Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (387)

Search Parameters:
Keywords = Gaofen-1 satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10078 KiB  
Article
Satellite Hyperspectral Mapping of Farmland Soil Organic Carbon in Yuncheng Basin Along the Yellow River, China
by Haixia Jin, Rutian Bi, Huiwen Tian, Hongfen Zhu and Yingqiang Jing
Agronomy 2025, 15(8), 1827; https://doi.org/10.3390/agronomy15081827 - 28 Jul 2025
Viewed by 310
Abstract
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the [...] Read more.
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the model to analyze the spatial distribution of farmland soil organic carbon (SOC). Furthermore, RF factorial experiments determined the contributions of farmland management, climate, vegetation, soil, and topography to the SOC. Structural equation modeling (SEM) elucidated the driving mechanisms of SOC variations. Integrating satellite hyperspectral data and environmental variables improved the prediction accuracy and SOC-mapping precision of the model. The integration of natural variables significantly improved the RF model performance (R2 = 0.78). The prediction accuracy enhanced with the introduction of crop phenology (R2 = 0.81) and farmland management factors (R2 = 0.87). The model that incorporated all 15 variables demonstrated the highest prediction accuracy (R2 = 0.89) and greatest spatial SOC variability, with minimal uncertainty. Farmland management activities exerted the strongest influence on SOC (0.38). The proposed method can support future investigations on soil carbon sequestration processes in river basins worldwide. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

28 pages, 3794 KiB  
Article
A Robust System for Super-Resolution Imaging in Remote Sensing via Attention-Based Residual Learning
by Rogelio Reyes-Reyes, Yeredith G. Mora-Martinez, Beatriz P. Garcia-Salgado, Volodymyr Ponomaryov, Jose A. Almaraz-Damian, Clara Cruz-Ramos and Sergiy Sadovnychiy
Mathematics 2025, 13(15), 2400; https://doi.org/10.3390/math13152400 - 25 Jul 2025
Viewed by 211
Abstract
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a [...] Read more.
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a novel residual model named OARN (Optimized Attention Residual Network) specifically designed to enhance the visual quality of low-resolution images. The network operates on the Y channel of the YCbCr color space and integrates LKA (Large Kernel Attention) and OCM (Optimized Convolutional Module) blocks. These components can restore large-scale spatial relationships and refine textures and contours, improving feature reconstruction without significantly increasing computational complexity. The performance of OARN was evaluated using satellite images from WorldView-2, GaoFen-2, and Microsoft Virtual Earth. Evaluation was conducted using objective quality metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Edge Preservation Index (EPI), and Perceptual Image Patch Similarity (LPIPS), demonstrating superior results compared to state-of-the-art methods in both objective measurements and subjective visual perception. Moreover, OARN achieves this performance while maintaining computational efficiency, offering a balanced trade-off between processing time and reconstruction quality. Full article
Show Figures

Figure 1

30 pages, 13059 KiB  
Article
Verifying the Effects of the Grey Level Co-Occurrence Matrix and Topographic–Hydrologic Features on Automatic Gully Extraction in Dexiang Town, Bayan County, China
by Zhuo Chen and Tao Liu
Remote Sens. 2025, 17(15), 2563; https://doi.org/10.3390/rs17152563 - 23 Jul 2025
Viewed by 358
Abstract
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of [...] Read more.
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of the grey level co-occurrence matrix (GLCM) and topographic–hydrologic features on automatic gully extraction and guide future practices in adjacent regions. To accomplish this, GaoFen-2 (GF-2) satellite imagery and high-resolution digital elevation model (DEM) data were first collected. The GLCM and topographic–hydrologic features were generated, and then, a gully label dataset was built via visual interpretation. Second, the study area was divided into training, testing, and validation areas, and four practices using different feature combinations were conducted. The DeepLabV3+ and ResNet50 architectures were applied to train five models in each practice. Thirdly, the trainset gully intersection over union (IOU), test set gully IOU, receiver operating characteristic curve (ROC), area under the curve (AUC), user’s accuracy, producer’s accuracy, Kappa coefficient, and gully IOU in the validation area were used to assess the performance of the models in each practice. The results show that the validated gully IOU was 0.4299 (±0.0082) when only the red (R), green (G), blue (B), and near-infrared (NIR) bands were applied, and solely combining the topographic–hydrologic features with the RGB and NIR bands significantly improved the performance of the models, which boosted the validated gully IOU to 0.4796 (±0.0146). Nevertheless, solely combining GLCM features with RGB and NIR bands decreased the accuracy, which resulted in the lowest validated gully IOU of 0.3755 (±0.0229). Finally, by employing the full set of RGB and NIR bands, the GLCM and topographic–hydrologic features obtained a validated gully IOU of 0.4762 (±0.0163) and tended to show an equivalent improvement with the combination of topographic–hydrologic features and RGB and NIR bands. A preliminary explanation is that the GLCM captures the local textures of gullies and their backgrounds, and thus introduces ambiguity and noise into the convolutional neural network (CNN). Therefore, the GLCM tends to provide no benefit to automatic gully extraction with CNN-type algorithms, while topographic–hydrologic features, which are also original drivers of gullies, help determine the possible presence of water-origin gullies when optical bands fail to tell the difference between a gully and its confusing background. Full article
Show Figures

Figure 1

35 pages, 58241 KiB  
Article
DGMNet: Hyperspectral Unmixing Dual-Branch Network Integrating Adaptive Hop-Aware GCN and Neighborhood Offset Mamba
by Kewen Qu, Huiyang Wang, Mingming Ding, Xiaojuan Luo and Wenxing Bao
Remote Sens. 2025, 17(14), 2517; https://doi.org/10.3390/rs17142517 - 19 Jul 2025
Viewed by 272
Abstract
Hyperspectral sparse unmixing (SU) networks have recently received considerable attention due to their model hyperspectral images (HSIs) with a priori spectral libraries and to capture nonlinear features through deep networks. This method effectively avoids errors associated with endmember extraction, and enhances the unmixing [...] Read more.
Hyperspectral sparse unmixing (SU) networks have recently received considerable attention due to their model hyperspectral images (HSIs) with a priori spectral libraries and to capture nonlinear features through deep networks. This method effectively avoids errors associated with endmember extraction, and enhances the unmixing performance via nonlinear modeling. However, two major challenges remain: the use of large spectral libraries with high coherence leads to computational redundancy and performance degradation; moreover, certain feature extraction models, such as Transformer, while exhibiting strong representational capabilities, suffer from high computational complexity. To address these limitations, this paper proposes a hyperspectral unmixing dual-branch network integrating an adaptive hop-aware GCN and neighborhood offset Mamba that is termed DGMNet. Specifically, DGMNet consists of two parallel branches. The first branch employs the adaptive hop-neighborhood-aware GCN (AHNAGC) module to model global spatial features. The second branch utilizes the neighborhood spatial offset Mamba (NSOM) module to capture fine-grained local spatial structures. Subsequently, the designed Mamba-enhanced dual-stream feature fusion (MEDFF) module fuses the global and local spatial features extracted from the two branches and performs spectral feature learning through a spectral attention mechanism. Moreover, DGMNet innovatively incorporates a spectral-library-pruning mechanism into the SU network and designs a new pruning strategy that accounts for the contribution of small-target endmembers, thereby enabling the dynamic selection of valid endmembers and reducing the computational redundancy. Finally, an improved ESS-Loss is proposed, which combines an enhanced total variation (ETV) with an l1/2 sparsity constraint to effectively refine the model performance. The experimental results on two synthetic and five real datasets demonstrate the effectiveness and superiority of the proposed method compared with the state-of-the-art methods. Notably, experiments on the Shahu dataset from the Gaofen-5 satellite further demonstrated DGMNet’s robustness and generalization. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

27 pages, 3984 KiB  
Article
Spatial and Temporal Expansion of Photovoltaic Sites and Thermal Environmental Effects in Ningxia Based on Remote Sensing and Deep Learning
by Heao Xie, Peixian Li, Fang Shi, Chengting Han, Ximin Cui and Yuling Zhao
Remote Sens. 2025, 17(14), 2440; https://doi.org/10.3390/rs17142440 - 14 Jul 2025
Viewed by 265
Abstract
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with [...] Read more.
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with deep learning algorithms and multidimensional environmental metrics. Among semantic segmentation models, DeepLabV3+ had the best performance in PV extraction, and the Mean Intersection over Union, precision, and F1-score were 91.97%, 89.02%, 89.2%, and 89.11%, respectively, with accuracies close to 100% after manual correction. Subsequent land surface temperature inversion and spatial buffer analysis quantified the thermal environmental effects of PV installation. Localized cooling patterns may be influenced by albedo and vegetation dynamics, though further validation is needed. The total PV site area in Ningxia expanded from 59.62 km2 to 410.06 km2 between 2015 and 2024. Yinchuan and Wuzhong cities were primary growth hubs; Yinchuan alone added 99.98 km2 (2022–2023) through localized policy incentives. PV installations induced significant daytime cooling effects within 0–100 m buffers, reducing ambient temperatures by 0.19–1.35 °C on average. The most pronounced cooling occurred in western desert regions during winter (maximum temperature differential = 1.97 °C). Agricultural zones in central Ningxia exhibited weaker thermal modulation due to coupled vegetation–PV interactions. Policy-driven land use optimization was the dominant catalyst for PV proliferation. This study validates “remote sensing + deep learning” framework efficacy in renewable energy monitoring and provides empirical insights into eco-environmental impacts under “PV + ecological restoration” paradigms, offering critical data support for energy–ecology synergy planning in arid regions. Full article
Show Figures

Figure 1

14 pages, 6691 KiB  
Article
Remote Sensing Extraction of Damaged Buildings in the Shigatse Earthquake, 2025: A Hybrid YOLO-E and SAM2 Approach
by Zhimin Wu, Chenyao Qu, Wei Wang, Zelang Miao and Huihui Feng
Sensors 2025, 25(14), 4375; https://doi.org/10.3390/s25144375 - 12 Jul 2025
Viewed by 357
Abstract
In January 2025, a magnitude 6.8 earthquake struck Dingri County, Shigatse, Tibet, causing severe damage. Rapid and precise extraction of damaged buildings is essential for emergency relief and rebuilding efforts. This study proposes an approach integrating YOLO-E (Real-Time Seeing Anything) and the Segment [...] Read more.
In January 2025, a magnitude 6.8 earthquake struck Dingri County, Shigatse, Tibet, causing severe damage. Rapid and precise extraction of damaged buildings is essential for emergency relief and rebuilding efforts. This study proposes an approach integrating YOLO-E (Real-Time Seeing Anything) and the Segment Anything Model 2 (SAM2) to extract damaged buildings with multi-source remote sensing images, including post-earthquake Gaofen-7 imagery (0.80 m), Beijing-3 imagery (0.30 m), and pre-earthquake Google satellite imagery (0.15 m), over the affected region. In this hybrid approach, YOLO-E functions as the preliminary segmentation module for initial segmentation. It leverages its real-time detection and segmentation capability to locate potential damaged building regions and generate coarse segmentation masks rapidly. Subsequently, SAM2 follows as a refinement step, incorporating shapefile information from pre-disaster sources to apply precise, pixel-level segmentation. The dataset used for training contained labeled examples of damaged buildings, and the model optimization was carried out using stochastic gradient descent (SGD), with cross-entropy and mean squared error as the selected loss functions. Upon evaluation, the model reached a precision of 0.840, a recall of 0.855, an F1-score of 0.847, and an IoU of 0.735. It successfully extracted 492 suspected damaged building patches within a radius of 20 km from the earthquake epicenter, clearly showing the distribution characteristics of damaged buildings concentrated in the earthquake fault zone. In summary, this hybrid YOLO-E and SAM2 approach, leveraging multi-source remote sensing imagery, delivers precise and rapid extraction of damaged buildings with a precision of 0.840, recall of 0.855, and IoU of 0.735, effectively supporting targeted earthquake rescue and post-disaster reconstruction efforts in the Dingri County fault zone. Full article
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 320
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

20 pages, 6074 KiB  
Article
Remote Sensing Archaeology of the Xixia Imperial Tombs: Analyzing Burial Landscapes and Geomantic Layouts
by Wei Ji, Li Li, Jia Yang, Yuqi Hao and Lei Luo
Remote Sens. 2025, 17(14), 2395; https://doi.org/10.3390/rs17142395 - 11 Jul 2025
Viewed by 545
Abstract
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing [...] Read more.
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing multi-resolution and multi-temporal satellite remote sensing data, including Gaofen-2 (GF-2), Landsat-8 OLI, declassified GAMBIT imagery, and Google Earth, combined with deep learning techniques, to conduct a comprehensive archaeological investigation of the XITs’ burial landscape. We performed geomorphological analysis of the surrounding environment and automated identification and mapping of burial mounds and mausoleum features using YOLOv5, complemented by manual interpretation of very-high-resolution (VHR) satellite imagery. Spectral indices and image fusion techniques were applied to enhance the detection of archaeological features. Our findings demonstrated the efficacy of this combined methodology for archaeology prospect, providing valuable insights into the spatial layout, geomantic considerations, and preservation status of the XITs. Notably, the analysis of declassified GAMBIT imagery facilitated the identification of a suspected true location for the ninth imperial tomb (M9), a significant contribution to understanding Xixia history through remote sensing archaeology. This research provides a replicable framework for the detection and preservation of archaeological sites using readily available satellite data, underscoring the power of advanced remote sensing and machine learning in heritage studies. Full article
Show Figures

Figure 1

18 pages, 2798 KiB  
Article
A Terrain-Constrained Cross-Correlation Matching Method for Laser Footprint Geolocation
by Sihan Zhou, Pufan Zhao, Jian Yang, Qijin Han, Yue Ma, Hui Zhou and Song Li
Remote Sens. 2025, 17(14), 2381; https://doi.org/10.3390/rs17142381 - 10 Jul 2025
Viewed by 238
Abstract
The full-waveform spaceborne laser altimeter improves footprint geolocation accuracy through waveform matching, providing critical data for on-orbit calibration. However, in areas with significant topographic variations or complex surface characteristics, traditional waveform matching methods based on the Pearson correlation coefficient (PCC-Match) are susceptible to [...] Read more.
The full-waveform spaceborne laser altimeter improves footprint geolocation accuracy through waveform matching, providing critical data for on-orbit calibration. However, in areas with significant topographic variations or complex surface characteristics, traditional waveform matching methods based on the Pearson correlation coefficient (PCC-Match) are susceptible to errors from laser ranging inaccuracies and discrepancies in surface structures, resulting in reduced footprint geolocation stability. This study proposes a terrain-constrained cross-correlation matching (TC-Match) method. By integrating the terrain characteristics of the laser footprint area with spaceborne altimetry data, a sliding “time-shift” constraint range is constructed. Within this constraint range, an optimal matching search based on waveform structural characteristics is conducted to enhance the robustness and accuracy of footprint geolocation. Using GaoFen-7 (GF-7) satellite laser footprint data, experiments were conducted in regions of Utah and Arizona, USA, for validation. The results show that TC-Match outperforms PCC-Match regarding footprint geolocation accuracy, stability, elevation correction, and systematic bias correction. This study demonstrates that TC-Match significantly improves the geolocation quality of spaceborne laser altimeters under complex terrain conditions, offering good practical engineering adaptability. It provides an effective technical pathway for subsequent on-orbit calibration and precision model optimization of spaceborne laser data. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

24 pages, 15534 KiB  
Article
Quantifying Root Cohesion Spatial Heterogeneity Using Remote Sensing for Improved Landslide Susceptibility Modeling: A Case Study of Caijiachuan Landslides
by Zelang Miao, Yaopeng Xiong, Zhiwei Cheng, Bin Wu, Wei Wang and Zuwu Peng
Sensors 2025, 25(13), 4221; https://doi.org/10.3390/s25134221 - 6 Jul 2025
Viewed by 431
Abstract
This study investigates the influence of root cohesion spatial heterogeneity on rainfall-induced landslide distribution across the Loess Plateau, addressing limitations in existing methods that oversimplify root reinforcement. Leveraging Landsat and GaoFen satellite images, we developed a regional root cohesion inversion model that quantifies [...] Read more.
This study investigates the influence of root cohesion spatial heterogeneity on rainfall-induced landslide distribution across the Loess Plateau, addressing limitations in existing methods that oversimplify root reinforcement. Leveraging Landsat and GaoFen satellite images, we developed a regional root cohesion inversion model that quantifies spatial heterogeneity using tree height (derived from time series Landsat imagery) and above-ground biomass (from 30 m resolution satellite products). This approach, integrated with land use-specific hydrological parameters and an infinite slope stability model, significantly improves landslide susceptibility predictions compared to models ignoring root cohesion or using uniform assignments. High-resolution pre- and post-rainfall GaoFen satellite imagery validated landslide inventories, revealing dynamic susceptibility patterns: farmland exhibited the highest risk, followed by artificial and secondary forests, with susceptibility escalating post-rainfall. This study underscores the critical role of remote sensing-driven root cohesion mapping in landslide risk assessment, offering actionable insights for land use planning and disaster mitigation on the Loess Plateau. Full article
Show Figures

Figure 1

20 pages, 4929 KiB  
Article
Remote Sensing Image-Based Building Change Detection: A Case Study of the Qinling Mountains in China
by Lei Fu, Yunfeng Zhang, Keyun Zhao, Lulu Zhang, Ying Li, Changjing Shang and Qiang Shen
Remote Sens. 2025, 17(13), 2249; https://doi.org/10.3390/rs17132249 - 30 Jun 2025
Viewed by 395
Abstract
With the widespread application of deep learning in Earth observation, remote sensing image-based building change detection has achieved numerous groundbreaking advancements. However, differences across time periods caused by temporal variations in land cover, as well as the complex spatial structures in remote sensing [...] Read more.
With the widespread application of deep learning in Earth observation, remote sensing image-based building change detection has achieved numerous groundbreaking advancements. However, differences across time periods caused by temporal variations in land cover, as well as the complex spatial structures in remote sensing scenes, significantly constrain the performance of change detection. To address these challenges, a change detection algorithm based on spatio-spectral information aggregation is proposed, which consists of two key modules: the Cross-Scale Heterogeneous Convolution module (CSHConv) and the Spatio-Spectral Information Fusion module (SSIF). CSHConv mitigates information loss caused by scale heterogeneity, thereby enhancing the effective utilization of multi-scale features. Meanwhile, SSIF models spatial and spectral information jointly, capturing interactions across different spatial scales and spectral domains. This investigation is illustrated with a case study conducted with the real-world dataset QL-CD (Qinling change detection), acquired in the Qinling region of China. The work includes the construction of QL-CD, which includes 12,724 pairs of images captured by the Gaofen-1 satellite. Experimental results demonstrate that the proposed approach outperforms a wide range of state-of-the-art algorithms. Full article
(This article belongs to the Special Issue Artificial Intelligence Remote Sensing for Earth Observation)
Show Figures

Figure 1

26 pages, 6668 KiB  
Article
Dark Ship Detection via Optical and SAR Collaboration: An Improved Multi-Feature Association Method Between Remote Sensing Images and AIS Data
by Fan Li, Kun Yu, Chao Yuan, Yichen Tian, Guang Yang, Kai Yin and Youguang Li
Remote Sens. 2025, 17(13), 2201; https://doi.org/10.3390/rs17132201 - 26 Jun 2025
Viewed by 612
Abstract
Dark ships, vessels deliberately disabling their AIS signals, constitute a grave maritime safety hazard, with detection efforts hindered by issues like over-reliance on AIS, inadequate surveillance coverage, and significant mismatch rates. This paper proposes an improved multi-feature association method that integrates satellite remote [...] Read more.
Dark ships, vessels deliberately disabling their AIS signals, constitute a grave maritime safety hazard, with detection efforts hindered by issues like over-reliance on AIS, inadequate surveillance coverage, and significant mismatch rates. This paper proposes an improved multi-feature association method that integrates satellite remote sensing and AIS data, with a focus on oriented bounding box course estimation, to improve the detection of dark ships and enhance maritime surveillance. Firstly, the oriented bounding box object detection model (YOLOv11n-OBB) is trained to break through the limitations of horizontal bounding box orientation representation. Secondly, by integrating position, dimensions (length and width), and course characteristics, we devise a joint cost function to evaluate the combined significance of multiple features. Subsequently, an advanced JVC global optimization algorithm is employed to ensure high-precision association in dense scenes. Finally, by integrating data from Gaofen-6 (optical) and Gaofen-3B (SAR) satellites, a day-and-night collaborative monitoring framework is constructed to address the blind spots of single-sensor monitoring during night-time or adverse weather conditions. Our results indicate that the detection model demonstrates a high average precision (AP50) of 0.986 on the optical dataset and 0.903 on the SAR dataset. The association accuracy of the multi-feature association algorithm is 91.74% in optical image and AIS data matching, and 91.33% in SAR image and AIS data matching. The association rate reaches 96.03% (optical) and 74.24% (SAR), respectively. This study provides an efficient technical tool for maritime safety regulation through multi-source data fusion and algorithm innovation. Full article
Show Figures

Graphical abstract

20 pages, 13476 KiB  
Article
Monitoring Pine Wilt Disease Using High-Resolution Satellite Remote Sensing at the Single-Tree Scale with Integrated Self-Attention
by Wenhao Lv, Junhao Zhao and Jixia Huang
Remote Sens. 2025, 17(13), 2197; https://doi.org/10.3390/rs17132197 - 26 Jun 2025
Viewed by 381
Abstract
Pine wilt disease has caused severe damage to China’s forest ecosystems. Utilizing the rich information from very-high-resolution (VHR) satellite imagery for large-scale and accurate monitoring of pine wilt disease is a crucial approach to curbing its spread. However, current research on identifying infected [...] Read more.
Pine wilt disease has caused severe damage to China’s forest ecosystems. Utilizing the rich information from very-high-resolution (VHR) satellite imagery for large-scale and accurate monitoring of pine wilt disease is a crucial approach to curbing its spread. However, current research on identifying infected trees using VHR satellite imagery and deep learning remains extremely limited. This study introduces several advanced self-attention algorithms into the task of satellite-based monitoring of pine wilt disease to enhance detection performance. We constructed a dataset of discolored pine trees affected by pine wilt disease using imagery from the Gaofen-2 and Gaofen-7 satellites. Within the unified semantic segmentation framework MMSegmentation, we implemented four single-head attention models—NLNet, CCNet, DANet, and GCNet—and two multi-head attention models—Swin Transformer and SegFormer—for the accurate semantic segmentation of infected trees. The model predictions were further analyzed through visualization. The results demonstrate that introducing appropriate self-attention algorithms significantly improves detection accuracy for pine wilt disease. Among the single-head attention models, DANet achieved the highest accuracy, reaching 73.35%. The multi-head attention models exhibited an excellent performance, with SegFormer-b2 achieving an accuracy of 76.39%, learning the features of discolored pine trees at the earliest stage and converging faster. The visualization of model inference results indicates that DANet, which integrates convolutional neural networks (CNNs) with self-attention mechanisms, achieved the highest overall accuracy at 94.43%. The use of self-attention algorithms enables models to extract more precise morphological features of discolored pine trees, enhancing user accuracy while potentially reducing production accuracy. Full article
Show Figures

Figure 1

21 pages, 3901 KiB  
Article
Research on CTSA-DeepLabV3+ Urban Green Space Classification Model Based on GF-2 Images
by Ruotong Li, Jian Zhao and Yanguo Fan
Sensors 2025, 25(13), 3862; https://doi.org/10.3390/s25133862 - 21 Jun 2025
Viewed by 636
Abstract
As an important part of urban ecosystems, urban green spaces play a key role in ecological environmental protection and urban spatial structure optimization. However, due to the complex morphology and high degree of fragmentation of urban green spaces, it is still challenging to [...] Read more.
As an important part of urban ecosystems, urban green spaces play a key role in ecological environmental protection and urban spatial structure optimization. However, due to the complex morphology and high degree of fragmentation of urban green spaces, it is still challenging to effectively distinguish urban green space types from high spatial resolution images. To solve the problem, a Contextual Transformer and Squeeze Aggregated Excitation Enhanced DeepLabV3+ (CTSA-DeepLabV3+) model was proposed for urban green space classification based on Gaofen-2 (GF-2) satellite images. A Contextual Transformer (CoT) module was added to the decoder part of the model to enhance the global context modeling capability, and the SENetv2 attention mechanism was employed to improve its key feature capture ability. The experimental results showed that the overall classification accuracy of the CTSA-DeepLabV3+ model is 96.21%, and the average intersection ratio, precision, recall, and F1-score reach 89.22%, 92.56%, 90.12%, and 91.23%, respectively, which is better than DeepLabV3+, Fully Convolutional Networks (FCNs), U-Net (UNet), the Pyramid Scene Parseing Network (PSPNet), UperNet-Swin Transformer, and other mainstream models. The model exhibits higher accuracy and provides efficient references for the intelligent interpretation of urban green space with high-resolution remote sensing images. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 9695 KiB  
Article
DAENet: A Deep Attention-Enhanced Network for Cropland Extraction in Complex Terrain from High-Resolution Satellite Imagery
by Yushen Wang, Mingchao Yang, Tianxiang Zhang, Shasha Hu and Qingwei Zhuang
Agriculture 2025, 15(12), 1318; https://doi.org/10.3390/agriculture15121318 - 19 Jun 2025
Viewed by 404
Abstract
Prompt and precise cropland mapping is indispensable for safeguarding food security, enhancing land resource utilization, and advancing sustainable agricultural practices. Conventional approaches faced difficulties in complex terrain marked by fragmented plots, pronounced elevation differences, and non-uniform field borders. To address these challenges, we [...] Read more.
Prompt and precise cropland mapping is indispensable for safeguarding food security, enhancing land resource utilization, and advancing sustainable agricultural practices. Conventional approaches faced difficulties in complex terrain marked by fragmented plots, pronounced elevation differences, and non-uniform field borders. To address these challenges, we propose DAENet, a novel deep learning framework designed for accurate cropland extraction from high-resolution GaoFen-1 (GF-1) satellite imagery. DAENet employs a novel Geometric-Optimized and Boundary-Restrained (GOBR) Block, which combines channel attention, multi-scale spatial attention, and boundary supervision mechanisms to effectively mitigate challenges arising from disjointed cropland parcels, topography-cast shadows, and indistinct edges. We conducted comparative experiments using 8 mainstream semantic segmentation models. The results demonstrate that DAENet achieves superior performance, with an Intersection over Union (IoU) of 0.9636, representing a 4% improvement over the best-performing baseline, and an F1-score of 0.9811, marking a 2% increase. Ablation analysis further validated the indispensable contribution of GOBR modules in improving segmentation precision. Using our approach, we successfully extracted 25,556.98 hectares of cropland within the study area, encompassing a total of 67,850 individual blocks. Additionally, the proposed method exhibits robust generalization across varying spatial resolutions, underscoring its effectiveness as a high-accuracy solution for agricultural monitoring and sustainable land management in complex terrain. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop