Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = GeoOptics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4507 KiB  
Article
GSTD-DETR: A Detection Algorithm for Small Space Targets Based on RT-DETR
by Yijian Zhang, Huichao Guo, Yang Zhao, Laixian Zhang, Chenglong Luan, Yingchun Li and Xiaoyu Zhang
Electronics 2025, 14(12), 2488; https://doi.org/10.3390/electronics14122488 - 19 Jun 2025
Viewed by 512
Abstract
Ground-based optical equipment for detecting geostationary orbit space targets typically involves long-exposure imaging, facing challenges such as small and blurred target images, complex backgrounds, and star streaks obstructing the view. To address these issues, this study proposes a GSTD-DETR model based on Real-Time [...] Read more.
Ground-based optical equipment for detecting geostationary orbit space targets typically involves long-exposure imaging, facing challenges such as small and blurred target images, complex backgrounds, and star streaks obstructing the view. To address these issues, this study proposes a GSTD-DETR model based on Real-Time Detection Transformer (RT-DETR), which aims to balance model efficiency and detection accuracy. First, we introduce a Dynamic Cross-Stage Partial (DynCSP) backbone network for feature extraction and fusion, which enhances the network’s representational capability by reducing convolutional parameters and improving information exchange between channels. This effectively reduces the model’s parameter count and computational complexity. Second, we propose a ResFine model with a feature pyramid designed for small target detection, enhancing its ability to perceive small targets. Additionally, we improve the detection head and incorporate a Dynamic Multi-Channel Attention mechanism, which strengthens the focus on critical regions. Finally, we designed an Area-Weighted NWD loss function to improve detection accuracy. The experimental results show that compared to RT-DETR-r18, the GSTD-DETR model reduces the parameter count by 29.74% on the SpotGEO dataset. Its AP50 and AP50:95 improve by 1.3% and 4.9%, reaching 88.6% and 49.9%, respectively. The GSTD-DETR model demonstrates superior performance in the detection accuracy of faint and small space targets. Full article
Show Figures

Figure 1

12 pages, 959 KiB  
Article
Using Chemical Transport Model and Climatology Data as Backgrounds for Aerosol Optical Depth Spatial–Temporal Optimal Interpolation
by Natallia Miatselskaya, Andrey Bril and Anatoly Chaikovsky
Atmosphere 2025, 16(5), 623; https://doi.org/10.3390/atmos16050623 - 20 May 2025
Viewed by 413
Abstract
A common approach to estimating the spatial–temporal distribution of atmospheric species properties is data assimilation. Data assimilation methods provide the best estimate of the required parameter by combining observations with appropriate prior information (background) that can include the model output, climatology data, or [...] Read more.
A common approach to estimating the spatial–temporal distribution of atmospheric species properties is data assimilation. Data assimilation methods provide the best estimate of the required parameter by combining observations with appropriate prior information (background) that can include the model output, climatology data, or some other first guess. One of the relatively simple and computationally cheap data assimilation methods is optimal interpolation (OI). It estimates a value of interest through a weighted linear combination of observational data and background that is defined only once for the whole time interval of interest. Spatial–temporal OI (STOI) utilizes both spatial and temporal observational error covariance and background error covariance. This allows for filling in not only spatial, but also temporal gaps in observations. We applied STOI to daily mean aerosol optical depth (AOD) observations obtained at the European AERONET (Aerosol Robotic Network) sites with the use of the GEOS-Chem chemical transport model simulations and the AOD climatology data as backgrounds. We found that mean square errors in the estimate when using modeled data are comparable with those when using climatology data. Based on these results, we merged estimates obtained using modeled and climatology data according to their mean square errors. This allows for improving the AOD estimates in areas where observations are limited in space and time. Full article
(This article belongs to the Special Issue Data Analysis in Atmospheric Research)
Show Figures

Figure 1

24 pages, 9947 KiB  
Article
Detection and Spatiotemporal Distribution Analysis of Vertically Developing Convective Clouds over the Tibetan Plateau and East Asia Using GEO-KOMPSAT-2A Observations
by Haokai Kang, Hongqing Wang, Qiong Wu and Yan Zhang
Remote Sens. 2025, 17(8), 1427; https://doi.org/10.3390/rs17081427 - 17 Apr 2025
Viewed by 499
Abstract
Vertically developing convective clouds (VDCCs), characterized by cloud-top ascent and cooling, are critical precursors to severe convective weather due to their association with intense updrafts. However, existing studies are constrained by limited spatiotemporal resolution of data and tracking methodologies, hindering real-time and pixel-level [...] Read more.
Vertically developing convective clouds (VDCCs), characterized by cloud-top ascent and cooling, are critical precursors to severe convective weather due to their association with intense updrafts. However, existing studies are constrained by limited spatiotemporal resolution of data and tracking methodologies, hindering real-time and pixel-level capture of VDCC evolution. Furthermore, large-scale statistical analyses of VDCC spatiotemporal distribution remain scarce compared with mature convective systems, particularly in topographically complex regions like the Tibetan Plateau (TP). To address these challenges, we integrated an optical flow algorithm (for dense atmospheric motion vector (AMV) retrieval) with cloud-top cooling rates (CTCRs, as indicators of vertical development), leveraging the high spatiotemporal resolution and multispectral capabilities of the GEO-KOMPSAT-2A (GK2A) satellite. This approach achieved pixel-level VDCC detection at 10 min intervals across diurnal cycles, enabling comprehensive statistical analysis. Based on this technical foundation, the most important finding in the study was the distinct convective spatiotemporal distribution over the TP and East Asia (EA) by analyzing VDCC detection data in three summers (2021–2023). Specifically, VDCC diurnal peaks preceded precipitation by 2–3 h, confirming their precursor roles in both study regions. Regional comparisons revealed that topographic and thermal forcing strongly influenced VDCC distribution patterns. The TP exhibited earlier and more frequent daytime convection at middle-to-low levels than EA, driven by intense thermal forcing, yet vertical development was limited by moisture scarcity. In contrast, EA’s monsoonal moisture sustained deeper convection, with more VDCCs penetrating the upper troposphere. The detection and statistical studies of VDCCs offer new insights into convective processes over the TP and surrounding regions, offering potential improvements in severe weather monitoring and early warning systems. Full article
(This article belongs to the Special Issue Remote Sensing for High Impact Weather and Extremes (2nd Edition))
Show Figures

Graphical abstract

19 pages, 13882 KiB  
Article
Effect of CdO on the Structural and Spectroscopic Properties of Germanium–Tellurite Glass
by Iveth Viridiana García Amaya, David Alejandro Rodríguez Carvajal, Josefina Alvarado-Rivera, R. Lozada-Morales, Paula Cristina Santos-Munguía, Juan José Palafox Reyes, Pedro Hernández-Abril, Gloria Alicia Limón Reynosa and Ma. Elena Zayas
Materials 2025, 18(8), 1739; https://doi.org/10.3390/ma18081739 - 10 Apr 2025
Viewed by 497
Abstract
New glasses in the xCdO-(90 − x)TeO2-10GeO2 system were obtained by the conventional melt-quenching process at 900 °C. The glasses were transparent to the naked eye. The diffraction patterns indicate that the samples were mostly amorphous, except for the CdO-rich [...] Read more.
New glasses in the xCdO-(90 − x)TeO2-10GeO2 system were obtained by the conventional melt-quenching process at 900 °C. The glasses were transparent to the naked eye. The diffraction patterns indicate that the samples were mostly amorphous, except for the CdO-rich glasses, in which the formation of nanocrystals of CdO and Cd3TeO6 were identified. Raman spectroscopy analysis of the samples displayed the existence of TeO3, TeO3+1, TeO4, and GeO4, structural units within the glass matrix. The optical band gap of the glass samples was determined by optical absorption spectroscopy using the Tauc method. Depending on the relative content of TeO2, their values varied in the range of 2.32–2.86 eV. The refractive index was obtained from the band gap values. The XPS measurements showed that Ge 3d, O 1s and Te 3d3/2, Te 3d5/2, Cd 3d5/2, and Cd 3d3/2 doublets shifted to higher binding energy values as the amount of TeO2 was increased. The binding energy values of the Te 3d doublet are related to the TeO4 and TeO3 groups. Full article
Show Figures

Figure 1

32 pages, 5442 KiB  
Article
Assessment of the Risk to Human Health and Pollution Levels Due to the Presence of Metal(loid)s in Sediments, Water, and Fishes in Urban Rivers in the State of Mato Grosso do Sul, Brazil
by Melina Ribeiro Fernandes, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane, Karine de Cássia Freitas Geilow, Danielle Bogo, Paula Fabiana Saldanha Tschinkel, Ana Carla Gomes Rosa, Cláudia Stela de Araújo Medeiros, Rodrigo Juliano Oliveira, Marcelo Luiz Brandão Vilela, Diego Azevedo Zoccal Garcia and Valter Aragão do Nascimento
Urban Sci. 2025, 9(4), 114; https://doi.org/10.3390/urbansci9040114 - 5 Apr 2025
Viewed by 760
Abstract
This study aimed to assess the pollution levels, sources, ecological risk, and human health risks of metal(loid)s in water, sediment, and muscle tissue of Prochilodus lineatus and Pimelodus maculatus from rivers in the state of Mato Grosso do Sul, Brazil. The metal(loid)s content [...] Read more.
This study aimed to assess the pollution levels, sources, ecological risk, and human health risks of metal(loid)s in water, sediment, and muscle tissue of Prochilodus lineatus and Pimelodus maculatus from rivers in the state of Mato Grosso do Sul, Brazil. The metal(loid)s content in river sediment, water, and fish tissue were determined by inductively coupled plasma optical emission spectrometry. Sediment pollution assessment was carried out by geo-accumulation index, contamination factor, enrichment factor, and pollution load index. There were significant differences in concentration values for Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, and Hg. There was greater tendency for the elements Cu, Ni, Cu, N, Co, As, Hg, Al, and Co in the waters of the Anhanduí River in 2020 and Cr and Pb in 2021. The concentrations of As, Cd, Co, Cr, and Hg in the waters of the Anhanduí River are above the permitted limit values for heavy metal ions in drinking water established by the WHO. The concentrations of heavy metals in the sediments of rivers are above the limit set by Conama/Brazil and other countries. The sediments were very highly contaminated by Cd and Mo, and with moderate contamination of Pb. All sediments of rivers showed a decline in site quality, which indicates that it is polluted. Sediments were classified with severe enrichment by Cd and Mo. The content of Al was the highest in P. lineatus and P. maculatus in relation to other elements analyzed. There was also the presence of elements such as Cr, Cu, Cd, Hg, Ni, As, Pb, Mo, and Co in the tissues of the fish species. Therefore, the contamination of these rivers is a concern due to human consumption of fish, since there is a carcinogenic risk related mainly to As and Cd. Full article
Show Figures

Figure 1

21 pages, 11695 KiB  
Article
Direct Writing of Quasi-Sinusoidal and Blazed Surface Relief Optical Transmission Gratings in Bi12GeO20, Er: LiNbO3 and Er: Fe: LiNbO3 Crystals by Nitrogen Ion Microbeams of 5 MeV and 10.5 MeV Energy
by István Bányász, Gyula Nagy, Vladimir Havránek, Maria Cinta Pujol, Ágnes Nagyné Szokol, György Kármán, Robert Magnusson and István Rajta
Sensors 2025, 25(3), 804; https://doi.org/10.3390/s25030804 - 29 Jan 2025
Viewed by 771
Abstract
High diffraction efficiency optical transmission gratings with quasi-sinusoidal and saw-tooth surface relief profiles were fabricated in Bi12GeO20, Er: LiNbO3 and Er: Fe: LiNbO3 crystals by ion beam implantation. The gratings were directly written by nitrogen ion microbeams [...] Read more.
High diffraction efficiency optical transmission gratings with quasi-sinusoidal and saw-tooth surface relief profiles were fabricated in Bi12GeO20, Er: LiNbO3 and Er: Fe: LiNbO3 crystals by ion beam implantation. The gratings were directly written by nitrogen ion microbeams at energies of 5 MeV and 10.5 MeV. The finest grating constant was 4 μm. Grating constants for the majority of the gratings were 16 μm. The highest amplitudes of the gratings reached 1600 nm. The highest first-order diffraction efficiency obtained in a sinusoidal grating was 25%, close to the theoretical maximum of 33%. The highest first-order diffraction efficiency of a blazed grating was also 25%, without Littrow optimization. Such gratings can be incorporated into integrated optical biosensors. Full article
(This article belongs to the Special Issue Optical Biosensors)
Show Figures

Figure 1

33 pages, 13410 KiB  
Article
Near-Time Measurement of Aerosol Optical Depth and Black Carbon Concentration at Socheongcho Ocean Research Station: Aerosol Episode Case Analysis
by Soi Ahn, Meehye Lee, Hyeon-Su Kim, Eun-ha Sohn and Jin-Yong Jeong
Remote Sens. 2025, 17(3), 382; https://doi.org/10.3390/rs17030382 - 23 Jan 2025
Viewed by 942
Abstract
This study examined the seasonal variations and influencing factors for black carbon (BC) concentrations and aerosol optical depth (AOD) at the Socheongcho Ocean Research Station (SORS) on the Korean Peninsula from July 2019 to December 2020. An AOD algorithm was developed and validated [...] Read more.
This study examined the seasonal variations and influencing factors for black carbon (BC) concentrations and aerosol optical depth (AOD) at the Socheongcho Ocean Research Station (SORS) on the Korean Peninsula from July 2019 to December 2020. An AOD algorithm was developed and validated using the Geo-KOMPSAT-2A (GK-2A) satellite. The GK-2A AOD demonstrated comparable performance to that of Low Earth Orbit satellites, including the Terra/MODIS (R2 = 0.86), Aqua/MODIS (R2 = 0.83), and AERONET AODs (R2 = 0.85). Multi-angle absorption photometry revealed that seasonal average BC concentrations were the highest in winter (0.91 ± 0.80 µg·m−3), followed by fall (0.80 ± 0.66 µg·m−3), wet summer (0.75 ± 0.55 µg·m−3), and dry summer (0.52 ± 0.20 µg·m−3). The seasonal average GK-2A AOD was higher in wet summer (0.45 ± 0.37 µg·m−3) than in winter. The effects of meteorological parameters, AERONET AOD wavelength, and gaseous substances on GK-2A AOD and BC were investigated. The SHapley Additive exPlanations-based feature importance analysis for GK-2A AOD identified temperature, relative humidity (RH), and evaporation as major contributors. BC concentrations were increased, along with PM2.5 and CO levels, due to the effects of combustion processes during fall and winter. Analysis of high-aerosol-loading cases revealed an increase in the fine-mode fraction, emphasizing the meteorological effects on GK-2A AOD. Thus, long-range transport and local BC sources played a critical role at the SORS. Full article
(This article belongs to the Special Issue Air Quality Mapping via Satellite Remote Sensing)
Show Figures

Figure 1

20 pages, 15996 KiB  
Article
Erbium-Doped Fibers Designed for Random Single-Frequency Lasers Operating in the Extended L-Band
by Denis Lipatov, Alexey Abramov, Alexey Lobanov, Denis Burmistrov, Sergei Popov, Dmitry Ryakhovsky, Yuriy Chamorovskiy, Alexey Bazakutsa, Liudmila Iskhakova, Olga Egorova and Andrey Rybaltovsky
Photonics 2024, 11(12), 1175; https://doi.org/10.3390/photonics11121175 - 13 Dec 2024
Viewed by 990
Abstract
The paper presents the results of developing Er-doped optical fibers for creating random single-frequency lasers in the wavelength range of 1570–1610 nm. The possibility of broadening the luminescence band of Er3+ ions in silicate glasses in the long-wavelength region of the spectrum [...] Read more.
The paper presents the results of developing Er-doped optical fibers for creating random single-frequency lasers in the wavelength range of 1570–1610 nm. The possibility of broadening the luminescence band of Er3+ ions in silicate glasses in the long-wavelength region of the spectrum by introducing a high concentration of P2O5, as well as by additional doping with Sb2O3, is investigated. It is found that both approaches do not improve the dynamics of luminescence decay in the L-band. In addition, Er2O3-GeO2-Al2O3-SiO2 and Er2O3-GeO2-Al2O3-P2O5-SiO2 glasses were studied as the core material for L-band optical fibers. The developed fibers exhibited high photosensitivity and a high gain of 5 and 7.2 dB/m, respectively. In these fibers, homogeneous arrays of extended weakly reflecting Bragg gratings were recorded directly during the fiber drawing process. Samples of arrays 5 m long and with a narrow reflection maximum at ~1590 nm were used as the base for laser resonators. Narrow-band random laser generation in the wavelength region of 1590 nm was recorded for the first time. At a temperature of 295 K, the laser mode was strictly continuous wave and stable in terms of output power. The maximal power exceeded 16 mW with an efficiency of 16%. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

27 pages, 7971 KiB  
Article
The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach
by Erika Giuffrida, Chiara Bianca Maria Platania, Francesca Lazzara, Federica Conti, Nicoletta Marcantonio, Filippo Drago and Claudio Bucolo
Pharmaceuticals 2024, 17(10), 1333; https://doi.org/10.3390/ph17101333 - 5 Oct 2024
Cited by 1 | Viewed by 2476
Abstract
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma [...] Read more.
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma management, we employed a network pharmacology approach. Methods: We first retrieved transcriptomic data from GEO, an NCBI database, and carried out GEO2R (an interactive web tool aimed at comparing two or more groups of samples in a GEO dataset). The GEO2R statistical analysis aimed at identifying the top differentially expressed genes (DEGs) and used these as input of STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) app within Cytoscape software, which builds networks of proteins starting from input DEGs. Analyses of centrality metrics using Cytoscape were carried out to identify nodes (genes or proteins) involved in network stability. We also employed the web-server software MIRNET 2.0 to build miRNA–target interaction networks for a re-analysis of the GSE105269 dataset, which reports analyses of microRNA expressions. Results: The pharmacological targets, identified in silico through analyses of the centrality metrics carried out with Cytoscape, were rescored based on correlations with entries in the PubMed and clinicaltrials.gov databases. When there was no match (82 out of 135 identified central nodes, in 8 analyzed networks), targets were considered “potential innovative” targets for the treatment of glaucoma, after further validation studies. Conclusions: Several druggable targets, such as GPCRs (e.g., 5-hydroxytryptamine 5A (5-HT5A) and adenosine A2B receptors) and enzymes (e.g., lactate dehydrogenase A or monoamine oxidase B), were found to be rescored as “potential innovative” pharmacological targets for glaucoma treatment. Full article
Show Figures

Figure 1

20 pages, 8709 KiB  
Article
Automatic Fine Co-Registration of Datasets from Extremely High Resolution Satellite Multispectral Scanners by Means of Injection of Residues of Multivariate Regression
by Luciano Alparone, Alberto Arienzo and Andrea Garzelli
Remote Sens. 2024, 16(19), 3576; https://doi.org/10.3390/rs16193576 - 25 Sep 2024
Cited by 3 | Viewed by 1201
Abstract
This work presents two pre-processing patches to automatically correct the residual local misalignment of datasets acquired by very/extremely high resolution (VHR/EHR) satellite multispectral (MS) scanners, one for, e.g., GeoEye-1 and Pléiades, featuring two separate instruments for MS and panchromatic (Pan) data, the other [...] Read more.
This work presents two pre-processing patches to automatically correct the residual local misalignment of datasets acquired by very/extremely high resolution (VHR/EHR) satellite multispectral (MS) scanners, one for, e.g., GeoEye-1 and Pléiades, featuring two separate instruments for MS and panchromatic (Pan) data, the other for WorldView-2/3 featuring three instruments, two of which are visible and near-infra-red (VNIR) MS scanners. The misalignment arises because the two/three instruments onboard GeoEye-1 / WorldView-2 (four onboard WorldView-3) share the same optics and, thus, cannot have parallel optical axes. Consequently, they image the same swath area from different positions along the orbit. Local height changes (hills, buildings, trees, etc.) originate local shifts among corresponding points in the datasets. The latter would be accurately aligned only if the digital elevation surface model were known with sufficient spatial resolution, which is hardly feasible everywhere because of the extremely high resolution, with Pan pixels of less than 0.5 m. The refined co-registration is achieved by injecting the residue of the multivariate linear regression of each scanner towards lowpass-filtered Pan. Experiments with two and three instruments show that an almost perfect alignment is achieved. MS pansharpening is also shown to greatly benefit from the improved alignment. The proposed alignment procedures are real-time, fully automated, and do not require any additional or ancillary information, but rely uniquely on the unimodality of the MS and Pan sensors. Full article
Show Figures

Figure 1

22 pages, 21751 KiB  
Article
Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil
by David Castro, Aleksandr Podshivalov, Alina Ponomareva and Anton Zhilenkov
Polymers 2024, 16(17), 2531; https://doi.org/10.3390/polym16172531 - 6 Sep 2024
Cited by 4 | Viewed by 2017
Abstract
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains [...] Read more.
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young’s modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5–1 wt.%. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

16 pages, 1934 KiB  
Article
Nickel Ions Activated PbO–GeO2 Glasses for the Application of Electrolytes and Photonic Devices
by L. Vijayalakshmi, Shaik Meera Saheb, R. Vijay, Kishor Palle, P. Ramesh Babu, Seong-Jin Kwon and G. Naga Raju
Inorganics 2024, 12(8), 215; https://doi.org/10.3390/inorganics12080215 - 8 Aug 2024
Viewed by 1282
Abstract
In this study, PbO–GeO2 glasses were melt-quenched at different nickel oxide concentrations. XRD and DSC techniques were characterized whether the samples are glass or crystalline materials. IR, Raman, and optical absorption techniques are used to obtain structural details. The IR spectra have [...] Read more.
In this study, PbO–GeO2 glasses were melt-quenched at different nickel oxide concentrations. XRD and DSC techniques were characterized whether the samples are glass or crystalline materials. IR, Raman, and optical absorption techniques are used to obtain structural details. The IR spectra have revealed that the glass network contained conventional structural units GeO4 and GeO6. The Ni2+ ion octahedral transition exhibited luminescence spectra in the region of 1200–1500 nm; it is due to 3T2 (3F) → 3A2(3F) transition. The glasses containing the highest concentration of NiO have been found to have high values of luminescence efficiency and the cross-section. The dielectric characteristics, such as the dielectric constant, loss, and a.c. conductivity (σac), were analyzed across extensive frequency and temperature ranges, with a specific emphasis on the nickel oxide concentration. Analyzing optical absorption and dielectric properties of the samples, it has been found that nickel ions’ majority occur in tetrahedral sites. It is proved that the dielectric constant and loss values are highest for the sample N10 and ac conductivity due to dipoles being lowest for the sample N10. It is revealed that the glasses are highly conducting due to the modifying action of Ni2+ ions so these glasses are suitable for solid electrolyte uses besides their optical applications in NLO devices. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

17 pages, 7605 KiB  
Article
Solar Heat Flux Suppression on Optical Antenna of Geosynchronous Earth Orbit Satellite-Borne Lasercom Sensor
by Ming Liu, Hongwei Zhao, Chengwei Zhu and Guanyu Wen
Sensors 2024, 24(15), 5005; https://doi.org/10.3390/s24155005 - 2 Aug 2024
Cited by 1 | Viewed by 1376
Abstract
The objective of this article is to examine potential techniques for suppressing solar heat flow on the optical antenna of a laser communication sensor. Firstly, the characteristics of the geosynchronous Earth orbit’s (GEO) space radiation environment are analysed, and a combined passive and [...] Read more.
The objective of this article is to examine potential techniques for suppressing solar heat flow on the optical antenna of a laser communication sensor. Firstly, the characteristics of the geosynchronous Earth orbit’s (GEO) space radiation environment are analysed, and a combined passive and active thermal control solution is proposed. Secondly, the temperature distribution of the lasercom sensor under extreme operating conditions is simulated utilising IDEAS-TMG (6.8 NX Series) software, which employs Monte Carlo and radiative heat transfer numerical calculation methods. Finally, a strategy for avoiding direct sunlight around midnight is proposed. The simulation results demonstrated that the thermal control solution and solar avoidance strategy proposed in this paper achieved long-term fine-stable control of the temperature field of the optical antenna, which met the thermal permissible communication hours per daily orbit cycle in excess of 14 h per day. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 1750 KiB  
Article
Temperature Dependence of the Thermo-Optic Coefficient of GeO2-Doped Silica Glass Fiber
by Gaspar Mendes Rego
Sensors 2024, 24(15), 4857; https://doi.org/10.3390/s24154857 - 26 Jul 2024
Cited by 6 | Viewed by 2285
Abstract
In this paper we derived an expression that allows the determination of the thermo-optic coefficient of weakly-guiding germanium-doped silica fibers, based on the thermal behavior of optical fiber devices, such as, fiber Bragg gratings (FBGs). The calculations rely on the full knowledge of [...] Read more.
In this paper we derived an expression that allows the determination of the thermo-optic coefficient of weakly-guiding germanium-doped silica fibers, based on the thermal behavior of optical fiber devices, such as, fiber Bragg gratings (FBGs). The calculations rely on the full knowledge of the fiber parameters and on the temperature sensitivity of FBGs. In order to validate the results, we estimated the thermo-optic coefficient of bulk GeO2 glass at 293 K and 1.55 μm to be 18.3 × 10−6 K−1. The determination of this value required to calculate a correction factor which is based on the knowledge of the thermal expansion coefficient of the fiber core, the Pockels’ coefficients (p11 = 0.125, p12 = 0.258 and p44 = −0.0662) and the Poisson ratio (ν = 0.161) of the SMF-28 fiber. To achieve that goal, we estimated the temperature dependence of the thermal expansion coefficient of GeO2 and we discussed the dispersion and temperature dependence of Pockels’ coefficients. We have presented expressions for the dependence of the longitudinal and transverse acoustic velocities on the GeO2 concentration used to calculate the Poisson ratio. We have also discussed the dispersion of the photoelastic constant. An estimate for the temperature dependence of the thermo-optic coefficient of bulk GeO2 glass is presented for the 200–300 K temperature range. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

27 pages, 19690 KiB  
Article
Optimizing Optical Coastal Remote-Sensing Products: Recommendations for Regional Algorithm Calibration
by Rafael Simão, Juliana Távora, Mhd. Suhyb Salama and Elisa Fernandes
Remote Sens. 2024, 16(9), 1497; https://doi.org/10.3390/rs16091497 - 24 Apr 2024
Viewed by 1731
Abstract
The remote sensing of turbidity and suspended particulate matter (SPM) relies on atmospheric corrections and bio-optical algorithms, but there is no one method that has better accuracy than the others for all satellites, bands, study areas, and purposes. Here, we evaluated different combinations [...] Read more.
The remote sensing of turbidity and suspended particulate matter (SPM) relies on atmospheric corrections and bio-optical algorithms, but there is no one method that has better accuracy than the others for all satellites, bands, study areas, and purposes. Here, we evaluated different combinations of satellites (Landsat-8, Sentinel-2, and Sentinel-3), atmospheric corrections (ACOLITE and POLYMER), algorithms (single- and multiband; empirical and semi-analytical), and bands (665 and 865 nm) to estimate turbidity and SPM in Patos Lagoon (Brazil). The region is suitable for a case study of the regionality of remote-sensing algorithms, which we addressed by regionally recalibrating the coefficients of the algorithms using a method for geophysical observation models (GeoCalVal). Additionally, we examined the results associated with the use of different statistical parameters for classifying algorithms and introduced a new metric (GoF) that reflects performance. The best performance was achieved via POLYMER atmospheric correction and the use of single-band algorithms. Regarding SPM, the recalibrated coefficients yielded a better performance, but, for turbidity, a tradeoff between two statistical parameters occurred. Therefore, the uncertainties in the atmospheric corrections and algorithms used were analyzed based on previous studies. In the future, we suggest the use of in situ radiometric data to better evaluate atmospheric corrections, radiative transfer modeling to bridge data gaps, and multisensor data merging for compiling climate records. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop