Tracing Ice-Age Legacies: Phylogeography and Glacial Refugia of the Endemic Chiton Tonicina zschaui (Polyplacophora: Ischnochitonidae) in the West Antarctic Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Mitochondrial DNA Analyses: Genetic Diversity, Genealogy, and Structuring
2.3. Demographic and Phylogeographic Analyses
3. Results
3.1. Genetic Diversity and Genealogical Relationships
3.2. Genetic Population Structure
3.3. Demographic History
3.4. Phylogeographic Inference
4. Discussion
4.1. Genetic Diversity
4.2. Genetic Population Structure
4.3. Demography and Phylogeographic History
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grobe, H.; Mackensen, A. Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin. In The Antarctic Paleoenvironment: A Perspective on Global Change; Antarctic Research Series; American Geophysical Union: Washington, DC, USA, 1992; Volume 56, pp. 349–376. [Google Scholar]
- Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 2002, 21, 203–231. [Google Scholar] [CrossRef]
- Thatje, S.; Hillenbrand, C.D.; Larter, R. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 2005, 20, 534–540. [Google Scholar] [CrossRef]
- Thornhill, D.J.; Mahon, A.R.; Norenburg, J.L.; Halanych, K.M. Open-ocean barriers to dispersal: A test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 2008, 17, 5104–5117. [Google Scholar] [CrossRef]
- Pearse, J.S.; Mooi, R.; Lockhart, S.J.; Brandt, A. Brooding and species diversity in the Southern Ocean: Selection for brooders or speciation within brooding clades? In Smithsonian at the Poles: Contributions to International Polar Year Science; Krupnik, I., Lang, M.A., Miller, S.E., Eds.; Smithsonian Institution Press: Washington, DC, USA, 2009; pp. 181–196. [Google Scholar]
- Wilson, N.G.; Schröld, M.; Halanych, K.M. Ocean barriers and glaciation: Evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 2009, 18, 965–984. [Google Scholar] [CrossRef]
- Allcock, A.L.; Barratt, I.; Eléaume, M.; Linse, K.; Norman, M.D.; Smith, P.J. Cryptic speciation and the circumpolarity debate: A case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res. II 2011, 58, 242–249. [Google Scholar] [CrossRef]
- Baird, H.P.; Miller, K.J.; Stark, J.S. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol. Ecol. 2011, 20, 3439–3454. [Google Scholar] [CrossRef]
- Provan, J.; Bennett, K.D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 2008, 23, 564–571. [Google Scholar] [CrossRef]
- Díaz, A.; Gerard, K.; González-Wevar, C.; Maturana, C.; Féral, J.P.; David, B.; Poulin, E. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS ONE 2018, 13, e0197611. [Google Scholar] [CrossRef]
- Ibáñez, C.M.; Rezende, E.L.; Sepúlveda, R.D.; Avaria-Llautureo, J.; Hernández, C.E.; Sellanes, J.; Pardo-Gandarillas, M.C. Thorson’s rule, life-history evolution, and diversification of benthic octopuses (Cephalopoda: Octopodoidea). Evolution 2018, 72, 1829–1839. [Google Scholar] [CrossRef]
- Thatje, S.; Hillenbrand, C.D.; Mackensen, A.; Larter, R. Life hung by a thread: Endurance of Antarctic fauna in glacial periods. Ecology 2008, 89, 682–692. [Google Scholar] [CrossRef]
- Convey, P.; Bindschadler, R.; Di Prisco, G.; Fahrbach, E.; Gutt, J.; Hodgson, D.A.; ACCE Consortium. Antarctic climate change and the environment. Antarct. Sci. 2009, 21, 541–563. [Google Scholar] [CrossRef]
- Poulin, E.; Palma, A.T.; Féral, J.P. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol. Evol. 2002, 17, 218–222. [Google Scholar] [CrossRef]
- Allcock, A.L.; Strugnell, J.M. Southern Ocean diversity: New paradigms from molecular ecology. Trends Ecol. Evol. 2012, 27, 520–528. [Google Scholar] [CrossRef]
- Fraser, C.I.; Nikula, R.; Ruzzante, D.E.; Waters, J.M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 2012, 27, 462–471. [Google Scholar] [CrossRef]
- Hemery, L.G.; Eléaume, M.; Roussel, V.; Améziane, N.; Gallut, C.; Steinke, D.; Wilson, N. Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol. Ecol. 2012, 21, 2502–2518. [Google Scholar] [CrossRef]
- González-Wevar, C.A.; David, B.; Poulin, E. Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula. Deep-Sea Res. II 2011, 58, 220–229. [Google Scholar] [CrossRef]
- Strugnell, J.M.; Allcock, A.L.; Watts, P.C. Closely related octopus species show different spatial genetic structures in response to the Antarctic seascape. Ecol. Evol. 2017, 7, 8087–8099. [Google Scholar] [CrossRef]
- González-Wevar, C.; Segovia, N.; Rosenfeld, S.; Doll, D.; Maturana, C.S.; Naretto, J.; Hüne, M.; Gérard, K.; Díaz, A.; Spencer, H.G.; et al. Contrasting biogeographical patterns in Margarella (Gastropoda: Calliostomatidae: Margarellinae) across the Antarctic Polar Front. Mol. Phylogenet. Evol. 2021, 156, 107039. [Google Scholar] [CrossRef]
- Levicoy, D.; Flores, K.; Rosenfeld, S.; Cárdenas, L. Phylogeography and genetic diversity of the microbivalve Kidderia subquadrata, reveals new data from West Antarctic Peninsula. Sci. Rep. 2021, 11, 5705. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Féral, J.P.; David, B.; Saucède, T.; Poulin, E. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res. II 2011, 58, 205–211. [Google Scholar] [CrossRef]
- De Broyer, C.; Danis, B. How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res. II 2011, 58, 5–17. [Google Scholar] [CrossRef]
- Sirenko, B. Leptochiton antarcticus (Mollusca, Polyplacophora)—A new species from the Southern Ocean. Ruthenica 2015, 25, 139–146. [Google Scholar]
- Schwabe, E.; Kohlberg, G.; Schories, D. Chitons, Polyplacophora. In Marine Wildlife, King George Island, Antarctica; Schories, D., Kohlberg, G., Eds.; Dirk Schories: Rostok, Germany, 2016; 348p. [Google Scholar]
- Ibáñez, C.M.; Rosenfeld, S.; Carvajal, I.; Catalán, J.; Zapata-Hernández, G.; Gacitúa-Leible, M.; Vargas, R.; Morales, P.; Díaz, A.; Carrasco, S.A.; et al. Polyplacophoran assemblages in shallow waters of the West Antarctic Peninsula: Patterns of diversity, composition and abundance. Ecologies 2025, 6, 23. [Google Scholar] [CrossRef]
- Eernisse, D.J. Chitons. In Encyclopedia of Tidepools and Rocky Shores; Denny, M.W., Gaines, S.D., Eds.; University of California Press: Berkeley, CA, USA, 2007; pp. 127–133. [Google Scholar]
- Sirenko, B.I. The enigmatic viviparous chiton Calloplax vivipara (Plate, 1899) (Mollusca: Polyplacophora) and a survey of the types of reproduction in chitons. Russ. J. Mar. Biol. 2015, 41, 24–31. [Google Scholar] [CrossRef]
- Zettler, M.L.; Bick, A. Molluscs from a shallow bay of King George Island (Antarctica, South Shetland Islands): An annotated checklist with new distributional records. Zootaxa 2025, 5631, 401–450. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Aljanabi, S.M.; Martínez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef] [PubMed]
- Filatov, D.A. Processing and population genetic analysis of multigenic datasets with ProSeq3 software. Bioinformatics 2009, 25, 3189–3190. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Salzburger, W.; Ewing, G.B.; Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 2011, 20, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Guillot, G.; Santos, F.; Estoup, A. Analysing georeferenced population genetics data with ‘GENELAND’: A new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 2008, 24, 1406–1407. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: http://www.r-project.org/ (accessed on 10 January 2025).
- Rambaut, A.; Drummond, A.J. Tracer v1.5. Available online: http://tree.bio.ed.ac.uk/software/tracer (accessed on 10 January 2025).
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical properties of segregating sites. Theor. Pop. Biol. 1995, 48, 172–197. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef]
- Choi, E.H.; Yeo, M.Y.; Kim, G.; Park, B.; Shin, C.R.; Baek, S.Y.; Hwang, U.W. Liolophura species discrimination with geographical distribution patterns and their divergence and expansion history on the northwestern Pacific coast. Sci. Rep. 2021, 11, 5705. [Google Scholar] [CrossRef]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef]
- Raupach, M.J.; Thatje, S.; Dambach, J.; Rehm, P.; Misof, B.; Leese, F. Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar. Biol. 2010, 157, 1783–1797. [Google Scholar] [CrossRef]
- Díaz, A.; González-Wevar, C.A.; Maturana, C.S.; Palma, A.T.; Poulin, E.; Gerard, K. Restricted geographic distribution and low genetic diversity of the brooding sea urchin Abatus agassizii (Spatangoidea: Schizasteridae) in the South Shetland Islands: A bridgehead population before the spread to the northern Antarctic Peninsula? Rev. Chil. Hist. Nat. 2012, 85, 457–468. [Google Scholar] [CrossRef]
- Guillemin, M.L.; Dubrasquet, H.; Reyes, J.; Valero, M. Comparative phylogeography of six red algae along the Antarctic Peninsula: Extreme genetic depletion linked to historical bottlenecks and recent expansion. Polar Biol. 2018, 41, 827–837. [Google Scholar] [CrossRef]
- Hyman, L.H. The Invertebrates: Mollusca I; McGraw-Hill: New York, NY, USA, 1967; Volume VI, 72p. [Google Scholar]
- Eernisse, D.J. Reproductive patterns in six species of Lepidochitona (Mollusca: Polyplacophora) from the Pacific coast of North America. Biol. Bull. 1988, 174, 287–302. [Google Scholar] [CrossRef]
- Fernández, R.; Lemer, S.; McIntyre, E.; Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. 2015, 36, 701–715. [Google Scholar] [CrossRef]
- Thiel, M.; Gutow, L. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr. Mar. Biol. 2005, 43, 279–418. [Google Scholar]
- Salloum, P.M.; De Villemereuil, P.; Santure, A.W.; Waters, J.M.; Lavery, S.D. Hitchhiking consequences for genetic and morphological patterns: The influence of kelp-rafting on a brooding chiton. Biol. J. Linn. Soc. 2020, 130, 756–770. [Google Scholar] [CrossRef]
- Fraser, C.I.; Dutoit, L.; Morrison, A.K.; Pardo, L.M.; Smith, S.D.A.; Pearman, W.S.; Macaya, E.C. Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Curr. Biol. 2022, 32, 3154–3160.e3153. [Google Scholar] [CrossRef]
- Macaya, E.C.; Tala, F.; Hinojosa, I.A.; Rothäusler, E. Detached seaweeds as important dispersal agents across the Southern Ocean. In Antarctic Seaweeds; Springer: Cham, Switzerland, 2020; pp. 59–81. [Google Scholar] [CrossRef]
- González-Wevar, C.A.; Poveda, Y.; Segovia, N.I.; Rosenfeld, S.; Maturana, C.S.; Jeldres, V.; Poulin, E. Both high and low dispersal? Apparently contradictory genetic patterns in the Antarctic littorinid gastropod Laevilacunaria antarctica. Front. Ecol. Evol. 2024, 11, 1320649. [Google Scholar] [CrossRef]
- Waters, J.M.; King, T.M.; Fraser, C.I.; Craw, D. An integrated ecological, genetic, and geological assessment of long-distance dispersal by invertebrates on kelp rafts. Front. Biogeogr. 2018, 10, e40888. [Google Scholar] [CrossRef]
- Moffat, C.; Beardsley, R.C.; Owens, B.; Van Lipzig, N. A first description of the Antarctic Peninsula Coastal Current. Deep-Sea Res. II: Top. Stud. 2008, 55, 277–293. [Google Scholar] [CrossRef]
- Moffat, C.; Meredith, M. Shelf–ocean exchange and hydrography west of the Antarctic Peninsula: A review. Philos. Transact. A Math. Phys. Eng. Sci. 2018, 376, 20170164. [Google Scholar] [CrossRef]
- Bernal-Durán, V.; Donoso, D.; Piñones, A.; Jonsson, P.R.; Benestan, L.; Landaeta, M.F.; Naretto, J.; Gerard, K.; Haye, P.A.; González-Wevar, C.; et al. Combining population genomics and biophysical modelling to assess connectivity patterns in an Antarctic fish. Mol. Ecol. 2024, 33, e17360. [Google Scholar] [CrossRef] [PubMed]
- Mix, A.C.; Bard, E.; Schneider, R. Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 2001, 20, 627–657. [Google Scholar] [CrossRef]
- Pflaumann, U.; Sarnthein, M.; Chapman, M.; d’Abreu, L.; Funnell, B.; Huels, M.; Weinelt, M. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 2003, 18, 1065. [Google Scholar] [CrossRef]
- Maggs, C.A.; Castilho, R.; Foltz, D.; Henzler, C.; Jolly, M.T.; Kelly, J.; Olsen, J.; Perez, K.E.; Stam, W.; Väinölä, R.; et al. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 2008, 89, S108–S122. [Google Scholar] [CrossRef] [PubMed]
- Le Brocq, A.M.; Bentley, M.J.; Hubbard, A.; Fogwill, C.J.; Sugden, D.E.; Whitehouse, P.L. Reconstructing the Last Glacial Maximum ice sheet in the Weddell Sea embayment, Antarctica, using numerical modelling constrained by field evidence. Quat. Sci. Rev. 2011, 30, 2422–2432. [Google Scholar] [CrossRef]
- Dietz, L.; Dömel, J.S.; Leese, F.; Mahon, A.R.; Mayer, C. Phylogenomics of the longitarsal Colossendeidae: The evolutionary history of an Antarctic sea spider radiation. Mol. Phylogenet. Evol. 2019, 136, 206–214. [Google Scholar] [CrossRef]
Regions | Location | N | K | S | Hd | π | Π |
---|---|---|---|---|---|---|---|
Weddell Sea | Vega Island (IV) | 14 | 3 | 2 | 0.275 | 0.0004 | 0.286 |
Esperanza Bay (ES) | 3 | 2 | 1 | 0.667 | 0.001 | 0.667 | |
Barrios Island (IB) | 15 | 5 | 6 | 0.629 | 0.003 | 1.714 | |
West Peninsula | Duroch Island (ID) | 15 | 4 | 6 | 0.371 | 0.001 | 0.800 |
Estay Inlet (IE) | 14 | 9 | 10 | 0.879 | 0.005 | 2.956 | |
King George Island | Becerra Inlet (BE) | 10 | 3 | 2 | 0.378 | 0.001 | 0.400 |
Artigas Station (AR) | 17 | 2 | 1 | 0.118 | 0.000 | 0.118 | |
Greenwich Island | Orion Point (PO) | 33 | 6 | 7 | 0.538 | 0.001 | 1.489 |
Cecilia Island (IC) | 34 | 1 | 0 | 0.000 | 0.000 | 0.000 | |
Prat Base (PT) | 23 | 3 | 4 | 0.170 | 0.001 | 0.348 | |
Doumer Island | Biscoe Point (BP) | 14 | 6 | 7 | 0.604 | 0.002 | 1.000 |
Yelcho Station (YE) | 29 | 5 | 4 | 0.261 | 0.000 | 0.276 | |
Margarite Bay | Horseshoe Bay (HE) | 9 | 2 | 1 | 0.222 | 0.000 | 0.222 |
Carvajal Station (BC) | 14 | 3 | 2 | 0.385 | 0.001 | 0.407 | |
Total | 244 | 29 | 23 | 0.437 | 0.002 | 1.116 |
FST\ΦST | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Artigas Station | 0.027 | 0.005 | 0.016 | 0.308 | 0.018 | 0.148 | 0.044 | 0.006 | 0.245 | 0.940 | 0.120 | 0.007 | 0.009 | |
2 Becerra Inlet | 0.023 | 0.022 | 0.026 | 0.070 | 0.003 | 0.091 | 0.144 | 0.011 | 0.178 | 0.897 | 0.075 | 0.008 | 0.013 | |
3 Biscoe Point | 0.089 | 0.017 | 0.014 | 0.051 | 0.024 | 0.082 | 0.071 | 0.001 | 0.179 | 0.800 | 0.033 | 0.016 | 0.026 | |
4 Carvajal Station | 0.011 | 0.027 | 0.020 | 0.097 | 0.021 | 0.122 | 0.146 | 0.016 | 0.200 | 0.897 | 0.109 | 0.031 | 0.041 | |
5 Esperanza Bay | 0.251 | 0.046 | 0.099 | 0.024 | 0.149 | 0.004 | 0.732 | 0.025 | 0.047 | 0.901 | 0.025 | 0.114 | 0.167 | |
6 Horseshoe Bay | 0.025 | 0.041 | 0.016 | 0.016 | 0.053 | 0.085 | 0.177 | 0.023 | 0.171 | 0.920 | 0.083 | 0.014 | 0.008 | |
7 Barrios Island | 0.153 | 0.023 | 0.012 | 0.040 | 0.071 | 0.062 | 0.256 | 0.021 | 0.010 | 0.744 | 0.147 | 0.149 | 0.181 | |
8 Cecilia Island | 0.044 | 0.234 | 0.285 | 0.218 | 0.732 | 0.177 | 0.343 | 0.060 | 0.381 | 0.974 | 0.184 | 0.018 | 0.006 | |
9 Duroch Island | 0.015 | 0.040 | 0.003 | 0.018 | 0.027 | 0.037 | 0.013 | 0.162 | 0.122 | 0.844 | 0.104 | 0.001 | 0.009 | |
10 Estay Inlet | 0.266 | 0.104 | 0.031 | 0.109 | 0.050 | 0.158 | 0.005 | 0.472 | 0.110 | 0.679 | 0.242 | 0.268 | 0.302 | |
11 Vega Island | 0.811 | 0.681 | 0.532 | 0.670 | 0.641 | 0.747 | 0.544 | 0.918 | 0.676 | 0.423 | 0.594 | 0.894 | 0.915 | |
12 Orion Point | 0.089 | 0.006 | 0.017 | 0.023 | 0.051 | 0.029 | 0.032 | 0.196 | 0.018 | 0.087 | 0.498 | 0.084 | 0.148 | |
13 Prat Base | 0.025 | 0.008 | 0.081 | 0.033 | 0.185 | 0.033 | 0.144 | 0.045 | 0.007 | 0.265 | 0.780 | 0.068 | 0.009 | |
14 Yelcho Station | 0.012 | 0.018 | 0.050 | 0.007 | 0.077 | 0.039 | 0.103 | 0.063 | 0.022 | 0.220 | 0.734 | 0.058 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo-Gandarillas, M.C.; Márquez-Gajardo, C.; Morales, P.; Catalán, J.; Poni, K.; Rosenfeld, S.; Díaz, A.; Kocot, K.; Ibáñez, C.M. Tracing Ice-Age Legacies: Phylogeography and Glacial Refugia of the Endemic Chiton Tonicina zschaui (Polyplacophora: Ischnochitonidae) in the West Antarctic Region. Diversity 2025, 17, 626. https://doi.org/10.3390/d17090626
Pardo-Gandarillas MC, Márquez-Gajardo C, Morales P, Catalán J, Poni K, Rosenfeld S, Díaz A, Kocot K, Ibáñez CM. Tracing Ice-Age Legacies: Phylogeography and Glacial Refugia of the Endemic Chiton Tonicina zschaui (Polyplacophora: Ischnochitonidae) in the West Antarctic Region. Diversity. 2025; 17(9):626. https://doi.org/10.3390/d17090626
Chicago/Turabian StylePardo-Gandarillas, M. Cecilia, Carolina Márquez-Gajardo, Pamela Morales, Jennifer Catalán, Kristen Poni, Sebastián Rosenfeld, Angie Díaz, Kevin Kocot, and Christian M. Ibáñez. 2025. "Tracing Ice-Age Legacies: Phylogeography and Glacial Refugia of the Endemic Chiton Tonicina zschaui (Polyplacophora: Ischnochitonidae) in the West Antarctic Region" Diversity 17, no. 9: 626. https://doi.org/10.3390/d17090626
APA StylePardo-Gandarillas, M. C., Márquez-Gajardo, C., Morales, P., Catalán, J., Poni, K., Rosenfeld, S., Díaz, A., Kocot, K., & Ibáñez, C. M. (2025). Tracing Ice-Age Legacies: Phylogeography and Glacial Refugia of the Endemic Chiton Tonicina zschaui (Polyplacophora: Ischnochitonidae) in the West Antarctic Region. Diversity, 17(9), 626. https://doi.org/10.3390/d17090626