Palaeoclimatic Geoheritage in the Age of Climate Change: Educational Use of the Pleistocene Glacial and Periglacial Geodiversity
Abstract
1. Introduction
2. Materials and Methods
- A literature review is carried out to identify the amount of scientific work on inventorying and communicating the geodiversity of the Pleistocene glacial and periglacial environments;
- A case study of the use of the Pleistocene glacial and periglacial geodiversity for educational and geotouristic purposes on the territory of Poland is analysed, to measure the scientific production not included in electronic databases and published in languages other than English.
2.1. Review of the Literature
- literature retrieval;
- identification of relevant publications;
- data collection.
2.2. Educational Use of the Glacial Geodiversity of Poland: A Case Study
- The analysis of the Central Register of Polish Geosites, a national-scale initiative aimed at inventorying geodiversity and providing a web-accessible geosite database https://geologia.pgi.gov.pl/geostanowiska/ (accessed on 1 August 2025), maintained by the Polish Geological Institute;
- A bibliometric analysis of research papers not included in the Web of Science and Scopus databases, or published in Polish, pertaining to the glacial geodiversity of Poland, its protection, and the promotion of geotourism.
3. Results
3.1. Literature Review
3.2. Case Study: Pleistocene Geodiversity of Poland
4. Discussion
4.1. Conservation of Pleistocene Geoheritage
4.2. Educational Strategies
4.3. Possible Future Directions in the Promotion of Glacial Geoheritage
4.4. The Importance of Erratic Boulders and Rock Gardens
4.4.1. Scientific Value
4.4.2. Educational Function
4.4.3. Cultural Significance
4.4.4. Aesthetic, Sentimental, and Quality-of-Life Significance
4.4.5. Geotourism Function
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migoń, P. Geosites and Climate Change—A Review and Conceptual Framework. Geosciences 2024, 14, 153. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Brevik, E.C. Geodiversity research at the crossroads: Two sides of the same coin. Span. J. Soil Sci. 2022, 12, 10456. [Google Scholar] [CrossRef]
- Maliniemi, T.; Tukiainen, H.; Hjort, J.; Toivanen, M.; Vernham, G.; Bailey, J.J.; Baines, O.; Benniston, L.; Brilha, J.; Field, R.; et al. Too much diversity—Multiple definitions of geodiversity hinder its potential in biodiversity research. Divers. Distrib. 2024, 30, e13843. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2013; 512p. [Google Scholar]
- Crisp, J.R.; Ellison, J.C.; Fischer, A. Current trends and future directions in quantitative geodiversity assessment. Prog. Phys. Geogr. Earth Environ. 2021, 45, 514–540. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Caetano, J.M.V.; Ponciano, L.C.M.O. Cultural geology, cultural biology, cultural taxonomy, and the intangible geoheritage as new strategies for geoconservation. Geoheritage 2021, 13, 79. [Google Scholar] [CrossRef]
- Mazzucato, E.; de La Corte Bacci, D.; de Gouveia Souza, C.R. Geomorphological heritage on the North Coast of the State of São Paulo: A perspective about current and past climate changes. Geoheritage 2022, 14, 121. [Google Scholar] [CrossRef]
- Mousa, F.A.; El-Hassan, M.M.A.; Wanas, H.A.; Sallam, E.S.; Ermolaev, V.A.; Ruban, D.A. Geoheritage meaning of past humidity in the central Western Desert of Egypt. Int. J. Geoheritage Parks 2023, 11, 331–348. [Google Scholar] [CrossRef]
- Bertok, C.; Lozar, F.; Magagna, A.; Giordano, E.; d’Atri, A.; Dela Pierre, F.; Natalicchio, M.; Martire, L.; Clari, P.; Violanti, D.; et al. Virtual tours through Earth’s history and palaeoclimate: Examples from the Piemonte (Northwestern Italy) Geoheritage (PROGEO-Piemonte Project). In STRATI 2013: First International Congress on Stratigraphy at the Cutting Edge of Stratigraphy, Proceedings of the STRATI 2013 Conference, Lisbon, Portugal, 1–7 July 2013; Rocha, R., Pais, J., Kullberg, J.C., Finney, S., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 299–302. [Google Scholar]
- Lozar, F.; Clari, P.; Pierre, F.D.; Natalicchio, M.; Bernardi, E.; Violanti, D.; Costa, E.; Giardino, M. Virtual tour of past environmental and climate change: The Messinian succession of the Tertiary Piedmont Basin (Italy). Geoheritage 2015, 7, 47–56. [Google Scholar] [CrossRef]
- Verma, S.; Phartiyal, B.; Chandra, R. Geoheritage sites of Quaternary loess–palaeosol and palaeo-fluvio-lacustrine deposits in Northwest Himalaya: A necessitate protection. Geoheritage 2022, 14, 109. [Google Scholar] [CrossRef]
- Harris, D.M. Telling the story of climate change: Geologic imagination, praxis, and policy. Energy Res. Soc. Sci. 2017, 31, 179–183. [Google Scholar] [CrossRef]
- Gordon, J.E. Climate change and geotourism: Impacts, challenges, and opportunities. Tour. Hosp. 2023, 4, 514–538. [Google Scholar] [CrossRef]
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Bradbury, J. A keyed classification of natural geodiversity for land management and nature conservation purposes. Proc. Geol. Assoc. 2014, 125, 329–349. [Google Scholar] [CrossRef]
- Bruno, D.E.; Crowley, B.E.; Gutak, J.M.; Moroni, A.; Nazarenko, O.V.; Oheim, K.B.; Zorina, S.O. Paleogeography as geological heritage: Developing geosite classification. Earth Sci. Rev. 2014, 138, 300–312. [Google Scholar] [CrossRef]
- Sallam, E.S.; Ruban, D.A. Palaeogeographical type of the geological heritage of Egypt: A new evidence. J. Afr. Earth Sci. 2017, 129, 739–750. [Google Scholar] [CrossRef]
- Henriques, M.H.; dos Reis, R.P.; Garcia, G.G.; João, P.; Marques, R.M.; Custódio, S. Developing paleogeographic heritage concepts and ideas through the Upper Jurassic record of the Salgado and Consolação geosites (Lusitanian Basin, Portugal). Resour. Policy 2022, 76, 102594. [Google Scholar] [CrossRef]
- Selmi, L.; Canesin, T.S.; Gauci, R.; Pereira, P.; Coratza, P. Degradation risk assessment: Understanding the impacts of climate change on geoheritage. Sustainability 2022, 14, 4262. [Google Scholar] [CrossRef]
- Boháč, A.; Drápela, E. Present climate change as a threat to geoheritage: The wildfire in Bohemian Switzerland National Park and its use in place-based learning. Geosciences 2023, 13, 383. [Google Scholar] [CrossRef]
- Gordon, J.E.; Wignall, R.M.; Brazier, V.; Crofts, R.; Tormey, D. Planning for climate change impacts on geoheritage interests in protected and conserved areas. Geoheritage 2022, 14, 126. [Google Scholar] [CrossRef]
- Gordon, J.E.; Brown, E.J.; Bridgland, D.R.; Brazier, V. Valuing the Quaternary–Nature conservation and geoheritage. Proc. Geol. Assoc. 2023, 134, 375–387. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Mata-Perelló, J.; Caicedo-Potosí, J.; Carrión-Mero, P. Vulnerability in Geosites: A Systematic Literature Review. In Sustainability in Practice: Addressing Challenges and Creating Opportunities in Latin America; Filho, W.L., Frankenberger, F., Tortato, U., Eds.; Springer: Cham, Switzerland, 2023; pp. 395–407. [Google Scholar]
- Murphy, P.J. The geo-educational and conservational challenges posed by unconsolidated deposits: Some thoughts and possible solutions as applied to diamicton deposits from the British Isles. Geoconserv. Res. 2022, 5, 285–291. [Google Scholar]
- Kondyli, C.; Psychogiou, M.; Drinia, H. The museums of geology and paleontology as geoeducational learning environments for raising climate change awareness. Sustainability 2024, 16, 4481. [Google Scholar] [CrossRef]
- Giardino, M.; Justice, S.; Olsbo, R.; Balzarini, P.; Magagna, A.; Viani, C.; Selvaggio, I.; Kiuttu, M.; Kauhanen, J.; Laukkanen, M.; et al. ERASMUS+ strategic partnerships between UNESCO Global Geoparks, schools, and research institutions: A window of opportunity for geoheritage enhancement and geoscience education. Heritage 2022, 5, 677–701. [Google Scholar] [CrossRef]
- Vegas, J.; Diez-Herrero, A. An assessment method for urban geoheritage as a model for environmental awareness and geotourism (Segovia, Spain). Geoheritage 2021, 13, 27. [Google Scholar] [CrossRef]
- Oppizzi, P.; Pasquaré Mariotto, F.; Stockar, R.; Stella, A.; Corti, N.; Pedicini, M.; Andò, S.; Vezzoli, G.; Bonali, F.L. Geosites in the Gole della Breggia Geopark, Ticino, Southern Switzerland. Resources 2023, 12, 122. [Google Scholar] [CrossRef]
- Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G. Terrestrial sediments of the Earth: Development of a global unconsolidated sediments map database (GUM). Geochem. Geophys. Geosyst. 2018, 19, 997–1024. [Google Scholar] [CrossRef]
- Li, Y.; Shi, W.; Aydin, A.; Beroya-Eitner, M.A.; Gao, G. Loess genesis and worldwide distribution. Earth-Sci. Rev. 2020, 201, 102947. [Google Scholar] [CrossRef]
- Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Ding, Z.; Guo, Z.; Liu, X.; Smalley, I.; Lukić, T.; Vujičić, M.D. Loess–palaeosol sequences in China and Europe: Common values and geoconservation issues. Catena 2014, 117, 108–118. [Google Scholar] [CrossRef]
- Bollati, I.M.; Zerboni, A. The Po Plain loess basin (Northern Italy): Scientific values, threats, and promotion opportunities. Geoheritage 2021, 13, 74. [Google Scholar] [CrossRef]
- Batchelor, C.L.; Margold, M.; Krapp, M.; Murton, D.K.; Dalton, A.S.; Gibbard, P.L.; Stokes, C.R.; Murton, J.B.; Manica, A. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 2019, 10, 3713. [Google Scholar] [CrossRef]
- Davies, B.J.; Darvill, C.M.; Lovell, H.; Bendle, J.M.; Dowdeswell, J.A.; Fabel, D.; García, J.-L.; Geiger, A.; Glasser, N.F.; Gheorghiu, D.M.; et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci. Rev. 2020, 204, 103152. [Google Scholar] [CrossRef]
- Bentley, M.J.; Cofaigh, C.Ó.; Anderson, J.B.; Conway, H.; Davies, B.; Graham, A.G.C.; Hillenbrand, C.-D.; Hodgson, D.A.; Jamieson, S.S.R.; Larter, R.D.; et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 2014, 100, 1–9. [Google Scholar] [CrossRef]
- Lindgren, A.; Hugelius, G.; Kuhry, P.; Christensen, T.R.; Vandenberghe, J. GIS-based maps and area estimates of Northern Hemisphere permafrost extent during the Last Glacial Maximum. Permafr. Periglac. Process. 2016, 27, 6–16. [Google Scholar] [CrossRef]
- Bridgland, D.R. Geoconservation of Quaternary sites and interests. Proc. Geol. Assoc. 2013, 124, 612–624. [Google Scholar] [CrossRef]
- Anderson, D.E.; Brown, E.J. Perspectives on Quaternary outreach and aspirations for the future. Proc. Geol. Assoc. 2010, 121, 455–467. [Google Scholar] [CrossRef]
- Gordon, J.E.; Brazier, V.; Hansom, J.D.; Werritty, A. Advances in Quaternary studies and geomorphology in Scotland: Implications for geoconservation. Trans. R. Soc. Edinb. Earth Environ. Sci. 2017, 110, 257–278. [Google Scholar] [CrossRef]
- Radley, J.D.; Akers, P.; Ellis, B.; Fenwick, I.; Friend, C.R. The conservation of unconsolidated Pleistocene strata: An experiment at Wood Farm Pit, Bubbenhall, Warwickshire, UK. Proc. Geol. Assoc. 2013, 124, 653–658. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Buchanan, D., Bryman, A., Eds.; Sage Publications Ltd.: London, UK, 2009; pp. 154–196. [Google Scholar]
- Marks, L.; Ber, A.; Gogołek, W.; Piotrowska, K. Geological Map of Poland 1:500 000, with Explanatory Text; Polish Geological Institute: Warszawa, Poland, 2006. [Google Scholar]
- Motta, L.; Motta, M. Erratic blocks: From protector beings to geosites to be protected. Geol. Soc. Lond. Spec. Publ. 2007, 273, 315–327. [Google Scholar] [CrossRef]
- Last, J.; Brown, E.J.; Bridgland, D.R.; Harding, P. Quaternary geoconservation and Palaeolithic heritage protection in the 21st century: Developing a collaborative approach. Proc. Geol. Assoc. 2013, 124, 625–637. [Google Scholar] [CrossRef]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Graniczny, M.; Kowalski, Z.; Czarnogórska, M.; Krzeczyńska, M.; Pupienis, D.; Satkunas, J. Projected Geopark Yotvings—Polish-Lithuanian cross border area. Prz. Geol. 2008, 56, 611–613. [Google Scholar]
- Górska-Zabielska, M.; Kamieńska, K. Geotourism Potential of the Drawskie Lake District as a Support for the Planned Geopark named Postglacial Land of the Drawa and Dębnica Rivers. Quaest. Geogr. 2017, 36, 15–31. [Google Scholar] [CrossRef]
- Jamorska, I.; Sobiech, M.; Karasiewicz, T.; Tylmann, K. Geoheritage of postglacial areas in Northern Poland—Prospects for geotourism. Geoheritage 2020, 12, 12. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and geosites: A bibliometric analysis and literature review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Kubalíková, L.; Irapta, P.N.; Pál, M.; Zwoliński, Z.; Coratza, P.; van Wyk de Vries, B. Visages of geodiversity and geoheritage: A multidisciplinary approach to valuing, conserving and managing abiotic nature. Geol. Soc. Lond. Spec. Publ. 2023, 530, 1–12. [Google Scholar] [CrossRef]
- Nyulas, J.; Dezsi, Ș.; Niță, A.F.; Magyari-Sáska, Z.; Frey, M.L.; Horváth, A. Twenty-Five Years of Scientific Production on Geoparks from the Perspective of Bibliometric Analysis Using PRISMA. Sustainability 2025, 17, 2218. [Google Scholar] [CrossRef]
- Antić, A.; Radaković, M.G.; Marjanović, M.; Marković, S.B.; Perić, Z.M.; Spalević, V.; Tomić, N. Loess and geotourism potential of the Braničevo District (NE Serbia): From overexploitation to paleoclimate interpretation. Open Geosci. 2023, 15, 20220546. [Google Scholar] [CrossRef]
- Collareta, A.; Sorbini, C.; Farina, S.; Granata, V.; Marchetti, L.; Frassi, C.; Bianucci, G. Reviewing the palaeontological and palaeoenvironmental heritage of the Monti Pisani Massif (Italy): A compelling history of animals, plants and climates through three geological eras. Geosciences 2023, 13, 332. [Google Scholar] [CrossRef]
- Bonachea, J.; González-Díez, A.; Hernández-Blanco, J.; Remondo, J.; Rivas, V. Suitability of valleys of Cantabria area for a UGGp proposal. Land 2023, 12, 2177. [Google Scholar] [CrossRef]
- Cunha, P.P.; Bridgland, D.R.; Figueiredo, S.; Martins, A.A.; Allen, P.; White, M.J. Quaternary earth-science and Palaeolithic conservation initiatives in the Tejo (Tagus), Portugal: Comparison with the Lower Thames, UK. Proc. Geol. Assoc. 2023, 134, 476–489. [Google Scholar] [CrossRef]
- Dempster, M.; Enlander, I.J. Conserving Quaternary geoheritage in Northern Ireland. Proc. Geol. Assoc. 2023, 134, 432–448. [Google Scholar] [CrossRef]
- Gill, J.L.; Blois, J.L.; Benito, B.; Dobrowski, S.; Hunter, M.L., Jr.; McGuire, J.L. A 2.5-million-year perspective on coarse-filter strategies for conserving nature’s stage. Conserv. Biol. 2015, 29, 640–648. [Google Scholar] [CrossRef]
- Chan, M.A.; Godsey, H.S. Lake Bonneville geosites in the urban landscape: Potential loss of geological heritage. Dev. Earth Surf. Process. 2016, 20, 617–633. [Google Scholar]
- Clivaz, M.; Reynard, E. How to integrate invisible geomorphosites in an inventory: A case study in the Rhone River valley (Switzerland). Geoheritage 2018, 10, 527–541. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Erratic disappearances. Some remarks on their geotouristic values. Zesz. Nauk. Tur. Rekr. 2017, 20, 67–74. [Google Scholar]
- Krzeczyńska, M.; Woźniak, P. Faces of geology—Examples of project of geotouristic trails. Prz. Geol. 2011, 59, 340–351. [Google Scholar]
- Antczak, M. Are fossils enough? Palaeontological tourism based on local dinosaur discoveries. Geogr. Tour. 2020, 8, 15–27. [Google Scholar]
- Antić, A.; Tomić, N.; Đorđević, T.; Marković, S.B. Promoting palaeontological heritage of mammoths in Serbia through a cross-country thematic route. Geoheritage 2021, 13, 7. [Google Scholar] [CrossRef]
- Tomić, N.; Marković, S.B.; Korać, M.; Mrđić, N.; Hose, T.A.; Vasiljević, D.A.; Jovičić, M.; Gavrilov, M.B. Exposing mammoths: From loess research discovery to public palaeontological park. Quat. Int. 2015, 372, 142–150. [Google Scholar] [CrossRef]
- Zoboli, D.; Pillola, G.L. The Funtana Morimenta Ichnosite (Sardinia, Italy): A Potential Geotourist Attraction. Geoheritage 2021, 13, 30. [Google Scholar] [CrossRef]
- Illingworth, S. A spectrum of geoscience communication: From dissemination to participation. Geosci. Commun. 2023, 6, 131–139. [Google Scholar] [CrossRef]
- Rodrigues, J.; Costa e Silva, E.; Pereira, D.I. How Can Geoscience Communication Foster Public Engagement with Geoconservation? Geoheritage 2023, 15, 32. [Google Scholar] [CrossRef]
- Stewart, I.S.; Hurth, V. Selling Planet Earth: Re-Purposing Geoscience Communications. Geol. Soc. Lond. Spec. Publ. 2021, 508, 265–283. [Google Scholar] [CrossRef]
- Stewart, I.S.; Nield, T. Earth stories: Context and narrative in the communication of popular geoscience. Proc. Geol. Assoc. 2013, 124, 699–712. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Promoting and interpreting geoheritage at the local level—Bottom-up approach in the Land of Extinct Volcanoes, Sudetes, SW Poland. Geoheritage 2019, 11, 1227–1236. [Google Scholar] [CrossRef]
- Ferraro, F.X.; Schilling, M.E.; Baeza, S.; Oms, O.; Sá, A.A. Bottom-up strategy for the use of geological heritage by local communities: Approach in the “Litoral del Biobío” Mining Geopark project (Chile). Proc. Geol. Assoc. 2020, 131, 500–510. [Google Scholar] [CrossRef]
- Tavares, A.O.; Henriques, M.H.; Domingos, A.; Bala, A. Community involvement in geoconservation: A conceptual approach based on the geoheritage of South Angola. Sustainability 2015, 7, 4893–4918. [Google Scholar] [CrossRef]
- Ginting, N.; Marpaung, B.O.Y.; Sinaga, F.A.; Narisa, N.; Siregar, N. Geotourism and stakeholders: An approach to enhance geoconservation. IOP Conf. Ser. Earth Environ. Sci. 2020, 452, 012156. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Ghinoi, A. Increasing geoheritage awareness through non-formal learning. Sustainability 2023, 15, 868. [Google Scholar] [CrossRef]
- Wibeck, V. Enhancing learning, communication and public engagement about climate change–some lessons from recent literature. Environ. Educ. Res. 2014, 20, 387–411. [Google Scholar] [CrossRef]
- Monroe, M.C.; Plate, R.R.; Oxarart, A.; Bowers, A.; Chaves, W.A. Identifying effective climate change education strategies: A systematic review of the research. Environ. Educ. Res. 2019, 25, 791–812. [Google Scholar] [CrossRef]
- Kumpu, V. What is public engagement and how does it help to address climate change? A review of climate communication research. Environ. Commun. 2022, 16, 304–316. [Google Scholar] [CrossRef]
- Migoń, P.; Różycka, M. When Individual Geosites Matter Less—Challenges to Communicate Landscape Evolution of a Complex Morphostructure (Orlické-Bystrzyckie Mountains Block, Czechia/Poland, Central Europe). Geosciences 2021, 11, 100. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation—History, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Martin, S. Interactive visual media for geomorphological heritage interpretation. Theoretical approach and examples. Geoheritage 2014, 6, 149–157. [Google Scholar] [CrossRef]
- Ghiraldi, L.; Giordano, E.; Perotti, L.; Giardino, M. Digital tools for collection, promotion and visualisation of geoscientific data: Case study of Seguret Valley (Piemonte, NW Italy). Geoheritage 2014, 6, 103–112. [Google Scholar] [CrossRef]
- Balestro, G.; Cassulo, R.; Festa, A.; Fioraso, G.; Giardino, M.; Nicolò, G.; Perotti, L. 3D geological visualizations of geoheritage information in the Monviso Massif (Western Alps). Rend. Online Soc. Geol. Ital. 2016, 39, 81–84. [Google Scholar] [CrossRef]
- Rodríguez, C.; Sevilla, J.; Obeso, Í.; Herrera, D. Emerging tools for the interpretation of glacial and periglacial landscapes with geomorphological interest—A case study using augmented reality in the mountain pass of San Isidro (Cantabrian Range, northwestern Spain). Land 2022, 11, 1327. [Google Scholar] [CrossRef]
- Perotti, L.; Bollati, I.M.; Viani, C.; Zanoletti, E.; Caironi, V.; Pelfini, M.; Giardino, M. Fieldtrips and Virtual Tours as Geotourism Resources: Examples from the Sesia Val Grande UNESCO Global Geopark (NW Italy). Resources 2020, 9, 63. [Google Scholar] [CrossRef]
- Tormey, D. New approaches to communication and education through geoheritage. Int. J. Geoheritage Parks 2019, 7, 192–198. [Google Scholar] [CrossRef]
- Skinner, L. Facing future climate change: Is the past relevant? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 4627–4645. [Google Scholar] [CrossRef]
- Fernández, D.C.; Gómez-Gonçalves, A.; Sánchez-Barbero, B. Effectiveness of interdisciplinary instruction in pre-service teacher education for sustainability: Issues from the big history and the study of climate change. J. Teach. Educ. Sustain. 2023, 25, 5–21. [Google Scholar] [CrossRef]
- Nam, Y.; Ito, E. A climate change course for undergraduate students. J. Geosci. Educ. 2011, 59, 229–241. [Google Scholar] [CrossRef]
- Świerkosz, K.; Koźma, J.; Reczyńska, K.; Halama, M. Muskau Arch Geopark in Poland (Central Europe)—Is it possible to integrate geoconservation and geoeducation into biodiversity conservation? Geoheritage 2017, 9, 59–69. [Google Scholar] [CrossRef]
- Choi, Y.S. A model for the development of learning in a virtual geological field trip as a modified novelty space. Asia-Pac. Sci. Educ. 2024, 10, 289–317. [Google Scholar] [CrossRef]
- Muto, F.; Biondino, D.; Crisci, G.M.; Marabini, S.; Procopio, F.; Scarciglia, F.; Vai, G.B. Pages of earth history in an exceptional uniqueness: The geo-heritage of the Sila National Park and its Spheroidal Boulders Geosite (Northern Calabria, Italy). Geoheritage 2024, 16, 36. [Google Scholar] [CrossRef]
- Bentivenga, M.; Pescatore, E.; Piccarreta, M.; Gizzi, F.T.; Masini, N.; Giano, S.I. Geoheritage and geoconservation, from theory to practice: The ghost town of Craco (Matera District, Basilicata Region, Southern Italy). Sustainability 2024, 16, 2761. [Google Scholar] [CrossRef]
- Böse, M.; Lüthgens, C.; Lee, J.R.; Rose, J. Quaternary glaciations of northern Europe. Quat. Sci. Rev. 2012, 44, 1–25. [Google Scholar] [CrossRef]
- Arrhenius, M.; Lundholm, C.; Bladh, G. Swedish 12–13-year-old students’ conceptions of the causes and processes forming eskers and erratics. J. Geosci. Educ. 2020, 69, 43–54. [Google Scholar] [CrossRef]
- Tylmann, K.; Woźniak, P.P.; Rinterknecht, V.; Piotrowski, R. Great Glacial Giants: Erratic Boulders of Northern Poland as Witnesses of the Pleistocene Ice Age and Beyond. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025; Copernicus GmbH: Göttingen, Germany, 2025. [Google Scholar]
- Kjær, K.H.; Houmark-Nielsen, M.; Richardt, N. Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian Ice Sheet: Signature of palaeo-ice streams. Boreas 2003, 32, 130–148. [Google Scholar] [CrossRef]
- Woźniak, P.P.; Czubla, P. The Late Weichselian glacial record in northern Poland: A new look at debris transport routes by the Fennoscandian Ice Sheet. Quat. Int. 2015, 386, 3–17. [Google Scholar] [CrossRef]
- Duda, T. Between the Sacrum and Profanum. Geographical Determinants of Development of the Sacral Landscape and Religious Tourism Space in Areas of High Cultural and Transformations (Western Pomerania, NW Poland). Almatourism 2018, 9, 32–54. [Google Scholar]
- Mazurek, M.; Paluszkiewicz, R.; Zwoliński, Z. Glacial and Postglacial Landforms of the Drawsko Lakeland. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 597–614. [Google Scholar]
- Warowna, J.; Migoń, P.; Kołodyńska-Gawrysiak, R.; Kiebała, G.; Zgłobicki, W. Geomorphosites of Poland: The role played by the Central Register of Geosites. Landf. Anal. 2013, 22, 117–124. [Google Scholar] [CrossRef]
- Waldron, J.W.; Locock, A.J.; Pujadas-Botey, A. Building an outdoor classroom for field geology: The geoscience garden. J. Geosci. Educ. 2016, 64, 215–230. [Google Scholar] [CrossRef]
- Moliner, L.; Mampel, L. The rock garden “Geologist Juan Paricio” (Alcorisa, Maestrazgo Geopark, Spain): An effective example of geosciences popularization. Geoheritage 2019, 11, 1869–1878. [Google Scholar] [CrossRef]
- Elmi, C.; Simal, A.G.; Winchester, G.P. Developing a rock garden at Edith, J. Carrier Arboretum, Harrisonburg VA (USA) as a resource for promoting geotourism. Geosciences 2020, 10, 415. [Google Scholar] [CrossRef]
- Dillon, D.L.; Hicock, S.R.; Secco, R.A.; Tsujita, C.J. A geologic rock garden as an artificial mapping area for teaching and outreach. J. Geosci. Educ. 2000, 48, 24–29. [Google Scholar] [CrossRef]
- Calderone, G.J.; Thompson, J.R.; Johnson, W.M.; Kadel, S.D.; Nelson, P.J.; Hall-Wallace, M.; Butler, R.F. GeoScape: An instructional rock garden for inquiry-based cooperative learning exercises in introductory geology courses. J. Geosci. Educ. 2003, 51, 171–176. [Google Scholar] [CrossRef]
- Matty, D.J. Campus landscaping by constructing mock geologic outcrops. J. Geosci. Educ. 2006, 54, 445–451. [Google Scholar] [CrossRef]
- Wong Hearing, T.W.; Dewaele, S.; Albers, S.; De Weirdt, J.; De Batist, M. The Rock Garden: A preliminary assessment of how campus-based field skills training impacts student confidence in real-world fieldwork. Geosci. Commun. 2024, 7, 17–33. [Google Scholar] [CrossRef]
- Piotrowski, K. Dobry pomysł na biznes. Kamieniarstwo “głazowe”. Nowy Kamieniarz 2008, 34, 58–62. (In Polish) [Google Scholar]
- Chrząszczewski, W. Stoneman spod Konina. Nowy Kamieniarz 2009, 43, 40–44. (In Polish) [Google Scholar]
- Szarzyńska, A. Wzgórza Dylewskie terenową wystawą muzealną głazów narzutowych. Nat. Przyr. Warm. Mazur 2015, 4, 26–37. (In Polish) [Google Scholar]
- Górska-Zabielska, M.; Dobracki, R. Petrographic Garden in Moryń—A new geotouristic attraction in western Poland. Landf. Anal. 2015, 29, 73–80. [Google Scholar] [CrossRef]
- Keiter, M. Die “Großen Sieben” und der neue Findlingsgarten in Bielefeld—Botschafter vom saalezeitlichen Eisrand. Geschiebekd. Aktuell 2017, 33, 119–129. (In German) [Google Scholar]
- Meyer, K.-D. Der Findlingsgarten von Hagenburg am Steinhuder Meer. Ur-Und Frühzeit 1981, 2, 4–13. (In German) [Google Scholar]
- Meyer, K.-D. Der Findlingsgärten in Niedersachsen. Arch. Geschiebekd. 2006, 5, 323–338. (In German) [Google Scholar]
- Meyer, K.-D. Die Findlinge und Findlingsgärten in Niedersachsen. Schr. Dtsch. Ges. Geowiss. 2008, 56, 117–122. (In German) [Google Scholar]
- Krempien, W.; Schulz, W. Geologische Sammlungsbestände in Museen Mecklenburg-Vorpommerns. Mitt. Nat. Ges. West-Mecklenbg. 2008, 8, 3–24. (In German) [Google Scholar]
- Williams, R. Mystery of missing Birmingham Glacial Boulders. Available online: https://www.bbc.com/news/uk-england-birmingham-63289734 (accessed on 1 August 2025).
- Ciupa, T.; Suligowski, R.; Sutowicz-Kwiecińska, M. Ujęcie siarczkowych wód leczniczych i lapidarium w Uzdrowiskowym Zakładzie Górniczym, Las Winiarski” nową atrakcją geoturystyczną w okolicach Buska Zdroju. Stud. Mater. Misc. Oeconomicae 2017, 1, 93–105. (In Polish) [Google Scholar]
- Górska-Zabielska, M. Die Rolle und Bedeutung von Findlingsgärten aus polnischer Perspektive. Geschiebekd. Aktuell 2022, 38, 107–121. (In German) [Google Scholar]
- Ludwikowska-Kędzia, M.; Wiatrak, M. The geotourist attractiveness of Łagowica River Valley (Holy Cross Mountains, Poland) —A project of a geotourist trail. Geoj. Tour. Geosites 2020, 32, 1337–1346. [Google Scholar] [CrossRef]
- Krzeczyńska, M.; Wierzbowski, A.; Woźniak, P.; Świło, M.; Chećko, A. Działania Muzeum Geologicznego Państwowego Instytutu Geologicznego—Państwowego Instytutu Badawczego prowadzone w celu wykorzystania edukacyjnego i ochrony starych kamieniołomów. Prz. Geol. 2020, 68, 187–193. (In Polish) [Google Scholar]
- Korn, J. Die Wichtigste Leitgeschiebe der Nordischen Kristallinen Gesteine im Norddeutschen Flachlande; Preußische Geologische Landesanstalt: Berlin, Germany, 1927. (In German) [Google Scholar]
- Lüttig, G. Methodische Fragen der Geschiebeforschung. Geol. Jahrb. 1958, 75, 361–418. (In German) [Google Scholar]
- Meyer, K.-D.; Lüttig, G. Was meinen wir mit Leitgeschiebe? Geschiebekd. Aktuell 2007, 23, 106–121. (In German) [Google Scholar]
- Rinterknecht, V.; Marks, L.; Piotrowski, J.A.; Raisbeck, G.M.; Yiou, F.; Brook, E.J.; Clark, P.U. Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas 2005, 34, 186–191. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Kober, F. Surface exposure dating with cosmogenic nuclides. Eiszeitalt. Ggw. Quatern. Sci. J. 2008, 57, 179–209. [Google Scholar] [CrossRef]
- Rinterknecht, V.; Braucher, R.; Böse, M.; Bourlès, D.; Mercier, J.-L. Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating. Quatern. Sci. Rev. 2012, 44, 89–95. [Google Scholar] [CrossRef]
- Tylmann, K.; Woźniak, P.P.; Rinterknecht, V.R. Erratics selection for cosmogenic nuclide exposure dating—An optimization approach. Baltica 2018, 31, 100–114. [Google Scholar] [CrossRef]
- Tylmann, K.; Rinterknecht, V.R.; Woźniak, P.P.; Bourlès, D.; Schimmelpfennig, I.; Guillou, V.; Team ASTER. The local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: Cosmogenic nuclide dating of erratics in northern Poland. Quat. Sci. Rev. 2019, 219, 36–46. [Google Scholar] [CrossRef]
- Akçar, N.; Ivy-Ochs, S.; Schlunegger, F. A special issue of Geosciences: Cutting edge earth sciences—Three decades of cosmogenic nuclides. Geosciences 2022, 12, 409. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. New Geoeducational Facilities in Central Mazovia (Poland) Disseminate Knowledge about Local Geoheritage. Sustainability 2023, 15, 16115. [Google Scholar] [CrossRef]
- Henriques, M.H.; Canales, M.L.; García-Frank, A.; Gomez-Heras, M. Accessible geoparks in Iberia: A challenge to promote geotourism and education for sustainable development. Geoheritage 2019, 11, 471–484. [Google Scholar] [CrossRef]
- Nature Conservation Act of 2004. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20040920880/U/D20040880Lj.pdf (accessed on 10 June 2025).
- Górska-Zabielska, M. The Rock Garden of the Institute of Geography and Environmental Sciences, Jan Kochanowski University—A New Geo-site in Kielce, Central Poland. Geosciences 2021, 11, 113. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. A New Geosite as a Contribution to the Sustainable Development of Urban Geotourism in a Tourist Peripheral Region—Central Poland. Resources 2023, 12, 71. [Google Scholar] [CrossRef]
- Bartholomäus, W.A. Findlingsgarten bei Königslutter eröffnet. Geschiebekd. Aktuell 2001, 17, 113. (In German) [Google Scholar]
- Brügmann, B. The Garden of Large Geschiebes of Mosedis in Lithuania. Geschiebekd. Aktuell 2003, 19, 105–106. (In German) [Google Scholar]
- Dietrich, H.; Hoffmann, G. Entstehung und Herkunft der Findlinge; Redieck & Schade: Rostock, Germany, 2003; 29p. (In German) [Google Scholar]
- Hanácek, M.; Gába, Z.; Nývlt, D. Der Findlingsgarten in Velká Kraš im Jeseník-Gebiet (Tschechien). Geschiebekd. Aktuell 2007, 23, 69–77. (In German) [Google Scholar]
- Koupatsiaris, A.A.; Drinia, H. Expanding Geoethics: Interrelations with Geoenvironmental Education and Sense of Place. Sustainability 2024, 16, 1819. [Google Scholar] [CrossRef]
- Georgousis, E.; Savelides, S.; Mosios, S.; Holokolos, M.V.; Drinia, H. The Need for Geoethical Awareness: The Importance of Geoenvironmental Education in Geoheritage Understanding in the Case of Meteora Geomorphes, Greece. Sustainability 2021, 13, 6626. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Newly Discovered Massive Glacial Boulder in Northwestern Poland: Implications and Prospects for Sustainable Regional Growth. Geoj. Tour. Geosites 2024, 55, 1243–1253. [Google Scholar] [CrossRef]
- Pásková, M.; Zelenka, J.; Ogasawara, T.; Zavala, B.; Astete, I. The ABC concept—Value added to the Earth heritage interpretation? Geoheritage 2021, 13, 38. [Google Scholar] [CrossRef]
- Vandelli, V.; Migoń, P.; Palmgren, Y.; Spyrou, E.; Saitis, G.; Andrikopoulou, M.E.; Coratza, P.; Medjkane, M.; Prieto, C.; Kalovrektis, K.; et al. Towards enhanced understanding and experience of landforms, geohazards, and geoheritage through virtual reality technologies in education: Lessons from the GeoVT Project. Geosciences 2024, 14, 127. [Google Scholar] [CrossRef]
- Polugodina, M.; Grigoriadis, T.N. East Prussia 2.0: Persistent regions, rising nations. Eur. Econ. Rev. 2024, 167, 104790. [Google Scholar] [CrossRef]
- Chłosta-Zielonka, J. Affects in autobiographical accounts and poetic statements about the plebiscite in Warmia, Mazury and Powiśle in 1920. Pr. Lit. 2019, 7, 141–162. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Nowe obiekty geoturystyczne na południowym Podlasiu. Prz. Geol. 2020, 68, 91–99. (In Polish) [Google Scholar]
- Jasprizza, R. Small Spaces Make a Difference. Landsc. Aust. 1999, 21, 292–294. [Google Scholar]
- Collins, J. Reimagining small scale green spaces in Adelaide’s West End. Aust. Plan. 2020, 56, 290–300. [Google Scholar] [CrossRef]
- Gordon, J.E. Geoheritage, geotourism and the cultural landscape: Enhancing the visitor experience and promoting geoconservation. Geosciences 2018, 8, 136. [Google Scholar] [CrossRef]
- Harms, F.J. “DAVID & GOLIATH”: Ein Findling aus dem Norden; Gemeinde Bad Laer: Bad Laer, Germany, 1980; 8p. (In German) [Google Scholar]
- Hoffmann, D.; Dietrich, H.; Grießbach, K.H. Die Ausstellung Nordische Geschiebe. Am Radweg Franzburg-Tribsees. Eine Reise in die Vergangenheit; Norddeutsche Stiftung für Umwelt und Entwicklung: Hamburg, Germany, 2003; 8p. (In German) [Google Scholar]
- Valentini, L.; Guerra, V.; Lazzari, M. Enhancement of geoheritage and development of geotourism: Comparison and inferences from different experiences of communication through art. Geosciences 2022, 12, 264. [Google Scholar] [CrossRef]
- Machowiak, K.; Krawczyk, D.; Flieger-Szymańska, M. Średniowieczne zamki pasma kaczawskiego geostanowiskami do prezentacji historii geologicznej regionu. Prz. Geol. 2023, 71, 305–313. (In Polish) [Google Scholar]
- Miechowicz, Ł. Kiedy Święci po Ziemi Chodzili—Kamienie w Wierzeniach Ludowych na Mazowszu i Podlasiu. In Kamienie w Historii, Kulturze i Religii; Klimek, R., Szczepański, S., Eds.; Robert Klimek: Olsztyn, Poland, 2010; pp. 43–61. (In Polish) [Google Scholar]
- Miechowicz, Ł. Święte i Przeklęte Kamienie w Religijności Ludowej; Wyd. Instytutu Archeologii i Etnologii Polskiej Akademii Nauk: Warszawa, Poland, 2023; p. 345. (In Polish) [Google Scholar]
- Olson, K.; Dowling, R. Geotourism and cultural heritage. Geoconserv. Res. 2018, 1, 37–41. [Google Scholar]
- Pijet-Migoń, E.; Migoń, P. Geoheritage and Cultural Heritage—A Review of Recurrent and Interlinked Themes. Geosciences 2022, 12, 98. [Google Scholar] [CrossRef]
- Reynard, E.; Giusti, C. The Landscape and the Cultural Value of Geoheritage. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–166. [Google Scholar]
- Górska-Zabielska, M. Scandinavian Erratics in the Cultural Heritage Sites of Western Poland. Land 2024, 13, 1282. [Google Scholar] [CrossRef]
- Marks, L. Sto lat kartografii geologicznej w Państwowym Instytucie Geologicznym. Prz. Geol. 2019, 67, 547–557. (In Polish) [Google Scholar]
- Gałązka, D.; Skrobot, W.; Szarzyńska, A. Wzgórza Dylewskie: Geologia, Krajobraz, Antropologia Przestrzeni; Wydawnictwo Mantis: Olsztyn, Poland, 2015. (In Polish) [Google Scholar]
- Abbott, L.; Cook, T. Pittsburgh’s geoheritage: A legacy of Late Paleozoic and Pleistocene glacial events. GSA Today 2023, 33, 18–20. [Google Scholar] [CrossRef]
- Addison, K. Glacial Landforms of Snowdonia. In Landscapes and Landforms of England and Wales; Goudie, A., Migoń, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 567–593. [Google Scholar]
- Balestro, G.; Cassulo, R.; Fioraso, G.; Nicolò, G.; Rolfo, F.; Bonansea, E.; Cadoppi, P.; Castelli, D.; Ferrando, S.; Festa, A.; et al. IT applications for sharing geoheritage information: The example of the geological and geomorphological trail in the Monviso massif (NW Italy). Rend. Online Soc. Geol. Ital. 2015, 34, 85–88. [Google Scholar] [CrossRef]
- Ballesteros, D.; Caldevilla, P.; Vila, R.; Barros, X.C.; Alemparte, M. Linking geoheritage and traditional architecture for mitigating depopulation in rural areas: The Palaeozoic Villages Route (Courel Mountains UNESCO Global Geopark, Spain). Geoheritage 2021, 13, 63. [Google Scholar] [CrossRef]
- Ballesteros, D.; Caldevilla, P.; Vila, R.; Barros, X.C.; Rodríguez-Rodríguez, L.; García-Ávila, M.; Alemparte, M. A GIS-supported multidisciplinary database for the management of UNESCO Global Geoparks: The Courel Mountains Geopark (Spain). Geoheritage 2022, 14, 41. [Google Scholar] [CrossRef]
- Beerten, K.; Dreesen, R.; Janssen, J.; Van Uytven, D. The Campine Plateau. In Landscapes and Landforms of Belgium and Luxembourg; Demoulin, A., Ed.; Springer: Cham, Switzerland, 2018; pp. 193–214. [Google Scholar]
- Bollati, I.M.; Gatti, C.; Paola, P.M.; Speciale, L.; Maffeo, L.; Pelfini, M. Climbing walls in Earth sciences education: An interdisciplinary approach for the secondary school (1st level). Rend. Online Soc. Geol. Ital. 2018, 44, 134–142. [Google Scholar] [CrossRef]
- Bollati, I.M.; Lenz, B.C.; Caironi, V. A multidisciplinary approach for physical landscape analysis: Scientific value and risk of degradation of outstanding landforms in the glacial plateau of the Loana Valley (Central-Western Italian Alps). Ital. J. Geosci. 2020, 139, 233–251. [Google Scholar] [CrossRef]
- Bollati, I.; Coratza, P.; Panizza, V.; Pelfini, M. Lithological and structural control on Italian mountain geoheritage: Opportunities for tourism, outdoor and educational activities. Quaest. Geogr. 2018, 37, 53–73. [Google Scholar] [CrossRef]
- Bollati, I.; Pelfini, M.; Smiraglia, C. Landscapes of northern Lombardy: From the glacial scenery of Upper Valtellina to the Prealpine lacustrine environment of Lake Como. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 89–99. [Google Scholar]
- Bollati, I.; Pellegrini, M.; Reynard, E.; Pelfini, M. Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena 2017, 158, 321–339. [Google Scholar] [CrossRef]
- Bollati, I.; Zucali, M.; Giovenco, C.; Pelfini, M. Geoheritage and sport climbing activities: Using the Montestrutto cliff (Austroalpine domain, Western Alps) as an example of scientific and educational representativeness. Ital. J. Geosci. 2014, 133, 187–199. [Google Scholar] [CrossRef]
- Bouzekraoui, H.; Barakat, A.; Touhami, F.; Mouaddine, A.; El Youssi, M. Inventory and assessment of geomorphosites for geotourism development: A case study of Aït Bou Oulli Valley (Central High-Atlas, Morocco). Area 2018, 50, 331–343. [Google Scholar] [CrossRef]
- Brazier, V.; Gordon, J.E.; Faulkner, M.; Warner, D.; Hoole, K.; Blair, J. The Parallel Roads of Glen Roy, Scotland: Geoconservation history and challenges. Proc. Geol. Assoc. 2017, 128, 151–162. [Google Scholar] [CrossRef]
- Breg Valjavec, M.; Dunato Pejnović, N.; Draženović, M.; Čonč, Š.; Polajnar Horvat, K. The transboundary approach to landscape geointerpretation: Challenges in interpretive planning and geoconservation. Geoheritage 2022, 14, 116. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. The global geoheritage significance of the Kimberley Coast, Western Australia. J. R. Soc. West. Aust. 2011, 94, 57–88. [Google Scholar]
- Burek, C.V.; Ellis, N.V.; Evans, D.H.; Hart, M.B.; Larwood, J.G. Marine geoconservation in the United Kingdom. Proc. Geol. Assoc. 2013, 124, 581–592. [Google Scholar] [CrossRef]
- Canavese, G.; Gianotti, F.; De Varine, H. Ecomuseums and geosites: Community and project building. Int. J. Geoheritage Parks 2018, 6, 43–62. [Google Scholar] [CrossRef]
- Cappadonia, C.; Coratza, P.; Agnesi, V.; Soldati, M. Malta and Sicily joined by geoheritage enhancement and geotourism within the framework of land management and development. Geosciences 2018, 8, 253. [Google Scholar] [CrossRef]
- Capps, D.M. The role of glaciers and glacier research in the development of US national parks. Earth Sci. Hist. 2017, 36, 337–358. [Google Scholar]
- Chlachula, J. Geo-tourism perspectives in East Kazakhstan. Geogr. Environ. Sustain. 2019, 12, 29–43. [Google Scholar] [CrossRef]
- Chlachula, J. Geoheritage of East Kazakhstan. Geoheritage 2020, 12, 91. [Google Scholar] [CrossRef]
- Chlachula, J.; Mychko, E.V. Geoheritage of the Kaliningrad Region, SE Baltic Coast. Geoheritage 2023, 15, 132. [Google Scholar] [CrossRef]
- Columbu, A.; Calabrò, L.; Chiarini, V.; De Waele, J. Stalagmites: From science application to museumization. Geoheritage 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Comanescu, L.; Nedelea, A.; Dobre, R. Evaluation of geomorphosites in Vistea Valley (Fagaras Mountains-Carpathians, Romania). Int. J. Phys. Sci. 2011, 6, 1161–1168. [Google Scholar]
- Coronato, A.; Schwarz, S. Approaching geodiversity and geoconservation in Argentina. Int. J. Geoheritage Parks 2022, 10, 597–615. [Google Scholar] [CrossRef]
- Coronato, A.; Schwarz, S.; Flores Barrera, F. Glacial landforms as geodiversity resources for geotourism in Tierra del Fuego, Argentina. Quaest. Geogr. 2022, 41, 5–24. [Google Scholar] [CrossRef]
- Costa-Casais, M.; Alves, M.I.C. Geological heritage at risk in NW Spain. Quaternary deposits and landforms of “Southern Coast” (Baiona-A Garda). Geoheritage 2013, 5, 227–248. [Google Scholar] [CrossRef]
- Cruz, R.; Martínez-Graña, A.; Goy, J.L.; Nogueira, N. Analysis of the geological heritage and geodiversity index of two mountainous areas in Spain: Béjar and El Barco Massifs. Geoheritage 2021, 13, 1–16. [Google Scholar] [CrossRef]
- Cunningham, D. The case for a globally recognized geopark in the NE Gobi Altai Region of Mongolia. Geoheritage 2021, 13, 105. [Google Scholar] [CrossRef]
- Czubla, P.; Brykała, D.; Dąbski, M.; Gierszewski, P.; Błaszkiewicz, M.; Mosakowski, Z.; Lamparski, P. Unobvious geoheritage in sacral buildings: Millstones in churches of NE Poland from a geological and geomorphological perspective. Geogr. Pol. 2024, 97, 327–354. [Google Scholar] [CrossRef]
- Demitroff, M. Pleistocene ventifacts and ice-marginal conditions, New Jersey, USA. Permafrost Periglac. Process. 2016, 27, 123–137. [Google Scholar] [CrossRef]
- Dong, H.; Song, Y.; Chen, T.; Zhao, J.; Yu, L. Geoconservation and geotourism in Luochuan loess national geopark, China. Quat. Int. 2014, 334, 40–51. [Google Scholar] [CrossRef]
- Ellero, A.; Oddsson, B.; Ottria, G. Geology and geodiversity of the Folafótur peninsula (Westfjords, Iceland). J. Maps 2023, 19, 2227203. [Google Scholar] [CrossRef]
- Erikstad, L.; Nakrem, H.A.; Markussen, J.A. Protected geosites in an urban area of Norway, inventories, values, and management. Geoheritage 2018, 10, 219–229. [Google Scholar] [CrossRef]
- Ferrando, A.; Faccini, F.; Poggi, F.; Coratza, P. Geosites inventory in Liguria region (Northern Italy): A tool for regional geoconservation and environmental management. Sustainability 2021, 13, 2346. [Google Scholar] [CrossRef]
- Feuillet, T.; Sourp, E. Geomorphological heritage of the Pyrenees National Park (France): Assessment, clustering, and promotion of geomorphosites. Geoheritage 2011, 3, 151–162. [Google Scholar] [CrossRef]
- Filocamo, F.; Rosskopf, C.M.; Amato, V. A contribution to the understanding of the Apennine landscapes: The potential role of Molise geosites. Geoheritage 2019, 11, 1667–1688. [Google Scholar] [CrossRef]
- Filocamo, F.; Rosskopf, C.M.; Amato, V.; Cesarano, M. A step towards a sustainable tourism in Apennine mountain areas: A proposal of geoitinerary across the Matese Mountains (Central-Southern Italy). Geosciences 2022, 12, 100. [Google Scholar] [CrossRef]
- Forno, M.G.; Gianotti, F.; Gattiglio, M.; Pelfini, M.; Sartori, G.; Bollati, I.M. How can a complex geosite be enhanced? A landscape-scale approach to the deep-seated gravitational slope deformation of Pointe Leysser (Aosta Valley, NW Italy). Geoheritage 2022, 14, 100. [Google Scholar] [CrossRef]
- Luan, F.; Wang, F.; Xiong, H.; Wang, Z.; Li, B. A study on classification and zoning of Chinese geoheritage resources in national geoparks. Geoheritage 2016, 8, 247–261. [Google Scholar]
- Gajek, G.; Zgłobicki, W.; Kołodyńska-Gawrysiak, R. Geoeducational value of quarries located within the Małopolska Vistula River Gap (E Poland). Geoheritage 2019, 11, 1335–1351. [Google Scholar] [CrossRef]
- Gatley, S.; Parkes, M. The selection of and characters of a geosite—Examples from Ireland. Geoheritage 2018, 10, 157–167. [Google Scholar] [CrossRef]
- Gianotti, F.; Forno, M.G.; Ajassa, R.; Cámara, F.; Costa, E.; Ferrando, S.; Giardino, M.; Lucchesi, S.; Motta, L.; Motta, M.; et al. The Ivrea Morainic Amphitheatre as a well preserved record of the Quaternary climate variability (PROGEO-Piemonte Project, NW Italy). Eng. Geol. Soc. Territ. 2015, 8, 235–238. [Google Scholar]
- Giordano, E.; Giardino, M.; Perotti, L.; Ghiraldi, L.; Palomba, M. Following the tracks of Charlemagne in the Cottian Alps. The cultural and geological heritage of the Franks Trail (Susa valley, Piemonte, NW Italy). Geoheritage 2016, 8, 293–300. [Google Scholar] [CrossRef]
- Gnezdilova, V.V.; Ruban, D.A.; Bruno, D.E.; Perrotta, P.; Crowley, B.E.; Oheim, K.B.; Zayats, P.P. Geoheritage sites with palaeogeographical value: Some geotourism perspectives with examples from Mountainous Adygeja (Russia). Geol. Balk. Poluostrva 2015, 76, 93–104. [Google Scholar] [CrossRef]
- Goemaere, E.; Demarque, S.; Dreesen, R.; Declercq, P.Y. The geological and cultural heritage of the Caledonian Stavelot-Venn Massif, Belgium. Geoheritage 2016, 8, 211–233. [Google Scholar] [CrossRef]
- Golfinopoulos, V.; Papadopoulou, P.; Koumoutsou, E.; Zouros, N.; Fassoulas, C.; Zelilidis, A.; Iliopoulos, G. Quantitative assessment of the geosites of Chelmos-Vouraikos UNESCO Global Geopark (Greece). Geosciences 2022, 12, 63. [Google Scholar] [CrossRef]
- González-Gutiérrez, R.B.; Santos-González, J.; Gómez-Villar, A.; Redondo-Vega, J.M.; Prieto-Sarro, I. Geomorphology of the Curueño river headwaters, Cantabrian Mountains (NW Spain). J. Maps 2017, 13, 382–394. [Google Scholar] [CrossRef]
- Gordon, J.E.; Barron, H.F. The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott. J. Geol. 2013, 49, 41–58. [Google Scholar] [CrossRef]
- Gordon, J.E.; Brooks, A.J.; Chaniotis, P.D.; James, B.D.; Kenyon, N.H.; Leslie, A.B.; Long, D.; Rennie, A.F. Progress in marine geoconservation in Scotland’s seas: Assessment of key interests and their contribution to Marine Protected Area network planning. Proc. Geol. Assoc. 2016, 127, 716–737. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. The most valuable erratic boulders in the Wielkopolska region of western Poland and their potential to promote geotourism. GeoJ. Tour. Geosites 2020, 29, 694–714. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Geoheritage in a forest: Traces of ice sheets in Pałuki, western Poland. Sustainability 2022, 14, 7190. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Witkowska, K.; Pisarska, M.; Musiał, R.; Jońca, B. The selected erratic boulders in the Świętokrzyskie Province (Central Poland) and their potential to promote geotourism. Geoheritage 2020, 12, 30. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Zabielski, R. Stone in an urban space—Its potential to promote geotourism. GeoJ. Tour. Geosites 2019, 26, 1033–1045. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Wachecka-Kotkowska, L. Wartanian glacial sediments: Insights into deglaciation of Polish Lowlands and Highlands border for geotourism. Misc. Geogr. 2024, 28, 87–99. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Błaszczyk, N.; Nowak, I. The geoheritage potential of the south-east Pałuki (western Poland) to promote geotourism. GeoJ. Tour. Geosites 2024, 52, 294–312. [Google Scholar] [CrossRef]
- Gray, M.; Gordon, J.E.; Brown, E.J. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 2013, 124, 659–673. [Google Scholar] [CrossRef]
- Han, J.; Wu, F.; Tian, M.; Li, W. From geopark to sustainable development: Heritage conservation and geotourism promotion in the Huangshan UNESCO Global Geopark (China). Geoheritage 2018, 10, 79–91. [Google Scholar] [CrossRef]
- Hazell, Z.; Last, J.; Campbell, G.; Corcoran, J.; Fluck, H. Quaternary palaeoecology and the historic environment: Challenges and opportunities for preserving England’s wetlands. Proc. Geol. Assoc. 2023, 134, 458–475. [Google Scholar] [CrossRef]
- Hose, T.A. Awheel Along Europe’s Rivers: Geoarchaeological Trails for Cycling Geotourists. Open Geosci. 2018, 10, 413–440. [Google Scholar] [CrossRef]
- Huber, M.; Iakovleva, O. Tourism, scientific, and didactic potential of the ultrabasic-alkaline intrusion in Afrikanda with perovskite mineral (Kola peninsula, N Russia) and of the related built heritage. Heritage 2021, 4, 3892–3907. [Google Scholar] [CrossRef]
- Huber, M.; Zhigunova, G.; Menshakova, M.; Iakovleva, O.; Karimova, M. Geoheritage of the Monchegorsk igneous layered paleoproterozoic intrusion (Kola Peninsula, Arctic Russia): Evaluation and geotourism opportunities. Heritage 2021, 4, 3583–3610. [Google Scholar] [CrossRef]
- Huber, M.; Galina, Z.; Mariya, M.; Ramziya, G.; Olga, I. Geoheritage of the Kandalaksha region (Kola Peninsula, White Sea, Arctic Russia), Evaluation, and Geotourism Opportunities. Geoheritage 2022, 14, 112. [Google Scholar] [CrossRef]
- Ibáñez Palacios, G.P.; Ahumada, A.L.; Páez, S.V. Geological heritage in a region of the Sierra de Aconcagua, Provinces of Tucuman and Catamarca, Argentina. PASOS Rev. Tur. Patrim. Cult. 2012, 10, 75–87. [Google Scholar]
- Ibáñez Palacios, G.P.; Ahumada, A.L.; Toledo, M.A.; Páez, S.V. Assessment of geological heritage in a potential interpreted geo-trail in the mountain range of Santa Victoria in Salta, Argentina. PASOS Rev. Tur. Patrim. Cult. 2018, 16, 583–598. [Google Scholar]
- Jary, Z.; Owczarek, P.; Ryzner, K.; Widawski, K.; Krawczyk, M.; Krzyszkowski, D.; Skurzyński, J. Loess Documentary Sites and Their Potential for Geotourism in Lower Silesia (Poland). Open Geosci. 2018, 10, 647–660. [Google Scholar] [CrossRef]
- Jon, W.S.; Ryang, D.Z.; Ri, H.Y. Natural Heritage Value of Mt. Kumgang and Global Comparative Analysis. Geoheritage 2020, 12, 32. [Google Scholar] [CrossRef]
- Kiernan, K. The Original Lake Pedder, Southwest Tasmania: Origin, Age and Evolution of an Australian Nature Conservation Icon. Geoheritage 2019, 11, 271–289. [Google Scholar] [CrossRef]
- Kil, Y.; Ahn, K.S.; Woo, K.S.; Lee, K.C.; Jwa, Y.J.; Jung, W.; Sohn, Y.K. Geoheritage Values of the Quaternary Hantangang River Volcanic Field in the Central Korean Peninsula. Geoheritage 2019, 11, 765–782. [Google Scholar] [CrossRef]
- Kim, C.; Ma, J. Assessing the Touristic Value of the Stone Run at Mt. Okryon in the Korean Peninsula. Geoheritage 2023, 15, 65. [Google Scholar] [CrossRef]
- Knight, J.; Harrison, S. ‘A Land History of Men’: The Intersection of Geomorphology, Culture and Heritage in Cornwall, Southwest England. Appl. Geogr. 2013, 42, 186–194. [Google Scholar] [CrossRef]
- Krawiec, A.; Wysocki, W.; Jamorska, I.; Belzyt, S. Geoturist Evaluation of Geosites in the Tuchola Forest Biosphere Reserve (N Poland). Resources 2022, 11, 13. [Google Scholar] [CrossRef]
- Leng, Y.; Lyu, Y.; He, M.; Zhao, J. Geoheritage Sites of Yan’an City for Geotourism in China’s Middle Loess Plateau. Geoheritage 2023, 15, 73. [Google Scholar] [CrossRef]
- Lokier, S.W. Coastal Sabkha Preservation in the Arabian Gulf. Geoheritage 2013, 5, 11–22. [Google Scholar] [CrossRef]
- Lowe, J.; Brazier, V. The Callander (Auchenlaich) Moraine: A New Site Report for the Western Highland Boundary Block of the Quaternary of Scotland Geological Conservation Review (GCR). Proc. Geol. Assoc. 2021, 132, 24–33. [Google Scholar] [CrossRef]
- Lucchesi, S.; Gianotti, F.; Giardino, M. The Morainic Amphitheatre Environment: A Geosite to Rediscover the Geological and Cultural Heritage in the Examples of the Ivrea and Rivoli-Avigliana Morainic Amphitheatres (NW Italy). Eng. Geol. Soc. Territ. 2015, 8, 245–248. [Google Scholar]
- Magagna, A.; Palomba, M.; Bovio, A.; Ferrero, E.; Gianotti, F.; Giardino, M.; Judica, L.; Perotti, L.; Tonon, M.D. GeoDidaLab: A Laboratory for Environmental Education and Research within the Ivrea Morainic Amphitheatre (Turin, NW Italy). Rend. Online Soc. Geol. Ital. 2018, 45, 68–76. [Google Scholar]
- Manyuk, V.V.; Maniuk, V.V. Geodiversity, Geological Heritage and Renewal of the Network of Geosites of the Dnipropetrovsk Region. J. Geol. Geogr. Geoecol. 2023, 32, 326–341. [Google Scholar] [CrossRef]
- Margiotta, S.; Sansò, P. The Geological Heritage of Otranto–Leuca Coast (Salento, Italy). Geoheritage 2014, 6, 305–316. [Google Scholar] [CrossRef]
- Markovič, S.B.; Korač, M.; Mrđić, N.; Buylaert, J.P.; Thiel, C.; McLaren, S.J.; Stevens, T.; Tomič, N.; Petič, N.; Jovanovič, M.; et al. Palaeoenvironment and Geoconservation of Mammoths from the Nosak Loess–Palaeosol Sequence (Drmno, Northeastern Serbia): Initial Results and Perspectives. Quat. Int. 2014, 334, 30–39. [Google Scholar] [CrossRef]
- Masseroli, A.; Bollati, I.M.; Trombino, L.; Pelfini, M. The Soil Trail of Buscagna Valley, an Example of the Role of Soil Science in Geodiversity and Geoheritage Analyses. Geol. Soc. Lond. Spec. Publ. 2023, 530, 219–234. [Google Scholar] [CrossRef]
- Mateos, R.M.; Durán, J.J.; Robledo, P.A. Marès Quarries on the Majorcan Coast (Spain) as Geological Heritage Sites. Geoheritage 2011, 3, 41–54. [Google Scholar] [CrossRef]
- Meakin, S. Geodiversity of the Lightning Ridge Area and Implications for Geotourism. Proc. Linn. Soc. N. S. W. 2011, 132, 71–82. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Esposito, G. Geomorphosites and Geotourism in the Parks of the Abruzzo Region (Central Italy). Geoheritage 2011, 3, 233–251. [Google Scholar] [CrossRef]
- Migoń, P. Geomorphic Diversity of the Sudetes—Effects of Structure and Global Change Superimposed. Geogr. Pol. 2011, 84, 93–105. [Google Scholar] [CrossRef]
- Migoń, P.; Kasprzak, M.; Woo, K.S. Granite Landform Diversity and Dynamics Underpin Geoheritage Values of Seoraksan Mountains, Republic of Korea. Geoheritage 2019, 11, 751–764. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Overlooked Geomorphological Component of Volcanic Geoheritage—Diversity and Perspectives for Tourism Industry, Pogórze Kaczawskie Region, SW Poland. Geoheritage 2016, 8, 333–350. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Late Palaeozoic Volcanism in Central Europe—Geoheritage Significance and Use in Geotourism. Geoheritage 2020, 12, 43. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Exploring Causal Relationships for Geoheritage Interpretation—Variable Effects of Cenozoic Volcanism in Central European Sedimentary Tablelands. Geoheritage 2022, 14, 9. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Geoconservation History of a Basalt Quarry–The Case of Mt. Wilkołak, Land of Extinct Volcanoes Geopark, SW Poland. Geoheritage 2024, 16, 65. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Non-Uniform Distribution of Geoheritage Resources in Geoparks—Problems, Challenges and Opportunities. Resources 2024, 13, 23. [Google Scholar] [CrossRef]
- Milligan, M.; McDonald, H. Shorelines and Vertebrate Fauna of Pleistocene Lake Bonneville, Utah, Idaho, and Nevada. Geol. Intermt. West 2017, 4, 181–214. [Google Scholar] [CrossRef]
- Mir, A.R.; Dar, F.A.; Ahmad, M.Z. Characteristics of Geosites for Promotion and Development of Geotourism in Ladakh, India. Geoheritage 2023, 15, 105. [Google Scholar] [CrossRef]
- Morino, C.; Coratza, P.; Soldati, M. Landslides, a Key Landform in the Global Geological Heritage. Front. Earth Sci. 2022, 10, 864760. [Google Scholar] [CrossRef]
- Murphy, P.J. The Paradox of the Pavements—How the Cultural Value of Limestone Pavements Resulted in Widespread Damage to These Landforms Across Northern Britain and What Has Been Done About It. Geoconserv. Res. 2022, 5, 321–326. [Google Scholar]
- Navarrete, E.; Morante-Carballo, F.; Dueñas-Tovar, J.; Carrión-Mero, P.; Jaya-Montalvo, M.; Berrezueta, E. Assessment of Geosites within a Natural Protected Area: A Case Study of Cajas National Park. Sustainability 2022, 14, 3120. [Google Scholar] [CrossRef]
- Necheş, I.M. Geodiversity Beyond Material Evidence: A Geosite Type Based Interpretation of Geological Heritage. Proc. Geol. Assoc. 2016, 127, 78–89. [Google Scholar] [CrossRef]
- Nikolić, E.V. Creation of the Mammoth Park at Viminacium, Serbia. Geoheritage 2019, 11, 935–947. [Google Scholar] [CrossRef]
- O’Leary, M.J.; Paumard, V.; Ward, I. Exploring Sea Country through High-Resolution 3D Seismic Imaging of Australia’s NW Shelf: Resolving Early Coastal Landscapes and Preservation of Underwater Cultural Heritage. Quat. Sci. Rev. 2020, 239, 106353. [Google Scholar] [CrossRef]
- Ortega-Becerril, J.A.; Jorge-Coronado, A.; Garzón, G.; Wohl, E. Sobrarbe Geopark: An Example of Highly Diverse Bedrock Rivers. Geoheritage 2017, 9, 533–548. [Google Scholar] [CrossRef]
- Ovreiu, A.B.; Comănescu, L.; Bărsoianu, I.A.; Nedelea, A. Evaluating Geomorphosites and the Geomorphological Hazards That Impact Them: Case Study—Cozia Massif (Southern Carpathians, Romania). Geoheritage 2019, 11, 1067–1087. [Google Scholar] [CrossRef]
- Palacio-Prieto, J.L.; Rosado-González, E.; Ramírez-Miguel, X.; Oropeza-Orozco, O.; Cram-Heydrich, S.; Ortiz-Pérez, M.A.; Figueroa-Mah-Eng, J.M.; de Castro-Martínez, G.F. Erosion, Culture and Geoheritage; The Case of Santo Domingo Yanhuitlán, Oaxaca, México. Geoheritage 2016, 8, 359–369. [Google Scholar] [CrossRef]
- Panizza, M. The Geomorphodiversity of the Dolomites (Italy): A Key of Geoheritage Assessment. Geoheritage 2009, 1, 33–42. [Google Scholar] [CrossRef]
- Panizza, M. The Dolomites and Their Geomorphodiversity. Geogr. Pol. 2011, 84, 107–115. [Google Scholar] [CrossRef]
- Pavlovskaya, I.E. Late Pleistocene Evolution of Hydrographical Network Recorded at Geosites in the Middle Neman Area (Western Belarus). Pol. Geol. Inst. Spec. Pap. 2004, 13, 167–174. [Google Scholar]
- Pellitero, R.; Manosso, F.C.; Serrano, E. Mid- and Large-Scale Geodiversity Calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Paraná, Brazil): Methodology and Application for Land Management. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 219–235. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D.I. The Granite and Glacial Landscapes of the Peneda-Gerês National Park. In Landscapes and Landforms of Portugal; Vieira, G., Zêzere, J.L., Mora, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 127–137. [Google Scholar]
- Piacentini, T.; Castaldini, D.; Coratza, P.; Farabollini, P.; Miccadei, E. Geotourism: Some Examples in Northern-Central Italy. GeoJ. Tour. Geosites 2011, 8, 240–262. [Google Scholar]
- Pidek, I.A.; Orłowska, A. Conception of the “Unique Ferdynandovian Flora” Geosite in the Łuków Plain. Pol. J. Nat. Sci. 2017, 32, 573–585. [Google Scholar]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Stoffel, M.; Zamorano-Orozco, J.J. Glacial geomorphology of the Chirripó National Park, Costa Rica. J. Maps 2019, 15, 538–545. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. State of the art of geodiversity, geoconservation, and geotourism in Costa Rica. Geosciences 2020, 10, 211. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. Tropical paleoglacial geoheritage inventory for geotourism management of Chirripó National Park, Costa Rica. Geoheritage 2020, 12, 58. [Google Scholar] [CrossRef]
- Rasiņa, M.; Racek, M.; Přikrylová, J.; Řimnáčová, D.; Pumpuriņš, D.; Přikryl, R. Natural Stones Used in the Cultural Heritage of Latvia: Historical Context, Stone Selection Criteria, Durability, and Conservation. Geoheritage 2024, 16, 128. [Google Scholar] [CrossRef]
- Raška, P.; Pokorný, R.; Krmíček, L.; Kuboušková, S.; Mortensen, L. Basaltic dyke with specific volcanogenic structures and its geomorphic evolution: Unique geoheritage of the Faroe Islands (North Atlantic Ocean). Geoheritage 2019, 11, 417–426. [Google Scholar] [CrossRef]
- Raukas, A.; Stankowski, W. The Kaali crater field and other geosites of Saaremaa Island (Estonia): The perspectives for a geopark. Geologos 2010, 16, 59–68. [Google Scholar] [CrossRef]
- Reynard, E.; Pica, A.; Coratza, P. Urban geomorphological heritage. An overview. Quaest. Geogr. 2017, 36, 7–20. [Google Scholar] [CrossRef]
- Sánchez-Cortez, J.L. Conservation of geoheritage in Ecuador: Situation and perspectives. Int. J. Geoherit. Parks 2019, 7, 91–101. [Google Scholar] [CrossRef]
- Sansò, P. Geomorphological Analysis of Karst Landforms at the Masso della Vecchia geosite (Salento Peninsula, Italy). Acta Carsol. 2017, 46, 7–18. [Google Scholar] [CrossRef]
- Sansò, P.; Margiotta, S.; Mastronuzzi, G.; Vitale, A. The geological heritage of Salento Leccese area (Apulia, southern Italy). Geoheritage 2015, 7, 85–101. [Google Scholar] [CrossRef]
- Santangelo, N.; Amato, V.; Ascione, A.; Russo Ermolli, E.; Valente, E. GEOTOURISM as a Tool for Learning: A Geoitinerary in the Cilento, Vallo di Diano and Alburni Geopark (Southern Italy). Resources 2020, 9, 67. [Google Scholar] [CrossRef]
- Santangelo, N.; Romano, P.; Santo, A. Geo-itineraries in the Cilento Vallo di Diano Geopark: A tool for tourism development in Southern Italy. Geoheritage 2015, 7, 319–335. [Google Scholar] [CrossRef]
- Santos-González, J.; Marcos-Reguero, A. Applying the geological heritage in land management: Cartography and management proposals of geosites in Burgos Province (Spain). Geoheritage 2019, 11, 485–500. [Google Scholar] [CrossRef]
- Sardella, R.; Iurino, D.A.; Mecozzi, B.; Sigari, D.; Bona, F.; Bellucci, L.; Coltorti, M.; Conti, J.; Lembo, G.; Muttillo, B.; et al. Grotta Romanelli (Lecce, Southern Italy) between past and future: New studies and perspectives for an archaeo-geosite symbol of the Palaeolithic in Europe. Geoheritage 2019, 11, 1413–1432. [Google Scholar] [CrossRef]
- Satkunas, J.; Mikulenas, V.; Lincius, A.; Baltrunas, V. List of the most representative geosites of Lithuania. Pol. Geol. Inst. Spec. Pap. 1999, 2, 97–102. [Google Scholar]
- Schwarz, S.; Migoń, P. When science and leisure meet: A geotourist itinerary in southern Tierra Del Fuego, Argentina. In Advances in Geomorphology and Quaternary Studies in Argentina; Rabassa, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 49–75. [Google Scholar]
- Seijmonsbergen, A.C.; Sevink, J.; Cammeraat, L.H.; Recharte, J. A potential geoconservation map of the Las Lagunas area, northern Peru. Environ. Conserv. 2010, 37, 107–115. [Google Scholar] [CrossRef]
- Sellier, D.; Kerguillec, R. Landforms and Geomorphosite Designation on Mount Gausta (Telemark). In Landscapes and Landforms of Norway; Beylich, A.A., Ed.; Springer: Cham, Switzerland, 2020; pp. 243–269. [Google Scholar]
- Semeniuk, T.A.; Semeniuk, V. Geoheritage significance of three Pleistocene formations recording a succession of climates and sea levels on the Yalgorup Plain in southwestern Australia. Aust. J. Earth Sci. 2019, 66, 855–868. [Google Scholar] [CrossRef]
- Serrano, E.; González Trueba, J.J. Environmental education and landscape leisure. Geotourist map and geomorphosites in the Picos de Europa National Park. Geo J. Tour. Geosites 2011, 8, 295–308. [Google Scholar]
- Sinnyovsky, D.; Sachkov, D.; Tsvetkova, I.; Atanasova, N. Geomorphosite Characterization Method for the Purpose of an Aspiring Geopark Application Dossier on the Example of Maritsa Cirque Complex in Geopark Rila, Rila Mountain, SW Bulgaria. Geoheritage 2020, 12, 26. [Google Scholar] [CrossRef]
- Sinnyovsky, D.; Gorbach, A.; Gorbach, V.; Sinnyovska, D. Kamchatka—The Cold and the Heat of the Earth. Geoheritage 2023, 15, 115. [Google Scholar] [CrossRef]
- Solarska, A.; Hose, T.A.; Vasiljević, D.A.; Mroczek, P.; Jary, Z.; Marković, S.B.; Widawski, K. Geodiversity of the loess regions in Poland: Inventory, geoconservation issues, and geotourism potential. Quat. Int. 2013, 296, 68–81. [Google Scholar] [CrossRef]
- Stocchi, P.; Antonioli, F.; Montagna, P.; Pepe, F.; Presti, V.L.; Caruso, A.; Corradino, M.; Dardanelli, G.; Renda, P.; Frank, N.; et al. A stalactite record of four relative sea-level highstands during the Middle Pleistocene Transition. Quat. Sci. Rev. 2017, 173, 92–100. [Google Scholar] [CrossRef]
- Stroppa, P.; Invernizzi, C.; Paris, E.; Pierantoni, P.P. A space-time journey through the composite Conero Geosite (Marche, Italy): A tool for teaching Earth Sciences at school. Rend. Online Soc. Geol. Ital. 2016, 40, 85–90. [Google Scholar] [CrossRef]
- Szadkowska, K.; Szadkowski, M.; Tarka, R. Inventory and assessment of the geoheritage of the Sudetic Foreland Geopark (South-Western Poland). Geoheritage 2022, 14, 24. [Google Scholar] [CrossRef]
- Szakács, A.; Chiriță, V. Protected natural values of geoheritage interest in the Călimani National Park, eastern Carpathians, Romania. Geoheritage 2017, 9, 421–434. [Google Scholar] [CrossRef]
- Thakkar, M.G.; Chauhan, G.; Padder, A.H.; Parcha, S.K.; Sharma, S.; Thakur, V.C.; Dorjay, C.P. Geoheritage merits of the Zanskar Range of the Kashmir Himalaya: A field geology museum from Precambrian to Present. Geoheritage 2023, 15, 75. [Google Scholar] [CrossRef]
- Tisdall, E.; Miller, A.D. Recognising geodiversity and encouraging geoconservation—Some lessons from Callander, Loch Lomond and The Trossachs National Park, Scotland. Proc. Geol. Assoc. 2023, 134, 449–457. [Google Scholar] [CrossRef]
- Urban, J.; Wróblewski, T. Representative geosites of the Góry Świętokrzyskie (Holy Cross Mts.) and the Nida Basin, Central Poland. Pol. Geol. Inst. Spec. Pap. 1999, 2, 61–70. [Google Scholar]
- Valentini, L.; Guerra, V.; Nesci, O. The Mt. Catria–Mt. Nerone Ridge in the North-Marchean Apennines (Central Italy): A Potential Geopark? Sustainability 2023, 15, 11382. [Google Scholar] [CrossRef]
- Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Smalley, I.; Basarin, B.; Lazić, L.; Jović, G. The Introduction to Geoconservation of loess-palaeosol sequences in the Vojvodina region: Significant geoheritage of Serbia. Quat. Int. 2011, 240, 108–116. [Google Scholar] [CrossRef]
- Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Smalley, I.; O’Hara-Dhand, K.; Basarin, B.; Lukić, T.; Vujičić, M.D. Loess towards (geo) tourism–proposed application on loess in Vojvodina region (north Serbia). Acta Geogr. Slov. 2011, 51, 391–406. [Google Scholar] [CrossRef]
- Vergara-Daskam, C.; Estay-Daskam, C. Geoheritage of Cajón del Maipo aspiring geopark: Inventory, assessment, and opportunities for local development in the Andes of central Chile. Geol. Soc. Spec. Publ. 2023, 530, 181–199. [Google Scholar] [CrossRef]
- Vieira, G.; de Castro, E.; Gomes, H.; Loureiro, F.; Fernandes, M.; Patrocínio, F.; Firmino, G.; Forte, J. The Estrela Geopark—From Planation Surfaces to Glacial Erosion. In Landscapes and Landforms of Portugal; Vieira, G., Zêzere, J.L., Mora, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 341–357. [Google Scholar]
- Vidal, R.R.; Tassara, A. Geo-circuit for interpretation of the geological evolution in the Nevados de Chillán Volcanic Complex, Chile. Geoheritage 2023, 15, 63. [Google Scholar] [CrossRef]
- Vinokurov, V.; Komarovsky, M. The most valuable geosites of Belarus. Pol. Geol. Inst. Spec. Pap. 1999, 2, 91–96. [Google Scholar]
- Višnić, T.; Spasojević, B.; Vujičić, M. The potential for geotourism development on the Srem Loess Plateau based on a preliminary geosite assessment model (GAM). Geoheritage 2016, 8, 173–180. [Google Scholar] [CrossRef]
- Wang, L.; Tian, M.; Wang, L. Geodiversity, geoconservation and geotourism in Hong Kong global geopark of China. Proc. Geol. Assoc. 2015, 126, 426–437. [Google Scholar] [CrossRef]
- Warowna, J.; Zgłobicki, W.; Kołodyńska-Gawrysiak, R.; Gajek, G.; Gawrysiak, L.; Telecka, M. Geotourist values of loess geoheritage within the planned Geopark Małopolska Vistula River Gap, E Poland. Quat. Int. 2016, 399, 46–57. [Google Scholar] [CrossRef]
- Wignall, R.M.; Gordon, J.E.; Brazier, V.; MacFadyen, C.C.; Everett, N.S. A qualitative risk assessment for the impacts of climate change on nationally and internationally important geoheritage sites in Scotland. Proc. Geol. Assoc. 2018, 129, 120–134. [Google Scholar] [CrossRef]
- Wolniewicz, P. Beyond geodiversity sites: Exploring the educational potential of widespread geological features (rocks, minerals and fossils). Geoheritage 2021, 13, 34. [Google Scholar] [CrossRef]
- Wolniewicz, P. Classification and quantification of urban geodiversity and its intersection with cultural heritage. Geoheritage 2022, 14, 63. [Google Scholar] [CrossRef]
- Wolniewicz, P. The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage. Resources 2024, 13, 119. [Google Scholar] [CrossRef]
- Woo, K.S.; Kim, L.; Ji, H.; Jeon, Y.; Ryu, C.G.; Wood, C. Geological Heritage Values of the Yongcheon Cave (Lava Tube Cave), Jeju Island, Korea. Geoheritage 2019, 11, 615–628. [Google Scholar] [CrossRef]
- Woodcock, D.W.; Rogan, J.S.; Blanchard, S.D. Accelerating Anthropogenic Land Surface Change and the Status of Pleistocene Drumlins in New England. PLoS ONE 2012, 7, e46702. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Yang, W.; Guo, W. Features of Geological Heritage and Development Value in Qinling Zhongnanshan World Geopark. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 12. [Google Scholar]
- Yaseen, M.; Ahmad, J.; Anjum, M.N.; Naseem, A.A.; Shah, S.T. Characterization and Quantification of Outcrops Exposed Along the Karakoram Highway (KKH) and Part of Central Karakoram National Park (CKNP), North Pakistan; Implications for Geoheritage Assessments and Geosite Recognition. Geoheritage 2024, 16, 1–26. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Poesen, J.; Cohen, M.; Del Monte, M.; García-Ruiz, J.M.; Ionita, I.; Niacsu, L.; Machová, Z.; Martín-Duque, J.F.; Nadal-Romero, E.; et al. The potential of permanent gullies in Europe as geomorphosites. Geoheritage 2019, 11, 217–239. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Hildebrandt-Radke, I.; Mazurek, M.; Makohonienko, M. Existing and proposed urban geosites values resulting from geodiversity of Poznań City. Quaest. Geogr. 2017, 36, 125–149. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Stachowiak, J. Geodiversity map of the Tatra National Park for geotourism. Quaest. Geogr. 2012, 31, 99–107. [Google Scholar] [CrossRef]
- Badura, J.; Gawlikowska, E.; Kasiński, J.R.; Koźma, J.; Kupetz, M.; Piwocki, M.; Rascher, J. “Muskau arch” Geopark—Suggested trans-boundary area of geodiversity conservation. Prz. Geol. 2003, 51, 54–58. (In Polish) [Google Scholar]
- Cedro, B.; Mianowicz, K.; Zawadzki, D. Assessment of Geotourism Values of Volcanic Sites in the Kaczawskie Mountains and Foothills. In Problemy Turystyki i Rekreacji; Dudkowski, M., Ed.; Uniwersytet Szczeciński: Szczecin, Poland, 2009; Volume 2, pp. 25–35. (In Polish) [Google Scholar]
- Dobek, K. Natural curiosities of the Mielnik commune as a chance of the geotourism development. Probl. Ekol. Kraj. 2010, 27, 123–129. (In Polish) [Google Scholar]
- Drewnik, M.; Felisiak, I.; Jerzykowska, I.; Magiera, J. The Tatra Mts—Rocks, landforms, weathering and soils. Geoturystyka 2008, 13, 51–74. [Google Scholar] [CrossRef]
- Dzięgiel, M. Geotouristic potential of the selected objects situated within the Dłubnia Landscape Park and its protected zone area. Prz. Geol. 2023, 71, 113–131. (In Polish) [Google Scholar]
- Dzięgiel, M. Geotouristic potential of the selected sites situated within the Bielany and Tyniec Landscape Park and its surroundings. Prz. Geol. 2024, 72, 358–376. (In Polish) [Google Scholar]
- Gajek, G.; Zgłobicki, W. Assessing the possibilities of using viewpoints of the proposed Geopark Małopolska Vistula Gap in geomorphological education and geotourism. Landf. Anal. 2021, 40, 109–122. (In Polish) [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Protection of erratic boulders in the Wielkopolski National Park. Probl. Ekol. Kraj. 2011, 29, 141–149. (In Polish) [Google Scholar]
- Górska-Zabielska, M. Protection of Inanimate Nature in the Wielkopolski National Park. Landf. Anal. 2011, 16, 191–193. (In Polish) [Google Scholar]
- Górska-Zabielska, M. Geovalues of the Adam Mickiewicz University Botanical Garden in Poznań. Bad. Fizjogr. A 2013, 64, 51–65. (In Polish) [Google Scholar]
- Górska-Zabielska, M. The petrographic garden in Żurawiec (Drawskie Lakeland, Central Pomerania). Prz. Geogr. 2013, 85, 435–454. (In Polish) [Google Scholar] [CrossRef]
- Górska-Zabielska, M. The most precious erratic boulders in Wielkopolska (Greater Poland) and their geotouristic potential. Prz. Geol. 2015, 63, 455–463. (In Polish) [Google Scholar]
- Górska-Zabielska, M. On Selected Geotourism Resources of the Planned Geopark “Postglacial Land by the Odra River”. In Uwarunkowania i Plany Rozwoju Turystyki. Turystyka Przyrodnicza i Uwarunkowania Jej Rozwoju; Młynarczyk, Z., Zajadacz, A., Eds.; Uniwersytet im. Adama Mickiewicza: Poznań, Poland, 2016; Volume 18, pp. 9–26. (In Polish) [Google Scholar]
- Górska-Zabielska, M. Erratic boulders in Łubienica-Superunki. Landf. Anal. 2017, 33, 37–40. (In Polish) [Google Scholar] [CrossRef]
- Górska-Zabielska, M. In the footsteps of the ice sheet in the area of the planned geopark Postglacial land of the Drawa and Dębnica rivers (the Drawskie Lakeland, Poland). Landf. Anal. 2021, 40, 37–56. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Geoheritage in forest—Glacial traces in Pałuki, western Poland. Czas. Geogr. 2022, 93, 299–328. (In Polish) [Google Scholar]
- Górska-Zabielska, M. Abiotic Nature Trail as a geotourism attraction and the key to sustainable development of a city. Pr. Stud. Geogr. 2024, 69, 55–70. (In Polish) [Google Scholar]
- Górska-Zabielska, M.; Nowicka, M.; Zawieja, J. Geodiversity of the Drawa National Park, NW Poland. Biul. PIG 2015, 463, 1–42. (In Polish) [Google Scholar]
- Górska-Zabielska, M.; Zabielski, R. Geotouristic values of the city. An example from Pruszków, SW Masovia, Poland. Space-Soc.-Econ. 2016, 1, 4. (In Polish) [Google Scholar]
- Górska-Zabielska, M.; Zabielski, R. Potential values of urban geotourism development in a small Polish town (Pruszków, Central Mazovia, Poland). Quaest. Geogr. 2017, 36, 75–86. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Zabielski, R. Geotourism development in an urban area based on the local geological heritage (Pruszków, Central Mazovia, Poland). In Urban Geomorphology: Landforms and Processes in Cities; Thornbush, M.J., Allen, C.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 37–54. [Google Scholar]
- Górska-Zabielska, M.; Wieczorek, D.; Zabielski, R.; Stoiński, A. Erratic boulders from the Przedbórz Region as objects important for Quaternary geology and geoheritage. Prz. Geol. 2022, 70, 34–49. (In Polish) [Google Scholar]
- Górska-Zabielska, M.; Błaszczyk, N.; Nowak, I. Geodiversity assessment as a first step in designating areas of geotourism potential. Case study: South-east Pałuki (Middle Poland). Acta Geogr. Lodziensia 2024, 114, 65–95. (In Polish) [Google Scholar]
- Harasimiuk, M.; Warowna, J.; Gajek, G. Projected Geopark Małopolska Gap of Vistula River landscape’s diversification. Monit. Środow. Przyr. 2013, 14, 27–35. (In Polish) [Google Scholar]
- Harasimiuk, M.; Domonik, A.; Machalski, M.; Pinińska, J.; Warowna, J.; Szymkowiak, A. Małopolska Gap of Vistula River—Projected geopark. Prz. Geol. 2011, 59, 405–416. (In Polish) [Google Scholar]
- Kamieńska, K.; Giemza, A. Inventory of geosites for the proposed geopark Post-Glacial Land of the Drawa and Dębnica. Prz. Geol. 2014, 62, 15–21. (In Polish) [Google Scholar]
- Knapik, R.; Migoń, P.; Szuszkiewicz, A.; Aleksandrowski, P. Karkonosze Geopark—Geodiversity and geotourism. Prz. Geol. 2011, 59, 311–322. (In Polish) [Google Scholar]
- Kobojek, E.; Kobojek, S. Inland Dunes—Natural Environment and Human Activity on the Example of the Łódź Voivodship; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2021. (In Polish) [Google Scholar]
- Kot, R.; Sobiech, M. Ocena georóżnorodności rzeźby terenu wybranych fragmentów krajobrazu młodoglacjalnego Pojezierza Chełmińsko-Dobrzyńskiego. Rocz. Świętokrz. Ser. B—Nauki Przyr. 2013, 34, 77–92. (In Polish) [Google Scholar]
- Koźma, J. The transboundary Muskau Arch Geopark. Prz. Geol. 2011, 59, 276–290. (In Polish) [Google Scholar]
- Koźma, J.; Kupetz, M. The transboundary Geopark Muskau Arch (Geopark Łuk Mużakowa, Geopark Muskauer Faltenbogen). Prz. Geol. 2008, 56, 692–698. [Google Scholar]
- Krąpiec, M.; Jankowski, L.; Margielewski, W.; Urban, J.; Krąpiec, P. The Stone Forest (Kamienny Las) Geopark in Roztocze and its geoturistic values. Prz. Geol. 2012, 60, 468–479. (In Polish) [Google Scholar]
- Krupa, K.; Kozłowska-Adamczak, M.; Rurek, M.; Hojan, M.; Giętkowski, T.; Grodzynskyi, M. Eskers—Unique glacial landforms in the landscape of the Krajna Lakeland and their potential importance in the development of geotourism. J. Health Sci. 2013, 15, 11–24. (In Polish) [Google Scholar]
- Łanczont, M. Loess of the Dynów Foothills—Paleogeographic Importance and Geotourism Aspect. In Problemy Ochrony Środowiska Przyrodniczego i Kulturowego Pogórza Dynowskiego w Rozwoju Turystyki; Krupa, J., Ed.; Wydawnictwo ZGTPD: Dynów, Poland, 2016; pp. 383–394. (In Polish) [Google Scholar]
- Makosz, E.; Stanienda, K. Geotourism values of Scandinavian erratics in the Gliwice region. Górn. Geol. 2012, 7, 57–72. (In Polish) [Google Scholar]
- Małka, A. In the footsteps of amber mining in the Pomeranian Province. Acta Univ. Lodz. Folia Geogr. Socio-Oecon. 2015, 22, 65–86. (In Polish) [Google Scholar]
- Marcisz, M.; Gawor, Ł.; Kobylańska, M. Valorization of geotourist and geoheritage objects in the region of Mikołów (USCB, southern Poland). Miner. Resour. Manag. 2022, 38, 189–210. (In Polish) [Google Scholar]
- Mazurek, M.; Paluszkiewicz, R.; Piotrowska, I. Tourist assets of valley network in Parsęta Basin. Krajobraz a turystyka. Pr. Komis. Krajobr. Kult. 2010, 14, 229–242. (In Polish) [Google Scholar]
- Migoń, P. Granite landscape of the Jelenia Góra Basin—A complement to the Karkonosze Geopark. Prz. Geol. 2012, 60, 528–533. (In Polish) [Google Scholar]
- Migoń, P. Landforms of the Niemcza-Strzelin Hills in the Context of the Sudetic Foreland—Specific Features and Importance for Geotourism Development. Walory Przyr. Wzg. Niemczańsko-Strzelińskich 2014, 2, 60–70. (In Polish) [Google Scholar]
- Mrowczyk, P.; Madeja, G.; Doktor, M. Post-glacial forms as geotouristic attractions of the Five Ponds Valley, the Tatra Mts. Geoturystyka 2008, 14, 49–62. (In Polish) [Google Scholar]
- Mrowczyk, P.; Madeja, G.; Doktor, M. National park geoturism infrastructure development on the example of Five Ponds Valley, Polish Tatra Mountains. Probl. Ekol. Krajobrazu 2010, 27, 473–476. (In Polish) [Google Scholar]
- Nita, J.; Nita, M. The geological values of the Woźniki municipality (Southern Poland). Acta Geogr. Siles. 2014, 17, 49–62. (In Polish) [Google Scholar]
- Nita, J.; Nita, M. The geotouristic values of Żarki municipality (Katowice province, Poland). Acta Geogr. Siles. 2016, 23, 77–95. (In Polish) [Google Scholar]
- Nita, J.; Nita, M. The geotourist values of Janów municipality. Acta Geogr. Siles. 2017, 11, 47–63. (In Polish) [Google Scholar]
- Orłowska, A. Evaluation of the geotourism potential of selected geological sites in the eastern part of the borderland between the Siedlce Upland and Łuków Plain. Geoturystyka 2017, 48–49, 17–30. (In Polish) [Google Scholar] [CrossRef]
- Owsianny, P.M.; Ratajczak-Szczerba, M. On the Need to Protect Inanimate Nature in the Piła Region (Northern Wielkopolska). Stud. Pr. Geogr. Geol. 2010, 19, 121–146. (In Polish) [Google Scholar]
- Ratajczak-Szczerba, M. Geo- and biodiverstity of the Middle Noteć River Valley and the Lower Gwda River Valley as a chance of geoturism development. Acta Geogr. Siles. 2013, 14, 71–86. (In Polish) [Google Scholar]
- Poros, M.; Urban, J.; Ludwikowska-Kędzia, M. Geomorphologic heritage of the Świętokrzyski (Holy Cross Mountains) Geopark and its importance for geotourism. Landf. Anal. 2021, 40, 71–107. (In Polish) [Google Scholar] [CrossRef]
- Szmidt, A.; Tołoczko, W. Zelce Mountain as a geotouristic value of the Woźniki-Wieluń Upland, including geomorphological analysis. Folia Geogr. Phys. 2019, 18, 53–65. (In Polish) [Google Scholar] [CrossRef]
- Warowna, J.; Zgłobicki, W.; Kołodyńska-Gawrysiak, R.; Migoń, P.; Kiebała, A. Geomorphologic heritage of Poland as a tourist attraction. Stud. Mater. CEPL Rogów 2013, 15, 328–334. (In Polish) [Google Scholar]
- Wierzbowski, A.; Świder, M.; Krzeczyńska, M.; Szczygieł, W. New discovery in glacially transported Mesozoic rock masses at Łuków (eastern Poland), and its importance for the geotouristic promotion of the region. Prz. Geol. 2018, 66, 706–712. (In Polish) [Google Scholar]
- Woźniak, P.P.; Tylmann, K.; Kobiela, A. Erratic boulders of the Trójmiejski Landscape Park—Potential for research and geotourism. Prz. Geol. 2015, 63, 256–262. (In Polish) [Google Scholar]
- Zgłobicki, W.; Kołodyńska-Gawrysiak, R.; Gawrysiak, L.; Pawłowski, A. Geotourism assets of loess relief in western part of the Lublin Upland. Prz. Geol. 2012, 60, 26–31. (In Polish) [Google Scholar]
- Żyto, A. Conditions for the Development of Geotourism on Wolin Island. In Uwarunkowania i Plany Rozwoju Turystyki. Planowanie i Polityka Turystyczna; Młynarczyk, Z., Zajadacz, A., Eds.; Uniwersytet im. Adama Mickiewicza: Poznań, Poland, 2019; Volume 22, pp. 147–168. (In Polish) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolniewicz, P.; Górska-Zabielska, M. Palaeoclimatic Geoheritage in the Age of Climate Change: Educational Use of the Pleistocene Glacial and Periglacial Geodiversity. Geosciences 2025, 15, 294. https://doi.org/10.3390/geosciences15080294
Wolniewicz P, Górska-Zabielska M. Palaeoclimatic Geoheritage in the Age of Climate Change: Educational Use of the Pleistocene Glacial and Periglacial Geodiversity. Geosciences. 2025; 15(8):294. https://doi.org/10.3390/geosciences15080294
Chicago/Turabian StyleWolniewicz, Paweł, and Maria Górska-Zabielska. 2025. "Palaeoclimatic Geoheritage in the Age of Climate Change: Educational Use of the Pleistocene Glacial and Periglacial Geodiversity" Geosciences 15, no. 8: 294. https://doi.org/10.3390/geosciences15080294
APA StyleWolniewicz, P., & Górska-Zabielska, M. (2025). Palaeoclimatic Geoheritage in the Age of Climate Change: Educational Use of the Pleistocene Glacial and Periglacial Geodiversity. Geosciences, 15(8), 294. https://doi.org/10.3390/geosciences15080294