Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans?
Abstract
1. Introduction
2. Effects of Quercetin on Blood Glucose and Insulin Levels and Insulin Resistance
2.1. Type 1 Diabetes
2.2. Type 2 Diabetes
3. Effects of Quercetin on Blood Lipids
4. Effects of Quercetin on Blood Oxidative and Inflammatory Stress Indices
5. Effects of Quercetin on the Pancreas
5.1. Type 1 Diabetes
5.2. Type 2 Diabetes
6. Effects of Quercetin on the Insulin-Sensitive Tissues
6.1. The Liver
6.2. The Skeletal Muscle
6.3. The Adipose Tissue
7. Additional Remarks
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Baqer, S.H.; Al-Shawi, S.G.; Al-Younis, Z.K. Quercetin, the potential powerful flavonoid for human and food: A review. Front. Biosci. (Elite Ed.) 2024, 16, 30. [Google Scholar] [CrossRef]
- Alharbi, H.O.A.; Alshebremi, M.; Babiker, A.Y.; Rahmani, A.H. The role of quercetin, a flavonoid in the management of pathogenesis through regulation of oxidative stress, inflammation, and biological activities. Biomolecules 2025, 15, 151. [Google Scholar] [CrossRef]
- Rana, J.N.; Mumtaz, S. Prunin: An emerging anticancer flavonoid. Int. J. Mol. Sci. 2025, 16, 2678. [Google Scholar] [CrossRef] [PubMed]
- Zahra, M.; Abrahamse, H.; George, B.P. Flavonoids: Antioxidant powerhouses and their role in nanomedicine. Antioxidants 2024, 29, 922. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Asghar, F.; Zafar, S.; Oliinyk, P.; Khavrona, O.; Lysiuk, R.; Peana, M.; Piscopo, S.; Antonyak, H.; Pen, J.J.; et al. Berberine: Pharmacological features in health, disease and aging. Curr. Med. Chem. 2024, 31, 1214–1234. [Google Scholar] [CrossRef]
- Tiwari, P.; Mishra, R.; Mazumder, A.; Mazumder, R.; Singh, A. An insight into diverse activities and targets of flavonoids. Curr. Drug Targets 2023, 24, 89–102. [Google Scholar] [CrossRef]
- Pan, Y.; Matsunaga, T.; Zhang, T.; Akaike, T. The therapeutic potential of supersulfides in oxidative stress-related diseases. Biomolecules 2025, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Available online: https://www.diabetes.org/ (accessed on 10 February 2025).
- International Diabetes Federation. Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025; Available online: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/ (accessed on 20 May 2025).
- Patel, S.; Remedi, M.S. Loss of β-cell identity and dedifferentiation, not an irreversible process? Front. Endocrinol. 2024, 15, 1414447. [Google Scholar] [CrossRef] [PubMed]
- Park, I.R.; Chung, Y.G.; Won, K.C. Overcoming beta-cell dysfunction in type 2 diabetes mellitus: CD36 inhibition and antioxidant system. Diabetes Metab. J. 2025, 49, 1–12. [Google Scholar] [CrossRef]
- Vestergaard, P. Diabetes and its complications—Contemporary treatment and potential side effects of drugs to treat diabetes. Curr. Drug Saf. 2021, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug-based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Szkudelska, K.; Szkudelski, T. The anti-diabetic potential of betaine: Mechanisms of action in rodent models of type 2 diabetes. Biomed. Pharmacother. 2022, 150, 112946. [Google Scholar] [CrossRef]
- Roy, D.; Ghosh, M.; Rangra, N.K. Herbal approaches to diabetes management: Pharmacological mechanisms and omics-driven discoveries. Phytother. Res. 2024, 17, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Becerra, L.; Morimoto, S.; Arrellano-Ordoñez, E.; Morales-Miranda, A.; Guevara-Gonzalez, R.G.; Feregrino-Pérez, A.A.; Lomas-Soria, C. Polyphenolic compounds in fabaceous plants with antidiabetic potential. Pharmaceuticals 2025, 18, 69. [Google Scholar] [CrossRef]
- Yi, R.; Liu, Y.; Zhang, X.; Sun, X.; Wang, N.; Zhang, C.; Deng, H.; Yao, X.; Wang, S.; Yang, G. Unraveling quercetin’s potential: A comprehensive review of its properties and mechanisms of action in diabetes and obesity complications. Phytother. Res. 2024, 38, 5641–5656. [Google Scholar] [CrossRef]
- Mustafa, N.H.; Siti, H.N.; Kamisah, Y. Role of quercetin in diabetic cardiomyopathy. Plants 2024, 14, 25. [Google Scholar] [CrossRef]
- Hossein, A.; Firouzeh, G.; Zeinab, K.; Gholamreza, D. Quercetin prevents kidney against diabetes mellitus (type 1) in rats by inhibiting TGF-beta/apelin gene expression. Mol. Biol. Rep. 2024, 51, 677. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Chang, L.; Ren, Y.; Sui, M.; Fu, Y.; Zhang, L.; Hao, L. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Ren. Fail. 2024, 46, 2327495. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Alsahli, M.A.; Khan, A.A.; Almatroodi, S.A. Quercetin, a Plant Flavonol Attenuates Diabetic Complications, Renal Tissue Damage, Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Metabolites 2023, 13, 130. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Liu, L.; Xu, L.; Yao, L. Senolytic combination of dasatinib and quercetin protects against diabetic kidney disease by activating autophagy to alleviate podocyte dedifferentiation via the Notch pathway. Int. J. Mol. Med. 2024, 53, 26. [Google Scholar] [CrossRef]
- Chen, Y.F.; Qiu, Q.; Wang, L.; Li, X.R.; Zhou, S.; Wang, H.; Jiang, W.D.; Geng, J.Y.; Qin-Gao; Tang, B.; et al. Quercetin ameliorates myocardial injury in diabetic rats by regulating autophagy and apoptosis through AMPK/mTOR signaling pathway. Am. J. Chin. Med. 2024, 52, 841–864. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, J.; Kang, P.F.; Shi, C.; Qian, S.H. Quercetin inhibits pyroptosis in diabetic cardiomyopathy through the Nrf2 pathway. J. Diabetes Res. 2022, 2022, 9723632. [Google Scholar] [CrossRef]
- Gorbenko, N.I.; Borikov, O.Y.; Kiprych, T.V.; Ivanova, O.V.; Taran, K.V.; Litvinova, T.S. Quercetin improves myocardial redox status in rats with type 2 diabetes. Endocr. Regul. 2021, 55, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Chellian, J.; Mak, K.K.; Chellappan, D.K.; Krishnappa, P.; Pichika, M.R. Quercetin and metformin synergistically reverse endothelial dysfunction in the isolated aorta of streptozotocin-nicotinamide-induced diabetic rats. Sci. Rep. 2022, 12, 21393. [Google Scholar] [CrossRef]
- Newairy, A.A.; Hamaad, F.A.; Wahby, M.M.; Ghoneum, M.; Abdou, H.M. Neurotherapeutic effects of quercetin-loaded nanoparticles and Biochanin-A extracted from Trifolium alexandrinum on PI3K/Akt/GSK-3beta signaling in the cerebral cortex of male diabetic rats. PLoS ONE 2024, 19, e0301355. [Google Scholar] [CrossRef]
- Xie, J.; Song, W.; Liang, X.; Zhang, Q.; Shi, Y.; Liu, W.; Shi, X. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed. Pharmacother. 2020, 127, 110147. [Google Scholar] [CrossRef] [PubMed]
- Firouzeh, G.; Susan, A.; Zeinab, K. Quercetin prevents rats from type 1 diabetic liver damage by inhibiting TGF-/apelin gene expression. Curr. Res. Pharmacol. Drug Discov. 2024, 7, 100201. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res. 2019, 33, 3140–3152. [Google Scholar] [CrossRef]
- Cheng, M.; Yuan, C.; Ju, Y.; Liu, Y.; Shi, B.; Yang, Y.; Jin, S.; He, X.; Zhang, L.; Min, D. Quercetin attenuates oxidative stress and apoptosis in brain tissue of APP/PS1 double transgenic AD mice by regulating keap1/Nrf2/HO-1 pathway to improve cognitive impairment. Behav. Neurol. 2024, 28, 5698119. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, C.; Song, Z.; Yu, B.; Jiang, X.; Guo, L.; Huang, S.; Xia, T.; Huang, F.; Yan, Y.; et al. Reshaping the gut microbiota: Tangliping decoction and its core blood-absorbed component quercetin improve diabetic cognitive impairment. Phytomedicine 2025, 140, 156560. [Google Scholar] [CrossRef]
- Liu, F.; Feng, Q.; Yang, M.; Yang, Y.; Nie, J.; Wang, S. Quercetin prevented diabetic nephropathy by inhibiting renal tubular epithelial cell apoptosis via the PI3K/AKT pathway. Phytother. Res. 2024, 38, 3594–3606. [Google Scholar] [CrossRef]
- Chen, P.; Rao, X.; He, P.; Liu, J.; Chu, Y.; Dong, Y.; Ding, M. The role of quercetin in the treatment of kidney diseases: A comprehensive review. Biomed. Pharmacother. 2025, 190, 118358. [Google Scholar] [CrossRef]
- El-Shaer, N.O.; Hegazy, A.M.; Muhammad, M.H. Protective effect of quercetin on pulmonary dysfunction in streptozotocin-induced diabetic rats via inhibition of NLRP3 signaling pathway. Environ. Sci. Pollut. Res. Int. 2023, 30, 42390–42398. [Google Scholar] [CrossRef]
- Larijani, G.; Lotfi, A.; Barati, S.; Janzadeh, A.; Abediankenari, S.; Faghihi, F.; Amini, N. The effect of chitosan/alginate hydrogel loaded quercetin on wound healing in diabetic rat model. J. Mol. Histol. 2025, 56, 225. [Google Scholar] [CrossRef]
- Mansour, M.F.; Behairy, A.; Mostafa, M.; Khamis, T.; Alsemeh, A.E.; Ahmed, N.M.Q.; El-Emam, M.M.A. Quercetin-loaded PEGylated liposomes alleviate testicular dysfunction in alloxan-induced diabetic rats: The role of Kisspeptin/Neurokinin B/Dynorphin pathway. Toxicol. Appl. Pharmacol. 2025, 499, 117337. [Google Scholar] [CrossRef] [PubMed]
- Cappellani, F.; Foti, R.; Malaguarnera, G.; D’Esposito, F.; Musumeci, C.; Rapisarda, L.; Tognetto, D.; Gagliano, C.; Zeppieri, M. Nutrients and natural substances for hypoglycemic effects and management in diabetic retinopathy. Nutrients 2025, 30, 1207. [Google Scholar] [CrossRef] [PubMed]
- Dawi, J.; Misakyan, Y.; Affa, S.; Kades, S.; Narasimhan, A.; Hajjar, F.; Besser, M.; Tumanyan, K.; Venketaraman, V. Oxidative stress, glutathione insufficiency, and inflammatory pathways in type 2 diabetes mellitus: Implications for therapeutic interventions. Biomedicines 2024, 13, 18. [Google Scholar] [CrossRef]
- Mirzadeh, Z.; Faber, C. Brain defense of glycemia in health and diabetes. Diabetes 2024, 73, 1952–1966. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rellan, M.J.; Fondevila, M.F.; Dieguez, C.; Nogueiras, R. O-GlcNAcylation: A sweet hub in the regulation of glucose metabolism in health and disease. Front. Endocrinol. 2022, 13, 873513. [Google Scholar] [CrossRef] [PubMed]
- Tappy, L. Metabolism of sugars: A window to the regulation of glucose and lipid homeostasis by splanchnic organs. Clin. Nutr. 2021, 40, 1691–1698. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, Y.; Gao, W.; Li, C.; Ye, Q.; Li, Y. Diabetes mellitus promotes susceptibility to periodontitis: Novel insight into the molecular mechanisms. Front. Endocrinol. 2023, 14, 1192625. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, W.; Zhang, Q.; Xing, T.; Bai, Y.; Li, S.; Zhang, D.; Che, H.; Guo, X. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomed. Pharmacother. 2025, 183, 117817. [Google Scholar] [CrossRef]
- Dias, A.S.; Porawski, M.; Alonso, M.; Marroni, N.; Collado, P.S.; González-Gallego, J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J. Nutr. 2005, 135, 2299–2304. [Google Scholar] [CrossRef]
- Adewole, S.O.; Caxton-Martins, E.A.; Ojewole, J.A. Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2006, 4, 64–74. [Google Scholar]
- Peng, J.; Li, Q.; Li, K.; Zhu, L.; Lin, X.; Lin, X.; Shen, Q.; Li, G.; Xie, X. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of Akt signaling and SIRT1. J. Diabetes Res. 2017, 2017, 3417306. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Sultana, M.; Raina, R.; Pankaj, N.K.; Verma, P.K.; Prawez, S. Hypoglycemic, hypolipidemic, and wound healing potential of quercetin in streptozotocin-induced diabetic rats. Pharmacogn. Mag. 2017, 13, 633–639. [Google Scholar] [CrossRef]
- Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018, 8, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Eitah, H.E.; Maklad, Y.A.; Abdelkader, N.F.; Gamal El Din, A.A.; Badawi, M.A.; Kenawy, S.A. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicol. Appl. Pharmacol. 2019, 365, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Eraky, S.M.; Ramadan, N.M.; Abo El-Magd, N.F. Antidiabetic effects of quercetin and liraglutide combination through modulation of TXNIP/IRS-1/PI3K pathway. Cell Biochem. Funct. 2022, 40, 90–102. [Google Scholar] [CrossRef]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp. Biol. Med. 2012, 237, 481–490. [Google Scholar] [CrossRef]
- Lenzen, S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic beta-cells. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1929–1942. [Google Scholar] [CrossRef]
- Plötz, T.; Lenzen, S. Mechanisms of lipotoxicity-induced dysfunction and death of human pancreatic beta cells under obesity and type 2 diabetes conditions. Obes. Rev. 2024, 25, e13703. [Google Scholar] [CrossRef]
- Lai, M.; Chandrasekera, P.C.; Barnard, N.D. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr. Diabetes 2014, 4, e135. [Google Scholar] [CrossRef]
- Heydemann, A. An overview of murine high fat diet as a model for type 2 diabetes mellitus. J. Diabetes Res. 2016, 2016, 2902351. [Google Scholar] [CrossRef]
- Stachura, A.; Khanna, I.; Krysiak, P.; Paskal, W.; Włodarski, P. Wound healing impairment in type 2 diabetes model of leptin-deficient mice: A mechanistic systematic review. Int. J. Mol. Sci. 2022, 23, 8621. [Google Scholar] [CrossRef]
- Abdou, H.M.; Hamaad, F.A.; Ali, E.Y.; Ghoneum, M.H. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomed. Pharmacother. 2022, 149, 112838. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kang, M.J.; Choi, H.N.; Jeong, S.M.; Lee, Y.M.; Kim, J.I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011, 5, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Kang, M.J.; Choi, H.N.; Kim, J.H.; Kim, J.I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 2012, 6, 201–207. [Google Scholar] [CrossRef]
- Hu, T.; Shi, J.J.; Fang, J.; Wang, Q.; Chen, Y.B.; Zhang, S.J. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice. Aging 2020, 12, 7015–7029. [Google Scholar] [CrossRef]
- Wang, J.Y.; Nie, Y.X.; Dong, B.Z.; Cai, Z.C.; Zeng, X.K.; Du, L.; Zhu, X.; Yin, X.X. Quercetin protects islet beta-cells from oxidation-induced apoptosis via Sirt3 in T2DM. Iran. J. Basic Med. Sci. 2021, 24, 629–635. [Google Scholar] [PubMed]
- Yuan, M.; Sun, T.; Zhang, Y.; Guo, C.; Wang, F.; Yao, Z.; Yu, L. Quercetin alleviates insulin resistance and repairs intestinal barrier in db/db mice by modulating gut microbiota. Nutrients 2024, 16, 1870. [Google Scholar] [CrossRef]
- Li, D.; Jiang, C.; Mei, G.; Zhao, Y.; Chen, L.; Liu, J.; Tang, Y.; Gao, C.; Yao, P. Quercetin alleviates ferroptosis of pancreatic beta cells in type 2 diabetes. Nutrients 2020, 12, 2954. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Tam, C.C.; Rolston, M.; Alves, P.; Chen, L.; Meng, S.; Hong, H.; Chang, S.K.C.; Yokoyama, W. Quercetin ameliorates insulin resistance and restores gut microbiome in mice on high-fat diets. Antioxidants 2021, 10, 1251. [Google Scholar] [CrossRef]
- Ke, R.Q.; Wang, Y.; Hong, S.H.; Xiao, L.X. Anti-diabetic effect of quercetin in type 2 diabetes mellitus by regulating the microRNA-92b-3p/EGR1 axis. J. Physiol. Pharmacol. 2023, 74, 149–158. [Google Scholar]
- Luthra, S.; Viola, L.; Navaratnarajah, M.; Thirukumaran, D.; Velissaris, T. Glycated Haemoglobin (HbA(1C)) in cardiac surgery: A narrative review. J. Clin. Med. 2024, 14, 23. [Google Scholar] [CrossRef]
- Nolan, C.J.; Prentki, M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diab. Vasc. Dis. Res. 2019, 16, 118–127. [Google Scholar] [CrossRef]
- Janssen, J.A.M.J.L. Overnutrition, hyperinsulinemia and ectopic fat: It is time for a paradigm shift in the management of type 2 diabetes. Int. J. Mol. Sci. 2024, 25, 5488. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats. Oxid. Med. Cell. Longev. 2020, 2020, 1730492. [Google Scholar] [CrossRef]
- Gerber, P.A.; Rutter, G.A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox Signal. 2017, 26, 501–518. [Google Scholar] [CrossRef]
- Khater, S.I.; El-Emam, M.M.A.; Abdellatif, H.; Mostafa, M.; Khamis, T.; Soliman, R.H.M.; Ahmed, H.S.; Ali, S.K.; Selim, H.R.M.; Alqahtani, L.S.; et al. Lipid nanoparticles of quercetin (QU-Lip) alleviated pancreatic microenvironment in diabetic male rats: The interplay between oxidative stress—Unfolded protein response (UPR)—Autophagy, and their regulatory miRNA. Life Sci. 2024, 344, 122546. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Najafgholizadeh, A.; Clark, C.C.T.; Esmaillzadeh, A. The effect of apple cider vinegar on lipid profiles and glycemic parameters: A systematic review and meta-analysis of randomized clinical trials. BMC Complement. Med. Ther. 2021, 21, 179. [Google Scholar] [CrossRef]
- Thambiah, C.; Lai, L.C. Diabetic dyslipidaemia. Pract. Lab. Med. 2021, 26, e00248. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Q.; Yi, Y.; Wang, J.; Chen, P.; Luo, F.; Fang, Z. ANGPTL3 as a target for treating lipid disorders in type 2 diabetes patients. Lipids Health Dis. 2024, 23, 356. [Google Scholar] [CrossRef]
- Handy, R.M.; Holloway, G.P. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front. Physiol. 2023, 14, 1151389. [Google Scholar] [CrossRef] [PubMed]
- Yazıcı, D.; Demir, S.Ç.; Sezer, H. Insulin resistance, obesity, and lipotoxicity. Adv. Exp. Med. Biol. 2024, 1460, 391–430. [Google Scholar] [CrossRef]
- Luciani, L.; Pedrelli, M.; Parini, P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024, 394, 117545. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P. Oxidative stress in health and disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef]
- Dilworth, L.; Stennett, D.; Facey, A.; Omoruyi, F.; Mohansingh, S.; Omoruyi, F.O. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed. Pharmacother. 2024, 181, 117641. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Li, S.; Jiang, J.; Ma, X.; Liu, L.; Wang, T.; Zhang, J.; Niu, D. Advances in the pathogenesis and treatment strategies for type 1 diabetes mellitus. Int. Immunopharmacol. 2025, 148, 114185. [Google Scholar] [CrossRef]
- Veluthakal, R.; Esparza, D.; Hoolachan, J.M.; Balakrishnan, R.; Ahn, M.; Oh, E.; Jayasena, C.S.; Thurmond, D.C. Mitochondrial dysfunction, oxidative stress, and inter-organ miscommunications in T2D progression. Int. J. Mol. Sci. 2024, 25, 1504. [Google Scholar] [CrossRef]
- Arya, A.; Al-Obaidi, M.M.; Shahid, N.; Bin Noordin, M.I.; Looi, C.Y.; Wong, W.F.; Khaing, S.L.; Mustafa, M.R. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food Chem. Toxicol. 2014, 71, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Motlagh, H.R.; Sadeghalvad, M.; Yavari, N.; Primavera, R.; Soltani, S.; Chetty, S.; Ganguly, A.; Regmi, S.; Fløyel, T.; Kaur, S.; et al. Beta cell and autophagy: What do we know? Biomolecules 2023, 13, 649. [Google Scholar] [CrossRef]
- Ou, Y.; Zhao, Y.L.; Su, H. Pancreatic beta-Cells, Diabetes and Autophagy. Endocr. Res. 2025, 50, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Serra, C.A.; Dos Reis, A.F.; Calsa, B.; Bueno, C.S.; Helaehil, J.V.; de Souza, S.A.R.; de Oliveira, C.A.; Vanzella, E.C.; do Amaral, M.E.C. Quercetin prevents insulin dysfunction in hypertensive animals. J. Diabetes Metab. Disord. 2022, 21, 407–417. [Google Scholar] [CrossRef]
- Rui, J.; Deng, S.; Perdigoto, A.L.; Ponath, G.; Kursawe, R.; Lawlor, N.; Sumida, T.; Levine-Ritterman, M.; Stitzel, M.L.; Pitt, D.; et al. Tet2 controls the responses of beta cells to inflammation in autoimmune diabetes. Nat. Commun. 2021, 12, 5074. [Google Scholar] [CrossRef]
- Prentki, M.; Matschinsky, F.M.; Madiraju, S.R. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013, 18, 162–185. [Google Scholar] [CrossRef]
- Rutter, G.A.; Georgiadou, E.; Martinez-Sanchez, A.; Pullen, T.J. Metabolic and functional specialisations of the pancreatic beta cell: Gene disallowance, mitochondrial metabolism and intercellular connectivity. Diabetologia 2020, 63, 1990–1998. [Google Scholar] [CrossRef]
- Kosmalski, M.; Ziółkowska, S.; Czarny, P.; Szemraj, J.; Pietras, T. The coexistence of nonalcoholic fatty liver disease and type 2 diabetes mellitus. J. Clin. Med. 2022, 11, 1375. [Google Scholar] [CrossRef]
- Rafaqat, S.; Sattar, A.; Khalid, A.; Rafaqat, S. Role of liver parameters in diabetes mellitus: A narrative review. Endocr. Regul. 2023, 57, 200–220. [Google Scholar] [CrossRef] [PubMed]
- Bakhshaeshi, M.; Khaki, A.; Fathiazad, F.; Khaki, A.A.; Ghadamkheir, E. Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pac. J. Trop. Biomed. 2012, 2, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Mata-Torres, G.; Andrade-Cetto, A.; Espinoza-Hernández, F. Approaches to decrease hyperglycemia by targeting impaired hepatic glucose homeostasis using medicinal plants. Front. Pharmacol. 2021, 12, 809994. [Google Scholar] [CrossRef]
- Perez, J.A. Glucose disorders. Prim. Care 2024, 51, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Kubota, N.; Kubota, T.; Kadowaki, T. Physiological and pathophysiological actions of insulin in the liver. Endocr. J. 2025, 72, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Tseng, P.C.; Satria, R.D.; Nguyen, T.T.; Tsai, C.C.; Lin, C.F. Role of glycogen synthase kinase-3 in interferon-gamma-mediated immune hepatitis. Int. J. Mol. Sci. 2022, 23, 4669. [Google Scholar] [CrossRef]
- Shen, S.; Shen, M.; Kuang, L.; Yang, K.; Wu, S.; Liu, X.; Wang, Y.; Wang, Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol. Res. 2024, 199, 107037. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Chen, J.; Long, T.; Xu, M.; Luo, T.; Che, Q.; He, Y.; Xu, D. The role of sirtuin1 in liver injury: Molecular mechanisms and novel therapeutic target. PeerJ 2024, 12, e17094. [Google Scholar] [CrossRef]
- Kitamoto, T.; Accili, D. Unraveling the mysteries of hepatic insulin signaling: Deconvoluting the nuclear targets of insulin. Endocr. J. 2023, 70, 851–866. [Google Scholar] [CrossRef]
- Asano, T.; Fujishiro, M.; Kushiyama, A.; Nakatsu, Y.; Yoneda, M.; Kamata, H.; Sakoda, H. Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions. Biol. Pharm. Bull. 2007, 30, 1610–1616. [Google Scholar] [CrossRef]
- Kobayashi, A.; Suzuki, Y.; Sugai, S. Specificity of transaminase activities in the prediction of drug-induced hepatotoxicity. J. Toxicol. Sci. 2020, 45, 515–537. [Google Scholar] [CrossRef]
- Ahmad, K.; Shaikh, S.; Lim, J.H.; Ahmad, S.S.; Chun, H.J.; Lee, E.J.; Choi, I. Therapeutic application of natural compounds for skeletal muscle-associated metabolic disorders: A review on diabetes perspective. Biomed. Pharmacother. 2023, 168, 115642. [Google Scholar] [CrossRef]
- Tammineni, E.R.; Manno, C.; Oza, G.; Figueroa, L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol. Cell. Endocrinol. 2025, 599, 112466. [Google Scholar] [CrossRef]
- Youssef, A.M.; Mohamed, D.A.; Hussein, S.; Abdullah, D.M.; Abdelrahman, S.A. Effects of quercetin and coenzyme Q10 on biochemical, molecular, and morphological parameters of skeletal muscle in trained diabetic rats. Curr. Mol. Pharmacol. 2022, 15, 239–251. [Google Scholar]
- Phuwamongkolwiwat, P.; Suzuki, T.; Hira, T.; Hara, H. Eur fructooligosaccharide augments benefits of quercetin-3-O-beta-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats. J. Nutr. 2014, 53, 457–468. [Google Scholar]
- Alam, M.M.; Meerza, D.; Naseem, I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014, 109, 8–14. [Google Scholar] [CrossRef] [PubMed]
- El Husseny, M.W.; Mamdouh, M.; Shaban, S.; Ibrahim Abushouk, A.; Zaki, M.M.; Ahmed, O.M.; Abdel-Daim, M.M. Adipokines: Potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J. Diabetes Res. 2017, 2017, 8095926. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Understanding adipose tissue dysfunction. J. Obes. Metab. Syndr. 2024, 33, 275–288. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Ghasemi, A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem. Pharmacol. 2024, 221, 116043. [Google Scholar] [CrossRef]
- Parra-Peralbo, E.; Talamillo, A.; Barrio, R. Origin and development of the adipose tissue, a key organ in physiology and disease. Front. Cell Dev. Biol. 2021, 9, 786129. [Google Scholar] [CrossRef]
- An, S.M.; Cho, S.H.; Yoon, J.C. Adipose tissue and metabolic health. Diabetes Metab. J. 2023, 47, 595–611. [Google Scholar] [CrossRef]
- Kršková, K.; Dobrócsyová, V.; Ferenczyová, K.; Hricovíniová, J.; Kaločayová, B.; Duľová, U.; Bozorgnia, M.; Barteková, M.; Zorad, Š. Modification of adipogenesis and oxidative stress by quercetin: Positive or negative impact on adipose tissue metabolism of obese diabetic Zucker rats? J. Physiol. Biochem. 2025, 81, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qian, S.W.; Tang, Y.; Tang, Q.Q. The secretory function of adipose tissues in metabolic regulation. Life Metab. 2024, 3, loae003. [Google Scholar] [CrossRef] [PubMed]
- Hemat Jouy, S.; Mohan, S.; Scichilone, G.; Mostafa, A.; Mahmoud, A.M. Adipokines in the crosstalk between adipose tissues and other organs: Implications in cardiometabolic diseases. Biomedicines 2024, 12, 2129. [Google Scholar] [CrossRef] [PubMed]
- Bastard, J.P.; Dridi-Brahimi, I.; Vatier, C.; Fellahi, S.; Fève, B. Biological markers of adipose tissue: Adipokines. Ann. Endocrinol. 2024, 85, 171–172. [Google Scholar] [CrossRef]
- Baiomy, R.F.E. Quercetin nanoparticles as a therapeutic approach: Pharmacological actions and potential applications in therapy. BioTechnologia 2024, 105, 377–393. [Google Scholar] [CrossRef]
- Eity, T.A.; Bhuia, M.S.; Chowdhury, R.; Ahmmed, S.; Salehin, S.; Akter, R.; Islam, M.T. Therapeutic efficacy of quercetin and its nanoformulation both the mono- or combination therapies in the management of cancer: An update with molecular mechanisms. J. Trop. Med. 2024, 2024, 5594462. [Google Scholar] [CrossRef]
- Solnier, J.; Zhang, Y.; Roh, K.; Kuo, Y.C.; Du, M.; Wood, S.; Hardy, M.; Gahler, R.J.; Chang, C. A Pharmacokinetic study of different quercetin formulations in healthy participants: A diet-controlled, crossover, single- and multiple-dose pilot study. Evid. Based Complement. Altern. Med. 2023, 2023, 9727539. [Google Scholar] [CrossRef]
- Walle, T.; Walle, U.K.; Halushka, P.V. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. 2001, 131, 2648–2652. [Google Scholar] [CrossRef]
- Yong, P.H.; Qing, T.Y.; Azzani, M.; Anbazhagan, D.; Ng, Z.X. Role of medicinal plants in ameliorating the lipid and glucose levels in diabetes: A systematic literature review. Endocr. Regul. 2025, 59, 57–77. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Z.; Dong, R.; Liu, P.; Zhang, X.; Li, Y.; Lai, X.; Cheong, H.F.; Wu, Y.; Wang, Y.; et al. Rutin ameliorated lipid metabolism dysfunction of diabetic NAFLD via AMPK/SREBP1 pathway. Phytomedicine 2024, 126, 155437. [Google Scholar] [CrossRef] [PubMed]
- Lazuardi, M.; Anjani, Q.K.; Budiatin, A.S.; Restiadi, T.I. Efficacy of quercetin-like compounds from the mistletoe plant of Dendrophthoe pentandra L. Miq, as oral random blood sugar lowering treatment in diabetic rats. Vet. Q. 2024, 44, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Trakooncharoenvit, A.; Hara, H.; Hira, T. Combination of alpha-glycosyl-isoquercitrin and soybean fiber promotes quercetin bioavailability and glucagon-like peptide-1 secretion and improves glucose homeostasis in rats fed a high-fat high-sucrose diet. J. Agric. Food Chem. 2021, 69, 5907–5916. [Google Scholar] [CrossRef] [PubMed]
- Rey, D.; Fernandes, T.A.; Sulis, P.M.; Gonçalves, R.; Sepúlveda, R.M.; Silva Frederico, M.J.; Aragon, M.; Ospina, L.F.; Costa, G.M.; Silva, F.R.M.B. Cellular target of isoquercetin from Passiflora ligularis Juss for glucose uptake in rat soleus muscle. Chem. Biol. Interact. 2020, 330, 109198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xin, X.; Jin, Z.; Hu, Y.; Li, X.; Wu, J.; Jin, M. Anti-diabetic effects of pentamethylquercetin in neonatally streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2011, 668, 347–353. [Google Scholar] [CrossRef]
Parameter | Effect | Animal Model of Diabetes | References |
---|---|---|---|
Hyperglycemia | ↓ | rats with STZ-induced diabetes; | [48,49,50,51,52,53,54] |
HFD/STZ rats; | [29,62] | ||
db/db mice; | [63,64,65,66,67] | ||
mice fed an obesogenic diet | [68,69,70] | ||
Hemoglobin A1c | ↓ | db/db mice | [50,63] |
Hyperinsulinemia | ↓ | rats with STZ/NA-induced diabetes; | [74] |
HFD/STZ, HGD/STZ mice | [70] | ||
Hypoinsulinemia | ↑ | rats with STZ-induced diabetes; | [48,49,50,51,52,53,54] |
HFD/STZ rats; | [29,60] | ||
HFD/STZ mice; | [68] | ||
HFD/STZ, HGD/STZ mice; | [70] | ||
db/db mice | [66] | ||
Insulin sensitivity | ↑ | rats with STZ/NA-induced diabetes; | [74] |
HFD mice; | [69] | ||
db/db mice | [64,65] | ||
Non-esterified fatty acids (NEFA) | ↓ | rats with STZ-induced diabetes | [23,29,51,52,53,54] |
Triglycerides (TG) | ↓ | rats with STZ-induced diabetes; | [23,29,51,52,53,54] |
db/db mice; | [64] | ||
mice fed an obesogenic diet | [69] | ||
Total cholesterol | ↓ | rats with STZ-induced diabetes; | [29,50,51,52,54] |
db/db mice | [64] | ||
LDL-cholesterol | ↓ | rats with STZ-induced diabetes | [32,50,51,52] |
HDL-cholesterol | ↑ | rats with STZ-induced diabetes; | [32,51,62] |
db/db mice | [64] | ||
Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity | ↑ | rats with STZ-induced diabetes | [32,48,53] |
Malondialdehyde (MDA) | ↓ | rats with STZ-induced diabetes | [32,48,53] |
TNF-α, NF-κB | ↓ | rats with STZ-induced diabetes | [53,76] |
Parameter | Effect | Animal Model of Diabetes | References |
---|---|---|---|
Tissue structure | ↑ | rats with STZ-induced diabetes | [32,49,51,52,54,74,76,87] |
Area of pancreatic islets and number of β-cells | ↑ | rats with STZ-induced diabetes | [53,54,76] |
Number of pancreatic islets | ↑ | rats with STZ-induced diabetes; | [53,54,76] |
hypertensive, insulin-resistant rats | [90] | ||
Pancreas histology | ↑ | HFD mice; | [68] |
HFD/STZ, HGD/STZ mice | [70] | ||
Islet structure | ↑ | HFD mice; | [68] |
HFD/STZ, HGD/STZ mice | [70] | ||
Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity | ↑ | rats with STZ-induced diabetes; | [49,76] |
HFD rats; | [62] | ||
HFD, mice; | [68] | ||
db/db mice | [66] | ||
Malondialdehyde (MDA) | ↓ | rats with STZ-induced diabetes; | [49,76] |
HFD rats; | [62] | ||
HFD mice; | [68] | ||
db/db mice | [66] | ||
Pancreatic insulin content | ↑ | rats with STZ-induced diabetes; | [49] |
HFD/STZ, HGD/STZ mice; | [70] | ||
HFD mice | [68] | ||
Autophagy | ↓ | rats with STZ-induced diabetes | [76] |
Apoptosis | ↓ | HFD/STZ, HGD/STZ mice; | [70] |
db/db mice | [66] | ||
TNF-α; IL-6; IL-1β; caspase-3 | ↓ | HFD rats | [62] |
GLUT2 content; glucokinase activity | ↓ | HFD rats | [62] |
Parameter | Effect | Animal Model of Diabetes | References |
---|---|---|---|
Tissue structure | ↑ | rats with STZ-induced diabetes | [31,50,87,96] |
Glucose-6-phosphatase activity; glycogen phosphorylase activity | ↓ | rats with STZ-induced diabetes | [32,74] |
Glycogen synthase kinase-3β (GSK3β) activity | ↓ | rats with STZ-induced diabetes | [50] |
Phosphoenolpyruvate carboxykinase (PEPCK) activity | ↓ | rats with STZ-induced diabetes | [32,99] |
Silent information regulator1 (SIRT1) expression and activity | ↑ | rats with STZ-induced diabetes | [50] |
Sterol regulatory element-binding protein-1 (SREBP-1) expression | ↓ | rats with STZ-induced diabetes | [50] |
Non-esterified fatty acids’ (NEFA) content | ↓ | HFD mice | [69] |
Insulin receptor substrate 1 (IRS-1) expression and phosphorylation | ↑ | rats with STZ-induced diabetes | [54] |
Phosphoinositide 3-kinase (PI3K) activity; | ↑ | rats with STZ-induced diabetes | [54] |
protein kinase B (Akt/PKB) activity | [50] | ||
Inflammatory markers | ↓ | rats with STZ-induced diabetes | [48,49] |
Catalase (CAT) and superoxide dismutase (SOD) activity | ↑ | rats with STZ-induced diabetes; | [31,74] |
db/db mice; | [64] | ||
insulin-resistant hypertensive rats | [90] | ||
Reduced glutathione (GSH) content | ↑ | rats with STZ-induced diabetes | [31,74] |
Malondialdehyde (MDA) | ↓ | rats with STZ-induced diabetes; | [31,74,96] |
db/db mice; | [64] | ||
insulin-resistant hypertensive rats | [90] | ||
Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activity | ↓ | rats with STZ-induced diabetes; | [32,74] |
HFD/STZ rats | [62] |
Parameter | Effect | Animal Model of Diabetes | References |
---|---|---|---|
Structural disorders | ↑ | rats with STZ-induced diabetes | [108] |
Hexokinase activity | ↑ | mice with ALX-induced diabetes | [110] |
Fructose 1,6-bisphosphatase activity | ↓ | mice with ALX-induced diabetes | [110] |
Protein kinase B (Akt/PKB) activity | ↑ | SF—insulin-resistant rats | [109] |
Catalase (CAT) and superoxide dismutase (SOD) activity | ↑ | mice with ALX-induced diabetes | [110] |
Glutathione (GSH) content | ↑ | mice with ALX-induced diabetes | [110] |
GLUT4 expression | ↑ | mice with ALX-induced diabetes | [110] |
Parameter | Effect | Animal Model of Diabetes | References |
---|---|---|---|
Tissue mass | ↓ | HFD mice; | [69] |
ZDF rats | [116] | ||
Adipocyte size | ↓ | ZDF rats | [116] |
Insulin sensitivity | ↑ | insulin-resistant hypertensive rats | [90] |
Macrophage infiltration marker F4/80 expression; tumor necrosis factor α | ↓ | ZDF rats | [116] |
Nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) expression; superoxide dismutase (SOD) expression | ↓ | ZDF rats | [116] |
Expression of GLUT4 and fatty acid binding protein | ↓ | ZDF rats | [116] |
Adiponectin resistance | ↓ | db/db mice | [64] |
Hyperleptinemia | ↓ | HFD mice | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkudelski, T.; Szkudelska, K.; Łangowska, A. Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans? Int. J. Mol. Sci. 2025, 26, 7391. https://doi.org/10.3390/ijms26157391
Szkudelski T, Szkudelska K, Łangowska A. Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans? International Journal of Molecular Sciences. 2025; 26(15):7391. https://doi.org/10.3390/ijms26157391
Chicago/Turabian StyleSzkudelski, Tomasz, Katarzyna Szkudelska, and Aleksandra Łangowska. 2025. "Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans?" International Journal of Molecular Sciences 26, no. 15: 7391. https://doi.org/10.3390/ijms26157391
APA StyleSzkudelski, T., Szkudelska, K., & Łangowska, A. (2025). Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans? International Journal of Molecular Sciences, 26(15), 7391. https://doi.org/10.3390/ijms26157391