. Methods: For the in vitro study, PC12 cells were treated with AIK and 1-methyl-4-phenylpyridinium (MPP+). For the in vivo study, C57BL/6J mice were orally administered AIK for 12 days; they received intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 5 consecutive days, starting on the 8th day of AIK administration. Results: AIK treatment to PC12 cells in the presence of MPP+ enhanced the phosphorylation of the protein kinase B/glycogen synthase kinase-3β signaling pathway, which is a crucial regulator of nuclear factor erythroid 2-related factor 2 (Nrf2) translocation. Additionally, AIK treatment increased cell survival and induced an antioxidant response involving heme oxygenase-1, via increasing the level of Nrf2 in the nucleus. In an MPTP-induced mouse model of PD, AIK administration activated Nrf2 in dopaminergic neurons and prevented the loss of dopaminergic neurons in the brain, which in turn alleviated motor dysfunction. Conclusions: Collectively, these findings suggest that AIK is a potential botanical candidate for PD treatment by protecting dopaminergic neurons through antioxidant activity. Full article
Show Figures

Graphical abstract

19 pages, 2409 KiB  
Brief Report
Anti-Influenza Activity of 6BIGOE: Improved Pharmacological Profile After Encapsulation in PLGA Nanoparticles
by Josefine Schroeder, Jan Westhoff, Ivan Vilotijević, Oliver Werz, Stephanie Hoeppener, Bettina Löffler, Dagmar Fischer and Christina Ehrhardt
Int. J. Mol. Sci. 2025, 26(9), 4235; https://doi.org/10.3390/ijms26094235 - 29 Apr 2025
Viewed by 668
Abstract
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and [...] Read more.
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and the encapsulation of candidate substances in poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) is intended to improve their bioavailability. This study investigates the potential of the indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE), a glycogen synthase kinase 3 (GSK-3)β inhibitor, for its potential to regulate IAV replication in vitro. The effects of 6BIGOE-loaded PLGA NPs on cell metabolism were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays in A549 and Calu-3 cells. Viral replication and spread were monitored in various IAV-infected cell lines in the absence and presence of free and 6BIGOE-loaded PLGA NPs via plaque assays and Western blot analysis. The encapsulation of 6BIGOE in PLGA NPs resulted in reduced negative side effects on cell viability while maintaining antiviral efficacy. Both encapsulated and free 6BIGOE exhibited antiviral activity, potentially through GSK-3β inhibition and the disruption of key signaling pathways required for viral replication. The data indicate 6BIGOE, particularly after encapsulation in NPs, as a potential candidate for further investigation and development as an antiviral agent to treat IAV infections. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

20 pages, 7045 KiB  
Article
Iris germanica L. Rhizome-Derived Exosomes Ameliorated Dihydrotestosterone-Damaged Human Follicle Dermal Papilla Cells Through the Activation of Wnt/β-Catenin Pathway
by Mujun Kim, Jung Woo, Jinsick Kim, Minah Choi, Hee Jung Shin, Youngseok Kim, Junoh Kim and Dong Wook Shin
Int. J. Mol. Sci. 2025, 26(9), 4070; https://doi.org/10.3390/ijms26094070 - 25 Apr 2025
Viewed by 819
Abstract
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated [...] Read more.
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated the therapeutic potential of exosomes derived from the rhizomes of Iris germanica L. (Iris-exosomes) in HFDPCs damaged by dihydrotestosterone (DHT). Iris-exosomes significantly reduced reactive oxygen species (ROS) levels, restoring mitochondrial membrane potential and ATP production, thereby mitigating oxidative stress and improving mitochondrial function. These effects occurred alongside enhanced cellular processes critical for hair follicle regeneration, including increased cell migration, alkaline phosphatase (ALP) activity, and three-dimensional (3D) spheroid formation, which replicates the follicle-like microenvironment and promotes inductive potential. Furthermore, Iris-exosomes stimulated the Wnt/β-catenin signaling pathway by enhancing glycogen synthase kinase-3β (GSK-3β), AKT, and extracellular signal-regulated kinase (ERK), leading to β-catenin stabilization and nuclear translocation, thereby supporting the expression of genes essential for hair growth. Taken together, these findings suggest that Iris-exosomes can be promising ingredients for alleviating hair loss. Full article
(This article belongs to the Special Issue Molecular Insights into Hair Regeneration)
Show Figures

Graphical abstract

40 pages, 1048 KiB  
Review
Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer’s Disease
by Melinda Urkon, Elek Ferencz, József Attila Szász, Monica Iudita Maria Szabo, Károly Orbán-Kis, Szabolcs Szatmári and Előd Ernő Nagy
Pharmaceuticals 2025, 18(5), 614; https://doi.org/10.3390/ph18050614 - 23 Apr 2025
Cited by 3 | Viewed by 1949
Abstract
In addition to the classically accepted pathophysiological features of Alzheimer’s disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The [...] Read more.
In addition to the classically accepted pathophysiological features of Alzheimer’s disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The present review aims to offer a comprehensive overview of the neuroprotective properties of GLP-1R agonists (GLP-1RAs), with a particular focus on experimental animal models of AD. Ameliorated amyloid-β plaque and neurofibrillary tangle formation and deposition following exenatide, liraglutide, and lixisenatide treatment was confirmed in several models. The GLP-1RAs studied alleviated central insulin resistance, as evidenced by the decreased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and restored downstream phosphoinositide 3-kinase/RAC serine/threonine–protein kinase (PI3K/Akt) signaling. Furthermore, the GLP-1RAs influenced multiple mitogen-activated protein kinases (extracellular signal-regulated kinase: ERK; c-Jun N-terminal kinase: JNK, p38) positively and suppressed glycogen synthase kinase 3 (GSK-3β) hyperactivation. A lower proportion of reactive microglia and astrocytes was associated with better neuronal preservation following their administration. Finally, restoration of cognitive functions, particularly spatial memory, was also observed for semaglutide and dulaglutide. GLP-1RAs, therefore, hold promising disease-modifying potential in the management of AD. Full article
Show Figures

Graphical abstract

15 pages, 951 KiB  
Article
Effects of Dietary Rumen-Protected Glucose and Rumen-Protected Taurine Levels on Growth Performance, Serum Biochemical Indicators, and Liver Health in Yaks
by Yuanyuan Chen, Xiaolin Wang, Lianghao Lu, Bao Zhang, Huaming Yang, Shoupei Zhao, Zhisheng Wang, Lizhi Wang, Quanhui Peng and Bai Xue
Animals 2025, 15(8), 1152; https://doi.org/10.3390/ani15081152 - 17 Apr 2025
Cited by 1 | Viewed by 657
Abstract
Yaks are an important livestock species on the Tibetan Plateau, but traditional grazing practices cause a sharp drop in their weight during winter, leading to grassland degradation due to overgrazing. Although off-site fattening can improve performance and protect ecology, it often leads to [...] Read more.
Yaks are an important livestock species on the Tibetan Plateau, but traditional grazing practices cause a sharp drop in their weight during winter, leading to grassland degradation due to overgrazing. Although off-site fattening can improve performance and protect ecology, it often leads to a negative energy balance, liver metabolism disorders, and immune impairment due to stress. However, the effects of rumen-protected glucose (RPG) and rumen-protected taurine (RPT) on yak liver health are not yet clear. The purpose of this study was to evaluate the effects of dietary RPG and RPT levels on the growth performance, serum biochemical parameters, liver antioxidant capacity, and immunity of yaks. Twenty-eight healthy yaks weighing 170 ± 10.4 kg were randomly divided into four treatments: LGLT (RPG: 1%—low RPG [LG]; RPT: 5 g/d—low RPT [LT]), LGHT (RPG: 1%—low RPG [LG]; RPT: 20 g/d—high RPT [HT]), HGLT (RPG: 3%—high RPG [HG]; RPT: 5 g/d—low RPT [LT]), and HGHT (RPG: 3%—high RPG [HG]; RPT: 20 g/d—high RPT [HT]). The results showed that compared with the LTHT treatment group, the HGHT group upregulated the serum concentrations of glucose (p = 0.004) and Interleukin-10 (p = 0.03), the relative mRNA expression of small heterodimer partners (p = 0.01), and the sterol 12-alpha-hydroxylase (p < 0.001), while reducing the serum concentration of gamma-glutamyl transferase (p = 0.048). The serum concentration of hepatic protein carbonyl (p = 0.005) and malondialdehyde (p = 0.03) was lower in the LGHT and HGHT treatment groups than in the LGLT and HGLT groups. The relative mRNA expression of Toll-like receptor 4 (p = 0.02), Interleukin-8 (p < 0.01), and Interleukin-1β (p < 0.01) was lower in the LGHT and HGHT groups than in the LGLT and HGLT groups. Tumor necrosis factor expression was lower (p = 0.04) and glucose transporter 2 expression was higher (p < 0.01) in the HGHT group compared to other treatment groups. The expression of glucokinase, glycogen synthase, pyruvate kinase, and farnesoid X receptor was higher in the HGLT treatment group than in other treatments (p < 0.01). In conclusion, dietary supplementation with 3% PRG and 5 g/d PRT can enhance liver antioxidant capacity and immune function, reduce lipid peroxidation, and promote glucose and bile acid metabolism in yaks. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

14 pages, 4857 KiB  
Article
Virus-Free Micro-Corm Induction and the Mechanism of Corm Development in Taro
by Shenglin Wang, Yao Xiao, Zihao Li, Tao Liu, Jiarui Cui, Bicong Li, Qianglong Zhu, Sha Luo, Nan Shan, Jingyu Sun, Yingjin Huang and Qinghong Zhou
Int. J. Mol. Sci. 2025, 26(8), 3740; https://doi.org/10.3390/ijms26083740 - 16 Apr 2025
Viewed by 438
Abstract
Taro (Colocasia esculenta (L.) Schott) is the fifth largest rhizome crop, and it is widely distributed in tropical and subtropical areas in the world. Vegetative propagation with virus-infected corms can lead to cultivar degradation, yield decline, and quality deterioration. In this study, [...] Read more.
Taro (Colocasia esculenta (L.) Schott) is the fifth largest rhizome crop, and it is widely distributed in tropical and subtropical areas in the world. Vegetative propagation with virus-infected corms can lead to cultivar degradation, yield decline, and quality deterioration. In this study, the shoot apical meristems excised from taro corms infected with dasheen mosaic virus, which belongs to the genus Potyvirus in the family Potyviridae, were cultured and treated with exogenous abscisic acid and high sucrose concentrations to induce micro-corm formation. Subsequently, candidate genes involved in micro-corm expansion were screened via transcriptome sequencing analysis. The results revealed that the shoot apical meristems could grow into adventitious shoots on the medium 1 mg/L 6-benzylaminopurine + 0.3 mg/L 1-naphthaleneacetic acid, and reverse transcription–polymerase chain reaction detection indicated that dasheen mosaic virus had been successfully eliminated from the test-tube plantlets. Moreover, 8% sucrose or 3% sucrose + 5 μM abscisic acid likewise induced taro corm formation, and genes related to cell division and the cell cycle, as well as starch and sucrose metabolism pathways, were significantly enriched during taro corm expansion. Furthermore, the cyclin-dependent kinases genes, cell cycle protein kinase subunit genes, and cyclin B2 genes, which are related to cell division and the cell cycle, were upregulated with abscisic acid treatment on the 3rd day. The sucrose synthase genes, β-amylase genes, glycogen branching enzyme genes, and soluble starch synthase genes, which are related to starch and sucrose metabolism, were upregulated on the 15th day, indicating that cell division largely occurs during taro corm formation, whereas carbohydrates are synthesized during taro corm expansion. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 2964 KiB  
Article
Semisynthetic Flavonoids as GSK-3β Inhibitors: Computational Methods and Enzymatic Assay
by Heberth de Paula, Fernanda Souza, Lara Ferreira, Jéssica A. B. Silva, Rayssa Ribeiro, Juliana Vilachã, Flávio S. Emery, Valdemar Lacerda and Pedro A. B. Morais
Targets 2025, 3(2), 13; https://doi.org/10.3390/targets3020013 - 15 Apr 2025
Viewed by 517
Abstract
Glycogen synthase kinase-3 beta (GSK-3β) plays a crucial role in multiple cellular processes and is implicated in different types of cancers and neurological disorders, including Alzheimer’s disease. Despite extensive efforts to develop novel GSK-3β inhibitors, the discovery of potent and selective lead compounds [...] Read more.
Glycogen synthase kinase-3 beta (GSK-3β) plays a crucial role in multiple cellular processes and is implicated in different types of cancers and neurological disorders, including Alzheimer’s disease. Despite extensive efforts to develop novel GSK-3β inhibitors, the discovery of potent and selective lead compounds remains a challenge. In this study, we evaluated the GSK-3β inhibitory potential of semisynthetic flavonoid derivatives, which exhibited sub-micromolar activity. To gain further insights, we employed molecular docking, molecular dynamics simulations, and pharmacokinetic profile predictions. The docking studies revealed that the most potent inhibitor, compound 10, establishes key interactions with the ATP-binding site. Molecular dynamics simulations further confirmed that compound 10 maintains stable interactions with GSK-3β throughout the simulation. Additionally, pharmacokinetic predictions identified compound 3 as a promising candidate for Alzheimer’s disease therapy due to its ability to cross the blood–brain barrier. These findings suggest that, within the studied flavonoid derivatives, these compounds (particularly 10 and 3) hold potential as lead compounds for GSK-3β inhibition. The combination of strong enzymatic inhibition, stable binding interactions, and favorable pharmacokinetic properties highlights their promise for further development in cancer and neurodegenerative disease research. Full article
Show Figures

Figure 1

Back to TopTop