Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = Glaciations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6517 KB  
Article
Paleoenvironments of the Last Interglacial–Glacial Transition on the East European Plain: Insights into Climate-Driven Ecosystem Dynamics
by E. Ershova, S. Kuzmina, S. Sycheva, I. Zyuganova, E. Izumova, A. Zharov, V. Yu. Kuznetsov, F. Maksimov, S. Kolesnikov, N. Lavrenov and E. Ponomarenko
Quaternary 2025, 8(4), 66; https://doi.org/10.3390/quat8040066 - 11 Nov 2025
Viewed by 170
Abstract
A multiproxy study of a new Pleistocene locality at Ivantzevo, Moscow Region, was conducted to reconstruct paleoenvironments from the Middle Pleistocene to the Last Pleniglacial. Lacustrine deposits and peat accumulated in a wetland within a fluvioglacial depression formed during the Dnieper–Moscow glaciation. Silts [...] Read more.
A multiproxy study of a new Pleistocene locality at Ivantzevo, Moscow Region, was conducted to reconstruct paleoenvironments from the Middle Pleistocene to the Last Pleniglacial. Lacustrine deposits and peat accumulated in a wetland within a fluvioglacial depression formed during the Dnieper–Moscow glaciation. Silts and clays were deposited during MIS 7 and the Moscow (Saale) Glaciation (MIS 6), while peat accumulation began in the Mikulino (Eemian) (MIS 5e). The wetland persisted for approximately fifty millennia, until the Middle Valdai (Weichselian). Interglacial peat deposits contain well-preserved pollen and macrofossils, and the recovered fossil insect assemblage is unique for European Russia. Chronology was established using multiple OSL and 230Th/U dates, combined with pollen-based correlations to type sections north and west of the region. The reconstructed ecosystem dynamics are divided into eleven stages. The transition from the last interglacial to the second stadial of the Valdai involved seven phases: (1) expansion of boreal spruce forest, (2) spread of thermophilic broad-leaved forests with hazel, (3) development of open forest–steppe ecosystems with groves of deciduous trees, (4) re-establishment of forest cover with birch and, later, mixed pine, spruce, and birch forests, (5) emergence of cold steppe combined with shrub-dominated tundra, (6) return of boreal spruce forest, and (7) abrupt replacement of forest by cold steppe and shrub tundra. Climatic reconstructions indicate that these ecosystem dynamics closely corresponded to changes in precipitation and aridity. Full article
Show Figures

Graphical abstract

19 pages, 1932 KB  
Article
Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples
by Isatis M. Cintrón-Rodríguez, Hinrich Grothe and Philipp Baloh
Environments 2025, 12(11), 416; https://doi.org/10.3390/environments12110416 - 3 Nov 2025
Viewed by 446
Abstract
Heterogeneous ice nucleation is a key process for ice cloud formation, snowfall, and freezing of water bodies. Ice nucleating particle (INP) cloud feedbacks are one of the largest sources of uncertainties in Earth’s Energy Budget. Although INPs are essential in the development of [...] Read more.
Heterogeneous ice nucleation is a key process for ice cloud formation, snowfall, and freezing of water bodies. Ice nucleating particle (INP) cloud feedbacks are one of the largest sources of uncertainties in Earth’s Energy Budget. Although INPs are essential in the development of mixed-phased and glaciated clouds, their composition, sources, and cloud feedbacks remain poorly constrained. Previous studies have shown mixed results on the potential of light-absorbing particles (LAP), such as black carbon (BC) and high latitude dust (HLD), serving as INPs. However, many of these studies use laboratory or model-generated particles that may not represent the complex morphology and behaviors of ambient light-absorbing particles sufficiently. Here, we use in situ surface snow samples, collected during Spring 2018 in Svínafellsjökull, Iceland. The samples were analyzed by an immersion freezing mechanism for their ice nucleation activity (INA). Portions of the filtered samples were concentrated by lyophilization to observe the potential enhancement of INA. We investigated environmental samples of deposited aerosols to better understand the role activity of HLD and BC in ice nucleating activity in mixed-phase clouds in Iceland. We found concentrations of 16 ± 27 ng g−1 and 33 ± 66 × 106 ng g−1 for BC and HLD, respectively. However, we found that isolated methanol-soluble organic aerosols have a more prominent role than BC and HLD in Iceland. We conclude that BC and HLD are insignificant INP but that they can inhibit INA from other INP. Full article
Show Figures

Figure 1

14 pages, 2087 KB  
Communication
Genomic Data Suggests Pathways of Modern White Poplar (Populus alba L.) Range Formation in the Postglacial Era
by Natalya S. Gladysh, Mikhail I. Popchenko, Maxim A. Kovalev, Vsevolod V. Volodin, George S. Krasnov, Alina S. Bogdanova, Dmitry S. Karpov, Nadezhda L. Bolsheva and Anna V. Kudryavtseva
Plants 2025, 14(21), 3328; https://doi.org/10.3390/plants14213328 - 30 Oct 2025
Viewed by 319
Abstract
The white poplar (Populus alba L.) is an economically significant tree species with a natural distribution spanning an extensive region of Eurasia. Nevertheless, there is currently no hypothesis regarding the historical shaping of this range. In this study, we collected and sequenced [...] Read more.
The white poplar (Populus alba L.) is an economically significant tree species with a natural distribution spanning an extensive region of Eurasia. Nevertheless, there is currently no hypothesis regarding the historical shaping of this range. In this study, we collected and sequenced 36 individuals of white poplar from disparate regions of Russia and Kazakhstan. Additionally, we employed available genomic data of white poplars from Italy, Hungary, and China. A genomic approach was employed to collate data on the location of glaciers in different periods, along with information on the natural and artificial distribution of white poplar. This enabled the formulation of the first hypothesis regarding the formation of the modern range of this plant. It is hypothesized that during the period of maximum glaciation, three refugia existed: the South European, Transcaucasian, and Altai–Middle Asian refugia. Postglacial migration from these refugia led to the formation of modern populations of P. alba in Eastern Europe (including the European part of Russia), the Caucasus, and Siberia, respectively. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

31 pages, 22962 KB  
Article
An Integrated Paleoenvironmental Reconstruction of the Early Pleistocene Hominin-Bearing Site of Dursunlu (Türkiye)
by Àngel H. Luján, Václav Paclík, Elvan Demirci, Andrea Villa, Thomas A. Neubauer, Alaettin Tuncer, Martin Ivanov, Àngel Blanco-Lapaz, Kelly Ann Vega-Pagán and Josep Sanjuan
Diversity 2025, 17(9), 631; https://doi.org/10.3390/d17090631 - 8 Sep 2025
Viewed by 2168
Abstract
The fossiliferous Dursunlu Lignite Quarry (DLQ) is highlighted prominently in the archeological and paleontological literature because of the study of Pleistocene fauna and lithic artifacts, being considered the oldest Paleolithic site in Türkiye. Although the fauna and flora assemblage from DLQ are reasonably [...] Read more.
The fossiliferous Dursunlu Lignite Quarry (DLQ) is highlighted prominently in the archeological and paleontological literature because of the study of Pleistocene fauna and lithic artifacts, being considered the oldest Paleolithic site in Türkiye. Although the fauna and flora assemblage from DLQ are reasonably well known, taxonomic studies devoted to some groups, such as ostracods, mollusks, reptiles, and amphibians, have never been carried out. Here, we describe, illustrate, and study the taxonomic composition and ecological implications of the unpublished material of said groups, together with the aquatic plants and fish, recovered from six samples taken from the palustrine and peat bog facies of the sedimentary sequence. In addition, the recovered charophytes and cyprinids refine our taxonomical knowledge of both aquatic plants and fish. Our results concur with previous paleoenvironmental inferences based on flora and fauna composition—with DLQ representing a very shallow eutrophic lake with a dense palustrine vegetation belt during the cold (glacial) stage of the late Early Pleistocene—as well as highlight the study of all available groups as pivotal for better understanding the paleolake biota. We further conclude that the wetland areas of Dursunlu and surrounding steppe areas appear to have been an excellent environment for sporadic settlement of hominins during the Early Pleistocene, given the availability of food resources and easy access to water. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 2382 KB  
Article
Tracing Ice-Age Legacies: Phylogeography and Glacial Refugia of the Endemic Chiton Tonicina zschaui (Polyplacophora: Ischnochitonidae) in the West Antarctic Region
by M. Cecilia Pardo-Gandarillas, Carolina Márquez-Gajardo, Pamela Morales, Jennifer Catalán, Kristen Poni, Sebastián Rosenfeld, Angie Díaz, Kevin M. Kocot and Christian M. Ibáñez
Diversity 2025, 17(9), 626; https://doi.org/10.3390/d17090626 - 6 Sep 2025
Viewed by 660
Abstract
Phylogeographic studies in Antarctica allow us to understand the demographic events of populations during glacial periods. In this study, the polyplacophoran Tonicina zschaui was analyzed in several localities on the West Antarctic Coast using the mitochondrial gene cytochrome oxidase subunit I (COI). Two [...] Read more.
Phylogeographic studies in Antarctica allow us to understand the demographic events of populations during glacial periods. In this study, the polyplacophoran Tonicina zschaui was analyzed in several localities on the West Antarctic Coast using the mitochondrial gene cytochrome oxidase subunit I (COI). Two genetically distinct populations were identified: one in the Weddell Sea and another across the Antarctic Peninsula and South Shetland Islands. Genetic diversity was generally low to moderate, suggesting limited gene flow and the influence of historical climatic events. Star-like haplotype networks and demographic analyses indicate population contractions during the Last Glaciation followed by postglacial expansion, especially in the Antarctic Peninsula–South Shetland Islands population. Several sites in this region were identified as potential glacial refugia, exhibiting proportionally elevated genetic diversity and exclusive haplotypes. Conversely, the small Weddell Sea population displayed signs of long-term isolation, limited expansion, and low diversity, likely due to stronger environmental constraints and genetic drift. Ocean currents such as the Antarctic Coastal Current, the Antarctic Peninsula Coastal Current and the Weddell Gyre appear to restrict larval dispersal, reinforcing genetic discontinuities. These findings support the hypothesis of glacial survival in localized refugia and postglacial recolonization, a pattern observed in other Antarctic marine invertebrates. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

27 pages, 28758 KB  
Article
Geomorphological Evidence of Ice Activity on Mars Surface at Mid-Latitudes
by Marco Moro, Adriano Nardi, Matteo Albano, Monica Pondrelli, Antonio Piersanti, Michele Saroli, Beatrice Baschetti, Erica Luzzi, Lucia Marinangeli and Nicola Bonora
Remote Sens. 2025, 17(17), 3072; https://doi.org/10.3390/rs17173072 - 3 Sep 2025
Viewed by 2693
Abstract
Extensive radar investigations, observed spectral signatures, geomorphological, and paleoclimate modeling support the presence of mid- to low-latitude ground ice on Mars. The presence of near-surface ice and glacial features has been proposed in Ismenius Lacus, but the ice composition and age remain unconstrained. [...] Read more.
Extensive radar investigations, observed spectral signatures, geomorphological, and paleoclimate modeling support the presence of mid- to low-latitude ground ice on Mars. The presence of near-surface ice and glacial features has been proposed in Ismenius Lacus, but the ice composition and age remain unconstrained. Our high-resolution stereoscopic analysis reveals distinctive landforms, including sharp-edged polyhedra, chevron patterns, and en-echelon open fractures, indicative of plastic glacial deformation. Current climatic conditions may support year-round ice stability, while sharp-edged polyhedra, open fractures, and the absence of superposed craters suggest active glaciation. The Ariguani delta system lacks fluvial signatures but aligns with glacial erosional and depositional processes. Unlike terrestrial glaciers, ice accumulation here is likely driven by escarpment-fed melt from seasonal permafrost thawing under lithostatic pressure, generating neo-glacial flows that sustain the glacial tongue. This mechanism can also explain regional features, including U-shaped valley subsidence, gravitational slides, flow of low-viscosity material lobes, and ring-mold craters. Thus, we propose sharp-edged polyhedra as diagnostic markers for identifying ongoing ice dynamics on Mars, enabling future automated detection of active glacial environments. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

23 pages, 8519 KB  
Article
How Do Climate Change and Deglaciation Affect Runoff Formation Mechanisms in the High-Mountain River Basin of the North Caucasus?
by Ekaterina D. Pavlyukevich, Inna N. Krylenko, Yuri G. Motovilov, Ekaterina P. Rets, Irina A. Korneva, Taisiya N. Postnikova and Oleg O. Rybak
Glacies 2025, 2(3), 10; https://doi.org/10.3390/glacies2030010 - 3 Sep 2025
Viewed by 630
Abstract
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate [...] Read more.
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate that glacier retreat primarily affects streamflow in upper reaches during peak melt (July–October), while precipitation changes influence both annual runoff and peak flows (May–October). Rising temperatures shift snowmelt to earlier periods, increasing runoff in spring and autumn but reducing it in summer. The increase in autumn runoff is also due to the shift between solid and liquid precipitation, as warmer temperatures cause more precipitation to fall as rain, rather than snow. Scenario-based modeling incorporated projected glacier area changes (GloGEMflow-DD) and regional climate data (CORDEX) under RCP2.6 and RCP8.5 scenarios. Simulated runoff changes by the end of the 21st century (2070–2099) compared to the historical period (1977–2005) ranged from −2% to +5% under RCP2.6 and from −8% to +14% under RCP8.5. Analysis of runoff components (snowmelt, rainfall, and glacier melt) revealed that changes in river flow are largely determined by the elevation of snow and glacier accumulation zones and the rate of their degradation. The projected trends are consistent with current observations and emphasize the need for adaptive water resource management and risk mitigation strategies in glacier-fed catchments under climate change. Full article
Show Figures

Figure 1

21 pages, 4090 KB  
Review
Geomagnetic Secular Variation Models for Latitude Scaling of Cosmic Ray Flux and Considerations for 10Be Exposure Dating of Laurentide Ice Sheet Retreat
by Dennis V. Kent, Luca Lanci and Dorothy M. Peteet
Quaternary 2025, 8(3), 47; https://doi.org/10.3390/quat8030047 - 1 Sep 2025
Viewed by 840
Abstract
Published cosmogenic 10Be exposure ages from the terminal moraine of the Laurentide Ice Sheet (LIS) in northeastern North America have been interpreted to date the start of the retreat of the LIS at the Last Glacial Maximum (LGM) about 25 thousand years [...] Read more.
Published cosmogenic 10Be exposure ages from the terminal moraine of the Laurentide Ice Sheet (LIS) in northeastern North America have been interpreted to date the start of the retreat of the LIS at the Last Glacial Maximum (LGM) about 25 thousand years ago (ka). In contrast, published 14C accelerator mass spectrometry (AMS) dates for terrestrial plant macrofossils in LIS basal deglacial clay deposits range back to only ~16 calibrated (cal) ka, more consistent with the timing of glacio-eustatic rise and associated meltwater discharge to the North Atlantic and Gulf of Mexico associated with LGM deglaciation. We apply statistical models of geomagnetic secular variation, including dipole moment, to the latitudinal scaling of cosmic ray flux to see how well the age discrepancy can be addressed. A preferred new scaling, which is essentially time-invariant over the relevant LGM age range, shifts the exposure ages only a few thousand years younger. The age discrepancy may thus stem more from potential local biases toward higher 10Be concentrations (older apparent ages) at the terminal moraine sites, such as much higher 10Be production rates at the LIS front, and especially from inheritance. Such biases can be tested by obtaining primary 10Be calibration sites in the LGM time frame, and by more comprehensive sampling strategies for glaciated terrain to discern inheritance. Full article
Show Figures

Figure 1

18 pages, 8210 KB  
Article
Multi-Model Analyses of Spatiotemporal Variations of Water Resources in Central Asia
by Yilin Zhao, Lu Tan, Xixi Liu, Ainura Aldiyarova, Dana Tungatar and Wenfeng Liu
Water 2025, 17(16), 2423; https://doi.org/10.3390/w17162423 - 16 Aug 2025
Viewed by 789
Abstract
Over the past 70 years, Central Asia has emerged as a globally recognized water security hotspot due to its unique geographic location and uneven distribution of water resources. In arid and semi-arid regions, understanding runoff dynamics under climate change is essential for ensuring [...] Read more.
Over the past 70 years, Central Asia has emerged as a globally recognized water security hotspot due to its unique geographic location and uneven distribution of water resources. In arid and semi-arid regions, understanding runoff dynamics under climate change is essential for ensuring regional water security. This study addresses the data-sparse Central Asian region by applying the ISIMIP3b multi-scenario analysis framework, selecting three representative global hydrological models. Using model intercomparison, trend analysis, and geographically weighted regression, we assess the spatiotemporal evolution of runoff from 1950 to 2080 and investigate the spatial heterogeneity of runoff responses to precipitation and temperature. The results show that under the historical scenario, all models consistently identify similar spatial pattern of runoff, with higher values in southeastern mountainous regions and lower values in western and central regions. However, substantial differences exist in runoff magnitude, with regional annual means of 10, 26, and 68 mm across the three models, respectively. The spatial disparity of runoff distribution is projected to increase under higher SSP scenarios. During the historical period, most of Central Asia experienced a slight decreasing trend in runoff, but the overall trends were −0.022, 0.1, and 0.065 mm/year, respectively. In contrast, future projections indicate a transition to increasing trends, particularly in eastern regions, where trend magnitudes and statistical significance are notably greater than in the west. Meanwhile, the spatial extent of significant trends expands under high-emission scenarios. Precipitation exerts a positive influence on runoff in over 80% of the region, while temperature impacts exhibit strong spatial variability. In the WaterGAP2-2e and MIROC-INTEG-LAND models, temperature has a positive effect on runoff in glaciated plateau regions, likely due to enhanced snow and glacier melt under warming conditions. This study presents a multi-model framework for characterizing climate–runoff interactions in data-scarce and environmentally sensitive regions, offering insights for water resource management in Central Asia. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

16 pages, 5113 KB  
Article
Glaciation in the Kuznetsky Alatau Mountains—Dynamics and Current State According to Sentinel-2 Satellite Images and Field Studies
by Maria Ananicheva, Marina Adamenko and Andrey Abramov
Glacies 2025, 2(3), 9; https://doi.org/10.3390/glacies2030009 - 7 Aug 2025
Viewed by 1019
Abstract
Glaciers and glacierets of the Kuznetsky Alatau Mountains are distributed at altitudes of 1200–1500 m above sea level, which is not typical for continental areas. The main factor contributing to the persistence of glaciation here is abundant winter precipitation. According to ground surface [...] Read more.
Glaciers and glacierets of the Kuznetsky Alatau Mountains are distributed at altitudes of 1200–1500 m above sea level, which is not typical for continental areas. The main factor contributing to the persistence of glaciation here is abundant winter precipitation. According to ground surface temperature measurements, the negative annual values are typical for upper glacier boundaries only. Since intensive study during the compilation of the USSR Glacier Inventory (1965–1980), the glaciation of the region has undergone notable changes. To assess the current state of glaciation, Sentinel-2 satellite images were used; contours of the glaciers were traced on the basis of images from 2021 to 2023. In total, 78 glaciers and 57 glacierets were identified. UAV imagery and field inspection were used for validation. The total glaciated area has reduced from 8.5 to 3.1 km2, which is 50–75% for selected river basins, with slope morphological types decreasing the most. According to our opinion, the morphological classification requires clarification due to absence of hanging glaciers, described previously. Full article
Show Figures

Graphical abstract

37 pages, 9057 KB  
Review
Palaeoclimatic Geoheritage in the Age of Climate Change: Educational Use of the Pleistocene Glacial and Periglacial Geodiversity
by Paweł Wolniewicz and Maria Górska-Zabielska
Geosciences 2025, 15(8), 294; https://doi.org/10.3390/geosciences15080294 - 2 Aug 2025
Viewed by 1859
Abstract
The lithological record of past climates and climate changes reveals significant potential in enhancing education and understanding of global climate changes and their impacts on contemporary societies. A relatively young geological record of Pleistocene cooling and glaciations serves as one of the most [...] Read more.
The lithological record of past climates and climate changes reveals significant potential in enhancing education and understanding of global climate changes and their impacts on contemporary societies. A relatively young geological record of Pleistocene cooling and glaciations serves as one of the most useful geo-educational tools. The present study encompasses a comprehensive review of ongoing efforts to assess and communicate the glacial geoheritage of the Pleistocene, with a detailed case study of Poland. A literature review is conducted to evaluate the extent of scientific work on inventorying and communicating the geodiversity of Pleistocene glacial and periglacial environments globally. The study demonstrates a steady increase in the number of scientific contributions focused on the evaluation and promotion of Pleistocene geoheritage, with a notable transition from the description of geosites to the establishment of geoconservation practices and educational strategies. The relative complexity of the palaeoclimatic record and the presence of glacial geodiversity features across extensive areas indicate that effective scientific communication of climate changes requires careful selection of a limited number of geodiversity elements and sediment types. In this context, the use of glacial erratic boulders and rock gardens for promotion of Pleistocene glacial geoheritage is advocated, and the significance of educational initiatives for local communities and the preservation of geocultural heritage is outlined in detail. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Geoheritage and Geoconservation)
Show Figures

Figure 1

22 pages, 6820 KB  
Article
Bathymetric Profile and Sediment Composition of a Dynamic Subtidal Bedform Habitat for Pacific Sand Lance
by Matthew R. Baker, H. G. Greene, John Aschoff, Michelle Hoge, Elisa Aitoro, Shaila Childers, Junzhe Liu and Jan A. Newton
J. Mar. Sci. Eng. 2025, 13(8), 1469; https://doi.org/10.3390/jmse13081469 - 31 Jul 2025
Cited by 1 | Viewed by 942
Abstract
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent [...] Read more.
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent features within these glaciated shorelines and provide critical habitat to sand lance (Ammodytes spp.). Despite an awareness of the importance of these benthic habitats, attributes related to their structure and characteristics remain undocumented. We explored the micro-bathymetric morphology of a subtidal sand wave field known to be a consistent habitat for sand lance. We calculated geomorphic attributes of the bedform habitat, analyzed sediment composition, and measured oceanographic properties of the associated water column. This feature has a streamlined teardrop form, tapered in the direction of the predominant tidal current. Consistent flow paths along the long axis contribute to well-defined and maintained bedform morphology and margin. Distinct patterns in amplitude and period of sand waves were documented. Strong tidal exchange has resulted in well-sorted medium-to-coarse-grained sediments with coarser sediments, including gravel and cobble, within wave troughs. Extensive mixing related to tidal currents results in a highly oxygenated water column, even to depths of 80 m. Our analysis provides unique insights into the physical characteristics that define high-quality habitat for these fish. Further work is needed to identify, enumerate, and map the presence and relative quality of these benthic habitats and to characterize the oceanographic properties that maintain these benthic habitats over time. Full article
(This article belongs to the Special Issue Dynamics of Marine Sedimentary Basin)
Show Figures

Figure 1

13 pages, 3303 KB  
Article
Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns
by Dmitry A. Ruban
Diversity 2025, 17(8), 505; https://doi.org/10.3390/d17080505 - 23 Jul 2025
Viewed by 654
Abstract
Recent updates to the reconstructions of Cenozoic environmental changes (global sea level, temperature, and atmospheric carbon dioxide content) have made it intriguing to compare them to paleontological records for original interpretations. Paleogene brachiopods have remained in the shadow of their Paleozoic–Mesozoic predecessors, and [...] Read more.
Recent updates to the reconstructions of Cenozoic environmental changes (global sea level, temperature, and atmospheric carbon dioxide content) have made it intriguing to compare them to paleontological records for original interpretations. Paleogene brachiopods have remained in the shadow of their Paleozoic–Mesozoic predecessors, and the reactions of their diversity to the Earth’s dramatic changes are poorly understood. The present work aims to fill this gap via a comparison of several diversity and paleoenvironmental curves. The generic diversity was established by stages with two essentially different paleontological datasets, and several fresh paleoenvironmental reconstructions were adopted. It was observed that neither Paleogene eustatic fluctuations nor changes in the atmospheric carbon dioxide content correspond well to the generic diversity dynamics of brachiopods. The changes in the total number of genera and the global temperatures demonstrate similarity at the Danian–Ypresian interval, but not later. The fluctuations in the brachiopod diversity are near the same level during the Eocene–Oligocene, despite strong paleoenvironmental changes, implying the intrinsic resistivity of these organisms to external influences. Additionally, the Cretaceous/Paleogene mass extinction, the Paleocene–Eocene thermal maximum, and the Early Eocene optimum could enhance the diversity dynamics together with the long-term temperature changes. In contrast, the influences of the Late Danian warming event and the Oi-1 glaciation were not observed. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

16 pages, 3471 KB  
Article
Reconstruction of Pleistocene Evolutionary History of the Root Vole Alexandromys oeconomus (Cricetidae, Rodentia) in Northern Asia
by Tatyana V. Petrova, Andrey A. Lissovsky, Semyon Yu. Bodrov, Aivar V. Kuular, Nikolay I. Putintsev, Munkhtsog Bariushaa and Natalia I. Abramson
Diversity 2025, 17(7), 497; https://doi.org/10.3390/d17070497 - 20 Jul 2025
Viewed by 591
Abstract
Previous phylogeographic study of the root vole (Alexandromys oeconomus) revealed four mitochondrial cytochrome b lineages—North and Central European, North (=Central) Asian and Beringian. Three of them were studied in detail, while the North Asian lineage, which occupies the most extensive territory [...] Read more.
Previous phylogeographic study of the root vole (Alexandromys oeconomus) revealed four mitochondrial cytochrome b lineages—North and Central European, North (=Central) Asian and Beringian. Three of them were studied in detail, while the North Asian lineage, which occupies the most extensive territory and is considered to be the place of origin for the species, was understudied. In the framework of the current study, we obtained 95 new sequences (34 localities) from the wide territory of Northern Asia and in total, examined 940 specimens from 181 localities throughout the species’ distribution range. The North Asian lineage was found to be more diverse than the Beringian and the European lineages. Southern Siberia and especially the Altai–Sayan region displayed the highest haplotype and nucleotide diversity, suggesting the region’s role as a genetic diversity hotspot. We suppose that the expansion of the North Asian lineage started from Western Transbaikalia. Its representatives colonised the territory from the Urals to the northern shore of the Okhotsk Sea, and then spread in the opposite direction, to Southern Siberia. As a result, a mixture of haplogroups is observed in the Altai–Sayan region. According to the BEAST analysis calibrated with the first A. oeconomus records, the MRCA of North Asian and Beringian lineages is dated back to ~0.82 Mya, and the first divergence within the North Asian lineage may have occurred ~0.6 Mya. When compared with colonisation times of other representatives of the Arvicolinae subfamily, our dating seems to be overestimated. In this regard, molecular data for dated fossil remains of the root vole are essential for subsequent studies. Full article
Show Figures

Graphical abstract

16 pages, 2100 KB  
Review
Romanian Dendrocoelidae Hallez, 1892 (Platyhelminthes, Tricladida, Dendrocoelidae) Revisited: A Tribute to Radu Codreanu and Doina Balcesco
by Anda Felicia Babalean
Biology 2025, 14(7), 887; https://doi.org/10.3390/biology14070887 - 19 Jul 2025
Viewed by 483
Abstract
This paper presents the current state of knowledge on the Romanian Dendrocoelidae as part of the European/Palearctic Dendrocoelidae, emphasizing the contributions of the Romanian zoologists Radu Codreanu and Doina Balcesco. The main objective of this work was to identify the knowledge gaps for [...] Read more.
This paper presents the current state of knowledge on the Romanian Dendrocoelidae as part of the European/Palearctic Dendrocoelidae, emphasizing the contributions of the Romanian zoologists Radu Codreanu and Doina Balcesco. The main objective of this work was to identify the knowledge gaps for future alignment with current standards. This article presents the species inventory and a short historical overview of the classical phylogenetic system and discusses some morphological characters used in the systematics of the group. This study also analyzes the arguments (and hypotheses) put forward by Codreanu, Balcesco, and other authors regarding the phylogenetic value of various factors, including (a) the position of the oviducts between the male atrium and the bursal canal (typical for Paradendrocoelum); (b) the eyes and the penial flagellum in relation to the palaeogeographical context governed by the Quaternary Glaciation; and (c) the point of view of Codreanu and Balcesco on the origin and composition of the actual Romanian Dendrocoelidae fauna. The major key finding is that the Dendrocoelidae species in Romania should be reinvestigated in an integrative way, and specific research needs and future directions are suggested. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

Back to TopTop