An Integrated Paleoenvironmental Reconstruction of the Early Pleistocene Hominin-Bearing Site of Dursunlu (Türkiye)
Abstract
1. Introduction
1.1. The Hominin-Bearing Site of Dursunlu Lignite Quarry
1.1.1. Historical Background
1.1.2. Chronological Background and Aims
2. Geographical and Geological Setting
3. Material and Methods
4. Results
The Floral and Faunal Assemblage
5. Discussion
5.1. Paleoenvironmental Reconstruction of Dursunlu Paleolake
5.2. Potential Resources for Homo During the Early Pleistocene
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güleç, E.; Howell, F.C.; White, T. Dursunlu—A new Lower Pleistocene artifact-bearing locality in southern Anatolia. In Hominid Evolution: Lifestyles and Survival Strategies; Ullrich, H., Ed.; Archaea: Gelsenkirchen, Germany, 1999; pp. 349–364. [Google Scholar]
- Güleç, E.; White, T.; Kuhn, S.; Özer, I.; Sagır, M.; Yımaz, H.; Howel, F.C. The Lower Pleistocene lithic assemblage from Dursunlu (Konya), central Anatolia, Turkey. Antiquity 2009, 83, 11–22. [Google Scholar] [CrossRef]
- Yavuz, N.; Saraç, G.; Ilgar, A.; Tuncay, E.; Bozkurt, A.; Ergen, A. Palynology of the Lower Palaeolithic Dursunlu hominin site, Central Anatolia, Türkiye. Mediterr. Geosci. Rev. 2024, 6, 639–650. [Google Scholar] [CrossRef]
- Ünay, E.; Karabıyıkoğlu, M.; Kazancı, N.; Saraç, G. The Dursunlu open cast mine. In Volume of Abstracts and Excursion Guide. INTER-INQUA Colloquium on Milankovitch and Plio-Pleistocene Vegetation Successions from 2.6 to 0.9, Ankara, Türkiye, 29 March–1 April 1997; Leroy, S.A., Ravazzi, C., Eds.; IQUA: Milano, Italy, 1997; pp. 69–74. [Google Scholar]
- Demirci, E.; Sanjuan, J.; Tunoğlu, C. Early Pleistocene charophyte flora from Dursunlu (Ilgın Basin, Turkey): Paleoecological implications. Rev. Palaeobot. Palynol. 2023, 311, 104848. [Google Scholar] [CrossRef]
- Blanco-Lapaz, À.; Luján, À.H.; Demirci, E.; Sanjuan, J. Early Pleistocene freshwater fish from Dursunlu (Ilgın Basin, south-western Türkiye): Implications for early hominin dispersals out of Africa. Quat. Environ. Hum. 2024, 2, 100029. [Google Scholar] [CrossRef]
- Koopman, M. A Fault Kinematic and Geomorphological Study of the Late Cenozoic Ilgın Basin, Central Anatolia, Türkiye. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2011. [Google Scholar]
- Louchart, A.; Mourer-Chauvite, C.; Güleç, E.; Howell, F.C.; White, T.D. L’avifaune de Dursunlu Turquie, Pleistocene inferieur: Climat, environnement et biogeographie. Comptes Rendus L’académie Sci. Ser. IIA Earth Planet. Sci. 1998, 327, 341–346. [Google Scholar] [CrossRef]
- Howell, F.C.; White, T.D.; Güleç, E.; Saraç, G.; Curtis, G.H. Dursunlu, Lower Pleistocene Faunal and Archeological Locality, Konya Basin, Anatolia (Turkey). In Los Homínidos y su Entorno en el Pleistoceno Inferior de Eurasia Actas del Congreso Internacional de Paleontología Humana; Gibert, J., Sánchez, F., Gibert, L., Ribot, F., Eds.; Dialnet: La Rioja, Spain, 1999; pp. 459–468. [Google Scholar]
- Güleç, E.; Howell, F.C.; White, T.; Karabıyıkoğlu, M. Anadolu’da İlk İnsan İzleri: Dursunlu Alt Paleolitik Buluntu Yeri. Ank. Üniversitesi Dil ve Tar. Coğrafya Fakültesi Antropoloji Derg. 2002, 15, 79–90. [Google Scholar]
- Saraç, G. Anadolu’nun bilinen en eski sakinleri. Mavi Gezegen 2001, 4, 12–17. [Google Scholar]
- Kuhn, S.L.; Dinçer, B.; Balkan-Atlı, N.; Erturaç, M.K. Paleolithic occupations of the Göllü Dağ, Central Anatolia, Turkey. J. Field Archaeol. 2015, 40, 581–602. [Google Scholar] [CrossRef]
- Yavuz-Işık, N.; Saraç, G.; Ünay, E.; de Bruijn, H. Palynological analysis of neogene mammal sites of Turkey-vegetational and climatic implications. Yerbilimleri 2011, 32, 105–120. [Google Scholar]
- Tuncer, A. Ostracoda Taxonomy and Biostratigraphy in the Yalvaç and Ilgın Continental Neogene Basins (Southwest Anatolia): Ostracoda-Based Paleoenvironmental and Paleoclimatic Approaches. Ph.D. Thesis, Hacettepe University, Ankara, Türkiye, 2020. (In Turkish). [Google Scholar]
- Koçyiğit, A.; Ünay, E.; Saraç, G. Episodic graben formation and extensional neotectonic regime in West Central Anatolia and the Isparta Angle: A case study in the Aksehir-Afyon graben, Turkey. Geol. Soc. Lond. Spec. Publ. Vol. 2000, 173, 405–421. [Google Scholar] [CrossRef]
- Özgül, N.; Bölükbaşı, S.; Alkan, H.; Öztaş, Y.; Korucu, M. Sultandağları-Sandıklı-Homa-Akdağ yöresinin Jeolojisi; Report No: 3028; Türkiye Petrolleri (TPAO) Anonim Ortaklığı: Ankara, Türkiye, 1991.
- Göncüoğlu, M.C.; Çapkınoğlu, Ş.; Gürsu, S.; Noble, P.; Turhan, N.; Tekin, U.K.; Okuyucu, C.; Göncüoğlu, Y. The Mississippian in the Central and Eastern Taurides (Turkey): Constraints on the tectonic setting of the Tauride-Anatolide Platform. Geol. Carpathica 2007, 58, 427–442. [Google Scholar]
- Güngör, T. Kinematics of the Central Taurides during Neotethys closure and collision, the nappes in the Sultan Mountains, Turkey. Int. J. Earth Sci. 2013, 102, 1381–1402. [Google Scholar] [CrossRef]
- Ergen, A.; Bozkurt, A.; Ilgar, A.; Tuncay, E.; Doğan, A. Sultandağları’nın Jeolojisi ve Jeodinamik Evrimi. In Proceedings of the Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye, 15 April 2021; Report No: 13958. 241p. [Google Scholar]
- Ilgar, A.; Ergen, A.; Bozkurt, A.; Tuncay, E. Sedimentology and Miocene-Pliocene depositional evolution of the stream-dominated alluvial fan deposits at circum-Sultandağları region. Bull. Miner. Res. Explor. 2022, 168, 43–66. [Google Scholar] [CrossRef]
- Umut, M.; Karabıyıkoğlu, M.; Saraç, G.; Bulut, V.; Demirci, A.R.; Erkan, M.; Kurt, Z.; Metin, S.; Özgönül, E. Tuzlukçu-Ilgın-Doğanhisar-Doğanbey (Konya ili) ve Dolayının Jeolojisi; Report No: 8246; Maden Tetkik Arama Genel Müdürlüğü: Ankara, Türkiye, 1987; 38p. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; Version 4.3.2; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 1 October 2024).
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: iNterpolation and Extrapolation for Species Diversity. R Package Version 3.0.1. Available online: http://CRAN.R-project.org/package=iNEXT (accessed on 1 October 2024).
- Horn af Rantzien, H. An annotated check-list of genera of fossil Charophyta. Micropaleontology 1956, 2, 243–256. [Google Scholar] [CrossRef]
- Feist, M.; Grambast-Fessard, N.; Guerlesquin, M.; Karol, K.; Lu, H.; Mc-Court, R.M.; Wang, Q.; Shenzen, Z. Treatise on Invertebrate Paleontology. Part B. Protoctista 1. Charophyta; The University of Kankas: Kansas, CO, USA, 2005; p. 170. [Google Scholar]
- Neubauer, T.A. The fossil record of freshwater Gastropoda–A global review. Biol. Rev. 2024, 99, 177–199. [Google Scholar] [CrossRef]
- Schönhuth, S.; Vukic, J.; Sanda, R.; Yang, L.; Mayden, R.L. Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei). Mol. Phylogenet. Evol. 2018, 127, 781–799. [Google Scholar] [CrossRef]
- Küçük, F.; Çiftçi, Y.; Güçlü, S.S.; Mutlu, A.G.; Turan, D. Taxonomic review of the Chondrostoma (Teleostei, Leuciscidae) species from inland waters of Turkey: An integrative approach. Zoosyst. Evol. 2023, 99, 1–13. [Google Scholar] [CrossRef]
- Dubois, A.; Ohler, A.; Pyron, R.A. New concepts and methods for phylogenetic taxonomy and nomenclature in zoology, exemplified by a new ranked cladonomy of recent amphibians (Lissamphibia). Megataxa 2021, 5, 1–738. [Google Scholar] [CrossRef]
- de Broin, F. Contribution à l’étude des chéloniens. Chéloniens continentaux du Crétacé et du Tertiaire de France. Mémoires Muséum Natl. D’histoire Nat. 1977, 38, 1–366. [Google Scholar]
- Szyndlar, Z. Fossil snakes from Poland. Acta Zool. Cracoviensia 1984, 28, 3–156. [Google Scholar]
- Groumpou, M.; Sanjuan, J.; Koukouvelas, I.; Nikolakopoulos, K.; Iliopoulos, G. Subrecent charophyte flora from the Pheneos palaeolake (Greece): Palaeoecological implications. Rev. Palaeobot. Palynol. 2023, 318, 104973. [Google Scholar] [CrossRef]
- Sanjuan, J.; Matamoros, D.; Casanovas-Vilar, I.; Vicente, A.; Moreno-Bedmar, J.A.; Holmes, J.; Martín-Closas, C. Palaeoecology of Middle Miocene charophytes from the Vallès–Penedès and Vilanova basins (Catalonia, Spain). Hist. Biol. 2023, 35, 1665–1685. [Google Scholar] [CrossRef]
- Singh, N.A.; Singh, N.P.; Sharma, K.M.; Patnaik, R.; Tiwari, R.P.; Sehgal, R.K.; Kumar, V.; Wazir, W.A.; Singh, Y.P.; Choudhary, D. First report on late Miocene (Tortonian: ~11–10 Ma) charophyte gyrogonites from Tapar, Kachchh District, Gujarat State, western India. Proc. Indian Natl. Sci. Acad. 2022, 88, 439–455. [Google Scholar] [CrossRef]
- García, A. Quaternary charophytes from Salina del Bebedero, Argentina: Their relation with extant taxa and palaeolimnological significance. J. Paleolimnol. 1999, 21, 307–323. [Google Scholar] [CrossRef]
- Soulié-Märsche, I. Diversity of Quaternary aquatic environments in NE Africa as shown by fossil Charophytes. In Geoscientific Research in Northeast Africa; CRC Press: Boca Raton, FL, USA, 2017; pp. 575–579. [Google Scholar]
- Anadón, P.; Julià, R.; De Deckker, P.; Rosso, J.C.; Soulié-Märsche, I. Contribución de la paleolimnología del Pleistoceno inferior de la Cuenca de Baza (sector Orce-Venta Micena). Paleontol. I Evol. Memòria 1987, 1, 35–72. [Google Scholar]
- Barinova, S.; Romanov, R.; Solak, C.N. New record of Chara hispida (L.) Hartm. (Streptophyta: Charophyceae, Charales) from the Işıklı Lake (Turkey) and critical checklist of Turkish charophytes. Nat. Resour. Conserv. 2014, 2, 33–42. [Google Scholar] [CrossRef]
- Soulié-Märsche, I. Charophytes as lacustrine biomarkers during the Quaternary in North Africa. J. Afr. Earth Sci. 1991, 12, 341–351. [Google Scholar] [CrossRef]
- Détriché, S.; Bréhéret, J.G.; Soulié-Märsche, I.; Karrat, L.; Macaire, J.J. Late Holocene water level fluctuations of Lake Afourgagh (Middle-Atlas Mountains, Morocco) inferred from charophyte remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 283, 134–147. [Google Scholar] [CrossRef]
- Rey-Boissezon, A.; Joye, D.A. Habitat requirements of charophytes—Evidence of species discrimination through distribution analysis. Aquat. Bot. 2015, 120, 84–91. [Google Scholar] [CrossRef]
- Baciu, C.; Feist, M. Les charophytes Oligocènes du nord-ouest de la Transylvanie (Roumanie). Acta Palaeontol. Rom. 1999, 2, 27–29. [Google Scholar]
- Tuncer, A.; Tunoğlu, C. Geç Erken-Orta Miyosen Yaşlı Söke Formasyonu’nun Ostrakod Faunası ve Paleoortamsal Karakteristikleri, Söke Havzası, Aydın/Batı Anadolu. Yerbilimleri 2015, 36, 97–120. [Google Scholar] [CrossRef]
- Fan, H.; Gasse, F.; Huc, A.; Li, Y.; Sifeddine, A.; Soulié-Märsche, I. Holocene environmental changes in bangong co basin (Western Tibet). Part 3: Biogenic remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 120, 65–78. [Google Scholar] [CrossRef]
- Sanjuan, J.; Alqudah, M. Charophyte flora from the Miocene of Zahle (Beeka Valley, Lebanon). Biostratigraphic, palaeoenvronmental and palaeobiogeographical implications. Geodiversitas 2018, 40, 195–209. [Google Scholar] [CrossRef]
- Daily, F.K. Some observations on the occurrence and distribution of the Characeae of Indiana. Proc. Indiana Acad. Sci. 1958, 68, 95–107. [Google Scholar]
- Viinikka, Y. The role of U-type exchanges in the differentiation of karyotypes in Najas marina. Hereditas 1977, 86, 91–101. [Google Scholar] [CrossRef]
- Triest, L. Electrophoretic polymorphism and divergence in Najas marina L. (Najadaceae): Molecular markers for individuals, hybrids, cytodemes, lower taxa, ecodemes and conservation of genetic diversity. Aquat. Bot. 1989, 33, 301–380. [Google Scholar] [CrossRef]
- Efimov, D.Y.; Pimenov, A.V.; Bobrov, A.A. Najas marina (Hydrocharitaceae) in Southern Middle Siberia: Refinds after a Century-Old Recess. Inland Water Biol. 2023, 16, 1178–1184. [Google Scholar] [CrossRef]
- Şanal, M.; Köse, B.; Coşkun, T.; Demir, N. Mogan Gölü’nde Sucul Makrofitlere Göre Ekolojik Kalitenin Tahmini. Iğdır Üniversitesi fen Bilim. Derg. 2015, 5, 51–55. [Google Scholar]
- Özdal, I.; Çetinkaya, O. Aquatic Plant Hotspots of Türkiye: The Lakes Region Habitats, Macrophytes, Biodiversity, Usage, Threats and Problems. Acta Aquat. Turc. 2024, 20, 267–286. [Google Scholar] [CrossRef]
- Van Vierssen, W. The ecology of communities dominated by Zannichellia taxa in western Europe. I. Characterization and autecology of the Zannichellia taxa. Aquat. Bot. 1982, 12, 103–155. [Google Scholar] [CrossRef]
- Haynes, R.R.; Les, D.H.; Holm-Nielsen, L.B. Zannichelliaceae. Flowering Plants—Dicotyledons. In The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 4. [Google Scholar]
- Beker, K.; Tunoğlu, C.; Ertekin, I.K. Pliocene—Lower Pleistocene ostracoda fauna from İnsuyu Limestone (Karapinar-Konya/Central Turkey) and its paleoenvironmental implications. Geol. Bull. Turk. 2008, 51, 1–31. [Google Scholar]
- Freels, D. Limnische Ostrakoden aus Jungtertiär und Quartär der Türkei. Geol. Jahrb. Reihe B 1980, 39, 1–172. [Google Scholar]
- Kayseri-Özer, M.S.; Karadenizli, L.; Akgün, F.; Oyal, N.; Saraç, G.; Şen, Ş.; Tunoğlu, C.; Tuncer, A. Palaeoclimatic and palaeoenvironmental interpretations of the late Oligocene, Late Miocene–early Pliocene in the Çankırı-Çorum Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 467, 16–36. [Google Scholar] [CrossRef]
- Tuncer, A.; Tunoğlu, C. Early Pleistocene (Calabrian) Ostracoda assemblage and paleoenvironmental characteristics of the Fevzipaşa Formation, Western Anatolia. Micropaleontology 2015, 61, 69–83. [Google Scholar] [CrossRef]
- Külköylüoğlu, O.; Akdemir, D.; Yavuzatmaca, M.; Yilmaz, O. A checklist of recent non-marine Ostracoda (Crustacea) of Turkey with three new records. Rev. Hydrobiol. 2015, 8, 20–33. [Google Scholar]
- Tuncer, A.; Karayiğit, A.İ.; Oskay, R.G.; Tunoğlu, C.; KayseriÖzer, M.S.; Gümüş, B.A.; Bulut, Y.; Akbulut, A. A multi-proxy record of palaeoenvironmental and palaeoclimatic conditions during Plio-Pleistocene peat accumulation in the eastern fank of the Isparta Angle: A case study from the Şarkikaraağaç coalfeld (Isparta, SW Central Anatolia). Int. J. Coal Geol. 2023, 265, 104149. [Google Scholar] [CrossRef]
- Meisch, C.; Scharf, B.; Fuhrmann, R.; Thiéry, A. Neglecandona altoides (Petkovski, 1961) nov. comb. and the genus Neglecandona Krstić, 2006 (Crustacea, Ostracoda, Candonidae). Bull. Société Nat. Luxemb. 2019, 121, 237–264. [Google Scholar]
- Spadi, M.; Gliozzi, E.; Medici, M.C. Piacenzian–Gelasian non-marine ostracods from the Dunarobba Fossil Forest (Tiberino Basin, Umbria, central Italy). Pap. Palaeontol. 2019, 5, 391–413. [Google Scholar] [CrossRef]
- Tuncer, A.; Tunoğlu, C.; Aydar, E.; Yilmaz, İ.Ö.; Gümüş, B.A.; Şen, E. Holocene paleoenvironmental evolution of the Acıgöl paleo maar lake (Nevşehir, Central Anatolia). Mediterr. Geosci. Rev. 2019, 1, 255–269. [Google Scholar] [CrossRef]
- Darbaş, G.; Demircan, H. Ostracoda assemblages and palaeoenvironmental characteristics of the Soma Formation (Late Miocene-Pliocene), İvrindi–NW Balıkesir, Turkey. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 032018. [Google Scholar] [CrossRef]
- Mischke, S.; Ginat, H.; Al-Saqarat, B.; Almogi-Labin, A. Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators. Ecol. Indic. 2012, 14, 87–99. [Google Scholar] [CrossRef]
- Floroiu, A.; Stoica, M.; Vasiliev, I.; Krijgsman, W. Maeotian/Pontian ostracods in the Badislava? Topolog area (South carpathian foredeep-Romania). GeoEcoMarina 2011, 17, 237–244. [Google Scholar]
- Schütt, H.; Yildirim, Z.A. A new freshwater snail from Turkey, resembling the genus Lyhnidia Hadžišče 1956 (Mollusca: Gastropoda: Prosobranchia: Hydrobiidae). Arch. Für Molluskenkd. 2003, 132, 97–103. [Google Scholar] [CrossRef]
- Sysoev, A.V.; Schileyko, A.A. Land Snails and Slugs of Russia and Adjacent Countries; Pensoft Publishers: Sofia, Bulgaria, 2009; Volume 87, p. 454. [Google Scholar]
- White, D.; Preece, R.C.; Shchetnikov, A.A.; Parfitt, S.A.; Dlussky, K.G. A Holocene molluscan succession from floodplain sediments of the upper Lena River (Lake Baikal region), Siberia. Quat. Sci. Rev. 2008, 27, 962–987. [Google Scholar] [CrossRef]
- Gerber, J. Revision der Gattung Vallonia Risso 1826 (Mollusca: Gastropoda: Valloniidae). In Schriften zur Malakozoologie aus dem Haus der Natur; Hemmen: Luxembourg, 1996; Volume 8, pp. 1–227. [Google Scholar]
- Welter-Schultes, F.W. European Non-Marine Molluscs, a Guide for Species Identification; Planet Poster Editions: Göttingen, Germany, 2012; 679p. [Google Scholar]
- Gittenberger, E.; Janssen, A.W.; Kuijper, W.J.; Kuiper, J.G.J.; Meijer, T.; van der Velde, G.; De Vries, J.N. De Nederlandse zoetwatermollusken. In Recente en Fossiele Weekdieren uit Zoet en Brak Water—Nederlandse Fauna 2, 2nd ed.; Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij & EIS-Nederland: Leiden, The Nederland, 2004; p. 288. [Google Scholar]
- Becker-Platen, J.D.; Kuiper, J.G.J. Sphaeriiden (Mollusca, Lamelli–branchia) aus dem Känozoikum der Türkei. Geol. Jahrb. B 1979, 33, 159–185. [Google Scholar]
- Ozulug, M.; Freyhof, J. Revision of the genus Squalius in Western and Central Anatolia, with a description of four new species (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 2011, 22, 107–148. [Google Scholar]
- Çiçek, E.; Sungur, S.; Fricke, R. Freshwater lampreys and fishes of Turkey; a revised and updated annotated checklist 2020. Zootaxa 2020, 4809, 241–270. [Google Scholar] [CrossRef]
- Bailon, S. Différenciation Ostéologique des Anoures (Amphibia, Anoura) de France. In Fiches d’Ostéologie Animale Pour L’archéologie; Desse, V.J., Desse-Berset, N., Eds.; Série C: Varia; Centre de Recherches Archéologiques-CNRS: Paris, France, 1999; pp. 1–38. [Google Scholar]
- Venczel, M.; Sen, S. Pleistocene amphibians and reptiles from Emirakaya-2, Turkey. Herpetol. J. 1994, 4, 159. [Google Scholar]
- Syromyatnikova, E.; Mayda, S.; Tesakov, A. Late Miocene amphibians and reptiles: New insight into the pre-Messinian herpetofaunas in Turkey. Hist. Biol. 2022, 34, 1964–1971. [Google Scholar] [CrossRef]
- Bailon, S.; Hossini, S. Les plus anciens Bufonidae (Amphibia, Anura) d’Europe: Les espèces du Miocène français. Ann. Paléontol. 1999, 76, 121–132. [Google Scholar]
- Rage, J.C.; Sen, S. Les amphibiens et les reptiles du Pliocène supérieur de Çalta (Turquie). Géologie Méditerranéenne 1976, 3, 127–134. [Google Scholar] [CrossRef]
- Villa, A.; Blain, H.A.; van den Hoek Ostende, L.W.; Delfino, M. Fossil amphibians and reptiles from Tegelen (Province of Limburg) and the early Pleistocene palaeoclimate of The Netherlands. Quat. Sci. Rev. 2018, 187, 203–219. [Google Scholar] [CrossRef]
- Gleed-Owen, C.P. Quaternary Herpetofaunas of the British Isles: Taxonomic Descriptions, Palaeoenvironmental Reconstructions, and Biostratigraphic Implications. Ph.D. Thesis, Coventry University, Coventry, UK, 1998. [Google Scholar]
- Luján, À.H.; Delfino, M.; Casanovas-Vilar, I.; Alba, D.M. Taxonomy of subgenus Temnoclemmys Bergounioux, 1958 (Testudines: Geoemydidae: Ptychogasterinae) based on new material from the Vallès-Penedès Basin (NE Iberian Peninsula). CR Palevol 2014, 13, 277–295. [Google Scholar] [CrossRef]
- Luján, À.H.; Delfino, M.; Robles, J.M.; Alba, D.M. The Miocene tortoise Testudo catalaunica Bataller, 1926, and a revised phylogeny of extinct species of genus Testudo (Testudines: Testudinidae). Zool. J. Linn. Soc. 2016, 178, 312–342. [Google Scholar] [CrossRef]
- Camaiti, M.; Villa, A.; Wencker, L.C.; Bauer, A.M.; Stanley, E.L.; Delfino, M. Descriptive osteology and patterns of limb loss of the European limbless skink Ophiomorus punctatissimus (Squamata, Scincidae). J. Anat. 2019, 235, 313–345. [Google Scholar] [CrossRef]
- Szyndlar, Z. A review of Neogene and Quaternary snakes of central and eastern Europe. Part 2: Natricinae, Elapidae, Viperidae. Estud. Geológicos 1991, 47, 237–266. [Google Scholar] [CrossRef]
- Ivanov, M.; Böhme, M. Snakes from Griesbeckerzell (Langhian, Early Badenian), North Alpine Foreland Basin (Germany), with comments on the evolution of snake faunas in Central Europe during the Miocene Climatic Optimum. Geodiversitas 2011, 33, 411–449. [Google Scholar] [CrossRef]
- Ivanov, M.; Čerňanský, A.; Bonilla-Salomón, I.; Luján, À.H. Early Miocene squamate assemblage from the Mokrá-Western Quarry (Czech Republic) and its palaeobiogeographical and palaeoenvironmental implications. Geodiversitas 2020, 42, 343–376. [Google Scholar] [CrossRef]
- Venczel, M. Anurans and squamates from the Lower Pliocene (MN 14) Osztramos A locality (Northern Hungary). Fragm. Palaeontol. Hung. 2001, 19, 79–90. [Google Scholar]
- Rage, J.-C.; Szyndlar, Z. Natrix longivertebrata from the European Neogene, a Snake with One of the Longest Known Stratigraphic Ranges. In Neues Jahrbuch für Geologie und Paläontologie–Monatshefte; E. Schweizerbart: Stuttgart, Germany, 1986; pp. 56–64. [Google Scholar]
- Szyndlar, Z. Snake fauna from the Late Miocene of Rudabánya. Palaeontogr. Ital. 2005, 90, 31–52. [Google Scholar]
- Venczel, M.; Ştiucă, E. Late middle Miocene amphibians and squamate reptiles from Tauţ, Romania. Geodiversitas 2008, 30, 731–763. [Google Scholar]
- Georgalis, G.L.; Villa, A.; Ivanov, M.; Vasilyan, D.; Delfino, M. Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontol. Electron. 2019, 22, 1–99. [Google Scholar] [CrossRef]
- Lister, A.M.; McGlade, J.; Stuart, J.A. The Early Middle Pleistocene vertebrate fauna from Little Oakley, Essex. Philos. Trans. R. Soc. Lond. B 1990, 328, 359–385. [Google Scholar]
- Holman, J.A. Pleistocene Amphibians and Reptiles in Britain and Europe; Oxford University Press (OUP): Oxford, UK, 1998; pp. 1–265. [Google Scholar]
- Blain, H.-A.; Rubio-Jara, S.; Panera, J.; Uribelarrea, D.; Laplana, C.; Herráez, E.; Pérez-González, A. A new middle Pleistocene (Marine Oxygen Isotope Stage 6) cold herpetofaunal assemblage from the central Iberian Peninsula (Manzanares Valley, Madrid). Quat. Res. 2017, 87, 499–515. [Google Scholar] [CrossRef]
- Harvati, K.; Darlas, A.; Bailey, S.E.; Rein, T.R.; El Zaatari, S.; Fiorenza, L.; Kullmer, O.; Psathi, E. New Neanderthal remains from Mani peninsula, Southern Greece: The Kalamakia Middle Paleolithic cave site. J. Hum. Evol. 2013, 64, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Blain, H.A.; Delfino, M. The Early Pleistocene herpetofauna of Rivoli Veronese (Northern Italy) as evidence for humid and forested glacial phases in the Gelasian of Southern Alps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 490, 393–403. [Google Scholar] [CrossRef]
- Vasilyan, D.; Schneider, S.; Bayraktutan, M.S.; Şen, Ş. Early Pleistocene freshwater communities and rodents from the Pasinler Basin (Erzurum Province, north-eastern Turkey). Turk. J. Earth Sci. 2014, 23, 293–307. [Google Scholar] [CrossRef]
- Uetz, P.; Freed, P.; Aguilar, R.; Hošek, J. The Reptile Database. 2022. Available online: https://reptile-database.reptarium.cz (accessed on 9 November 2022).
- Syromyatnikova, E.; Tesakov, A.; Mayda, S.; Kaya, T.; Saraç, G. Plio-Pleistocene amphibians and reptiles from Central Turkey: New faunas and faunal records with comments on their biochronological position based on small mammals. Foss. Impr. 2019, 75, 343–358. [Google Scholar] [CrossRef]
- Glöer, P. The Freshwater Gastropods of the West-Palaearctis. Volume I. Fresh- and Brackish Waters Except Spring and Subterranean Snails. Identification Key, Anatomy, Ecology, Distribution. Privately Published. 2019, p. 399. Available online: https://www.malaco.de/Sonderdrucke/WPal.pdf (accessed on 1 September 2024).
- Odabași, D.A.; Glöer, P.; Yildirim, M.Z. The Valvata species of Turkey with a description of Valvata kebapcii n. sp. (Mollusca: Valvatidae). Ecol. Montenegrina 2015, 2, 135–142. [Google Scholar] [CrossRef]
- Doadrio, I.; Perea, S.; Garzón-Heydt, P.; González, J.L. Ictiofauna Contintental Española. Bases para su Seguimiento; Ministerio de Medio Ambiente y Medio Rural y Marino, Ed.; DG Medio Natural y Política Forestal: Madrid, Spain, 2011; 616p.
- Güçlü, S.S.; Küçük, F.; Turan, D.; Çiftçi, Y.; Mutlu, A.G. A new Chondrostoma species from the Büyük Menderes River Basin, Turkey (Teleostei: Cyprinidae). Zool. Middle East 2018, 64, 315–321. [Google Scholar] [CrossRef]
- Speybroeck, J.; Beukema, W.; Bok, B.; Van Der Voort, J. Field Guide to the Amphibians and Reptiles of Britain and Europe; Bloomsbury Publishing: London, UK, 2016; 432p. [Google Scholar]
- Anderson, S.C.; Leviton, A.E. A review of the genus Ophiomorus (Sauria: Scincidae), with descriptions of three new forms. Proc. Calif. Acad. Sci. 1966, 33, 499–534. [Google Scholar]
- Greer, A.E.; Wilson, G.D.F. Comments on the scincid lizard genus Ophiomorus, with a cladistic analysis of the species. Hamadryad 2001, 26, 261–271. [Google Scholar]
- Marmi, J.; Luján, À.H. An overview of the threatened phylogenetic diversity of living testudines based on a review of the complex evolutionary history of turtles. In Turtles Anatomy, Ecology and Conservation; Cosgrove, M.J., Roe, S.A., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 117–150. [Google Scholar]
- Steen, D.A.; Gibbs, J.P.; Buhlmann, K.A.; Carr, J.L.; Compton, B.W.; Congdon, J.D.; Doody, J.S.; Godwin, J.C.; Holcomb, K.L.; Jackson, D.R.; et al. Terrestrial habitat requirements of nesting freshwater turtles. Biol. Conserv. 2012, 150, 121–128. [Google Scholar] [CrossRef]
- Luján, À.H.; Čerňanský, A.; Bonilla-Salomón, I.; Březina, J.; Ivanov, M. Fossil turtles from the early Miocene localities of Mokrá-Quarry (Burdigalian, MN4), South Moravian Region, Czech Republic. Geodiversitas 2021, 43, 691–707. [Google Scholar] [CrossRef]
- Kornilev, Y.V.; Popgeorgiev, G.; Plachiyski, D.; Dyugmedzhiev, A.; Mladenov, V.; Andonov, K.; Lukanov, S.; Vacheva, E.; Slavchev, M.; Naumov, B. Distribution of the grass snake (Natrix natrix) and dice snake (N. tessellata) in Bulgaria. Hist. Nat. Bulg. 2023, 45, 239–254. [Google Scholar] [CrossRef]
- Dinçer, B. The Lower Paleolithic in Türkiye: Anatolia and Hominin Dispersals Out of Africa. In Paleoanthropology of the Balkans and Anatolia: Human Evolution and Its Context Evolution and Its Context; Harvati, K., Roksandic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 213–228. [Google Scholar]
- Vislobokova, I.A.; Agadzhanyan, A.K.; Lopatin, A.V. The case of Trlica TRL11-10 (Montenegro): Implications for possible early hominin dispersals into the Balkans in the middle of the Early Pleistocene. Quat. Int. 2020, 554, 15–35. [Google Scholar] [CrossRef]
- Slimak, L. Implantations humaines et exploitation des obsidiennes en Anatolie centrale durant le Pléistocène. In Paléorient; CNRS Editins: Paris, France, 2004; pp. 7–20. [Google Scholar]
- Roosevelt, C.H.; Dinçer, B.; Luke, C.; Çilingiroğlu, Ç. A Lower Paleolithic assemblage from western Anatolia: The lithics from Bozyer. Quat. Int. 2019, 522, 66–84. [Google Scholar] [CrossRef]
- Mosquera, M.; Ollé, A.; Saladie, P.; Cáceres, I.; Huguet, R.; Rosas, A.; Villalaín, J.; Carrancho, A.; Bourlès, D.; Braucher, R.; et al. The Early Acheulean technology of Barranc de la Boella (Catalonia, Spain). Quat. Int. 2016, 393, 95–111. [Google Scholar] [CrossRef]
- Barsky, D.; Titton, S.; Sala-Ramos, R.; Bargalló, A.; Grégoire, S.; Saos, T.; Serrano-Ramos, A.; Oms, O.; Solano García, J.A.; Toro-Moyano, I.; et al. The significance of subtlety: Contrasting lithic raw materials procurement and use patterns at the oldowan sites of Barranco León and Fuente Nueva 3 (Orce, Andalusia, Spain). Front. Earth Sci. 2022, 10, 893776. [Google Scholar] [CrossRef]
- Kuhn, S.L. Paleolithic Archaeology in Turkey. Evol. Anthropol. Issues News Rev. 2022, 11, 198–210. [Google Scholar] [CrossRef]
- Antón, S.C.; Leonard, W.R.; Robertson, M.L. An ecomorphological model of the initial hominid dispersal from Africa. J. Hum. Evol. 2002, 43, 773–785. [Google Scholar] [CrossRef]
- Zohar, I.; Alperson-Afil, N.; Goren-Inbar, N.; Prévost, M.; Tütken, T.; Sisma-Ventura, G.; Hershkovitz, I.; Najorka, J. Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya’aqov, Israel. Nat. Ecol. Evol. 2022, 6, 2016–2028. [Google Scholar] [CrossRef]
- Saraç, G.; Maden Tetkik ve Arama Genel Müdürlügü. Türkiye Omurgali Fosil Yataklari; MTA Derleme Rapor N° 10609; Jeoloji Kütüphane N° 637; Jeoloji Etütleri Dairesi: Ankara, Türkiye, 2003; p. 138. [Google Scholar]
- Blasco, R.; Blain, H.A.; Rosell, J.; Díez, J.C.; Huguet, R.; Rodríguez, J.; Arsuaga, J.L.; de Castro, J.M.B.; Carbonell, E. Earliest evidence for human consumption of tortoises in the European Early Pleistocene from Sima del Elefante, Sierra de Atapuerca, Spain. J. Hum. Evol. 2011, 61, 503–509. [Google Scholar] [CrossRef]
- Richards, M.P.; Karavanić, I.; Pettitt, P.; Miracle, P. Isotope and faunal evidence for high levels of freshwater fish consumption by Late Glacial humans at the Late Upper Palaeolithic site of Šandalja II, Istria, Croatia. J. Archaeol. Sci. 2015, 61, 204–212. [Google Scholar] [CrossRef]
- Karl, H.V. Human consumption of turtles of the Homo rudolfensis site Uraha (Malawi, East Africa). Archaeofauna 2012, 21, 267–279. [Google Scholar] [CrossRef]
- Sampson, C.G. Tortoise remains from a later Stone Age rock shelter in the Upper Karoo, South Africa. J. Archaeol. Sci. 1998, 25, 985–1000. [Google Scholar] [CrossRef]
Order/Suborder/ Family | Taxa | Demirci et al. (2023) [5] | Blanco-Lapaz et al. (2024) [6] | This Work | Figure |
---|---|---|---|---|---|
Characeae | Sphaerochara intricata | • | - | ||
Characeae | Sphaerochara prolifera | • | - | ||
Characeae | Chara hispida | • | • | Figure 3A–C | |
Characeae | Chara vulgaris | • | • | Figure 3D–G | |
Characeae | Chara globularis | • | • | Figure 3H–J | |
Characeae | Chara cf. molassica var. notata | • | - | ||
Characeae | Chara cf. pappii | • | - | ||
Characeae | Chara sp. 1 | • | - | ||
Characeae | Chara sp. 2 | • | - | ||
Characeae | Lychnothamnus barbatus var. antiquus | • | - | ||
Characeae | Nitellopsis obtusa | • | - | ||
Hydrocharitaceae | Najas marina s. str. | • | Figure 3K,L | ||
Ranunculaceae | Ranunculus sp. | • | - | ||
Potamogetonaceae | Zannichellia palustris | • | • | Figure 3M,N | |
Cyprididae | Heterocypris salina | • | Figure 4A,B | ||
Cyprididae | Prionocypris zenkeri | • | Figure 4C | ||
Cyprididae | Neglecandonaangulata | • | Figure 4D,E | ||
Ilyocyprididae | Ilyocypris cf. bradyi | • | Figure 4F,G | ||
Candonidae | Cyclocypris sp. | • | - | ||
Candonidae | Pseudocandona sp. | • | - | ||
Valvatidae | Valvata cristata | • | Figure 5A | ||
Valvatidae | Valvata cf. kebapcii | • | Figure 5B | ||
Bithyniidae | Bithynia s.l. sp. | • | Figure 5C | ||
Hydrobiidae | Tefennia sp. | • | Figure 5D,E | ||
Lymnaeidae | Lymnaeidae gen. et sp. indet. | • | Figure 5F | ||
Lymnaeidae | ?Radix s.l. sp. | • | Figure 5G | ||
Planorbidae | Anisus sp. | • | Figure 5H | ||
Planorbidae | ?Gyraulus sp. | • | Figure 5I | ||
Planorbidae | Planorbidae gen. et sp. indet. | • | Figure 5J | ||
Planorbidae | Armiger crista | • | Figure 5K | ||
Planorbidae | Segmentina nitida | • | Figure 5L | ||
Sphaeriidae | Euglesa obtusalis | • | Figure 5M | ||
Sphaeriidae | Euglesa pseudosphaerium | • | Figure 5N | ||
Ellobiidae | Carychium minimum | • | Figure 5O | ||
Vertiginidae | Vertigo angustior | • | Figure 5P | ||
Vertiginidae | Truncatellina sp. | • | Figure 5Q | ||
Valloniidae | Vallonia cf. enniensis | • | Figure 5R | ||
Teleostei | Teleostei indet. | • | • | Figure 6A | |
Cyprinidae | Cyprinidae indet. | • | - | ||
Cyprinidae | Capoeta sp. | • | - | ||
Cyprinidae | Squalius sp. | • | • | Figure 6B–D | |
Cyprinidae | Chondostroma sp. | • | • | Figure 6E–G | |
Cyprinidae | Barbus sp. | • | • | Figure 6F | |
Cobitidae | Cobitidae indet. | • | - | ||
Anura | Anura indet. | • | Figure 7A,B | ||
Bufonidae | Bufonidae indet. | • | Figure 7C–G | ||
Ranidae | Ranidae indet. | • | Figure 8A–H | ||
Testudines | cf. Geoemydidae indet. | • | Figure 9A,B | ||
Squamata | Squamata indet. | • | Figure 9C | ||
Squamata | Serpentes indet. | • | Figure 9D,E | ||
Natricidae | cf. Natrix sp. | • | Figure 10A–F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luján, À.H.; Paclík, V.; Demirci, E.; Villa, A.; Neubauer, T.A.; Tuncer, A.; Ivanov, M.; Blanco-Lapaz, À.; Vega-Pagán, K.A.; Sanjuan, J. An Integrated Paleoenvironmental Reconstruction of the Early Pleistocene Hominin-Bearing Site of Dursunlu (Türkiye). Diversity 2025, 17, 631. https://doi.org/10.3390/d17090631
Luján ÀH, Paclík V, Demirci E, Villa A, Neubauer TA, Tuncer A, Ivanov M, Blanco-Lapaz À, Vega-Pagán KA, Sanjuan J. An Integrated Paleoenvironmental Reconstruction of the Early Pleistocene Hominin-Bearing Site of Dursunlu (Türkiye). Diversity. 2025; 17(9):631. https://doi.org/10.3390/d17090631
Chicago/Turabian StyleLuján, Àngel H., Václav Paclík, Elvan Demirci, Andrea Villa, Thomas A. Neubauer, Alaettin Tuncer, Martin Ivanov, Àngel Blanco-Lapaz, Kelly Ann Vega-Pagán, and Josep Sanjuan. 2025. "An Integrated Paleoenvironmental Reconstruction of the Early Pleistocene Hominin-Bearing Site of Dursunlu (Türkiye)" Diversity 17, no. 9: 631. https://doi.org/10.3390/d17090631
APA StyleLuján, À. H., Paclík, V., Demirci, E., Villa, A., Neubauer, T. A., Tuncer, A., Ivanov, M., Blanco-Lapaz, À., Vega-Pagán, K. A., & Sanjuan, J. (2025). An Integrated Paleoenvironmental Reconstruction of the Early Pleistocene Hominin-Bearing Site of Dursunlu (Türkiye). Diversity, 17(9), 631. https://doi.org/10.3390/d17090631