Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,006)

Search Parameters:
Keywords = GWO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4555 KB  
Article
Optimization Study of Gas Supply Pipeline Systems Based on Swarm Intelligence Optimization Algorithms
by Li Dai, Chao Xu, Yiqun Liu and Liang Zeng
Appl. Sci. 2025, 15(19), 10838; https://doi.org/10.3390/app151910838 - 9 Oct 2025
Abstract
With rapid urbanization and industrialization in China, existing gas supply networks urgently require renewal and optimization. This paper proposes a Gray Wolf Optimizer (GWO)-based method for reducing calculation errors and a Zebra Optimization Algorithm (ZOA)-based approach for gas supply pressure distribution. For error [...] Read more.
With rapid urbanization and industrialization in China, existing gas supply networks urgently require renewal and optimization. This paper proposes a Gray Wolf Optimizer (GWO)-based method for reducing calculation errors and a Zebra Optimization Algorithm (ZOA)-based approach for gas supply pressure distribution. For error correction, the pipe friction coefficient is adjusted to minimize the deviation between calculated and actual flows. The GWO reduces average relative error to 0.01% with satisfactory iteration speed and efficiency. For pressure distribution, supply-end pressures are optimized to reduce energy consumption and enhance system performance. The ZOA shows strong convergence and global search capabilities. These methods provide valuable theoretical and practical insights for optimizing gas supply networks, supporting green transformation and sustainable development. Full article
Show Figures

Figure 1

27 pages, 4835 KB  
Article
Real-Time Carbon Content Prediction Model for the Reblowing Stage of Converter Based on PI-LSTM
by Yuanzheng Guo, Dongfeng He, Xiaolong Li and Kai Feng
Materials 2025, 18(19), 4631; https://doi.org/10.3390/ma18194631 - 8 Oct 2025
Viewed by 53
Abstract
Precise forecasting of carbon content in the converter’s reblowing phase is pivotal to boosting steel production efficiency and ensuring effective control over molten steel quality. However, existing mechanistic models based on material balance and decarbonization kinetics suffer from insufficient accuracy due to simplifying [...] Read more.
Precise forecasting of carbon content in the converter’s reblowing phase is pivotal to boosting steel production efficiency and ensuring effective control over molten steel quality. However, existing mechanistic models based on material balance and decarbonization kinetics suffer from insufficient accuracy due to simplifying assumptions. In contrast, data-driven models rely on data quality, lack generalization capability, and lack physical interpretability. Additionally, integral models based on flue gas analysis suffer from data latency issues. To overcome these limitations, this study proposed a real-time carbon content prediction model for the converter’s reblowing phase, leveraging a physics-informed long short-term memory (PI-LSTM) network. First, flue gas data was processed using a carbon integration model to generate a carbon content change curve during the reblowing stage as a reference for actual values; second, a dual-branch network structure was designed, where the LSTM branch simultaneously predicts carbon content and key unmeasurable parameters in the decarbonization kinetics, while the mechanism branch combined these parameters with the decarbonization formula to calculate carbon content under mechanism constraints; finally, a joint loss function (combining data-driven loss and mechanism constraint loss) was used to train the model, and the gray wolf optimization (GWO) algorithm was employed to optimize hyperparameters. Experimental results show that compared to the mechanism model (MM) and LSTM model, the PI-LSTM model achieves an average absolute error (MAE) of 0.0077, a root mean square error (RMSE) of 0.0112, and endpoint carbon content hit rates within ±0.005%, ±0.01%, ±0.015% error ranges, achieving 53.71%, 82.23%, and 95.45%, respectively, significantly improving prediction accuracy and physical plausibility. This model lays a robust groundwork for dynamic closed-loop real-time control of carbon levels in the converter’s reblowing stage. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

23 pages, 6928 KB  
Article
Sustainable Floating PV–Storage Hybrid System for Coastal Energy Resilience
by Yong-Dong Chang, Gwo-Ruey Yu, Ching-Chih Chang and Jun-Hao Chen
Electronics 2025, 14(19), 3949; https://doi.org/10.3390/electronics14193949 - 7 Oct 2025
Viewed by 196
Abstract
Floating photovoltaic (FPV) systems are promising for coastal aquaculture where reliable electricity is essential for pumping, oxygenation, sensing, and control. A sustainable FPV–storage hybrid tailored to monsoon-prone sites is developed, with emphasis on energy efficiency and structural resilience. The prototype combines dual-axis solar [...] Read more.
Floating photovoltaic (FPV) systems are promising for coastal aquaculture where reliable electricity is essential for pumping, oxygenation, sensing, and control. A sustainable FPV–storage hybrid tailored to monsoon-prone sites is developed, with emphasis on energy efficiency and structural resilience. The prototype combines dual-axis solar tracking with a spray-cooling and cleaning subsystem and an active wind-protection strategy that automatically flattens the array when wind speed exceeds 8.0 m/s. Temperature, wind speed, and irradiance sensors are coordinated by an Arduino-based supervisor to optimize tracking, thermal management, and tilt control. A 10 W floating module and a fixed-tilt reference were fabricated and tested outdoors in Penghu, Taiwan. The FPV achieved a 25.17% energy gain on a sunny day and a 40.29% gain under overcast and windy conditions, while module temperature remained below 45 °C through on-demand spraying, reducing thermal losses. In addition, a hybrid energy storage system (HESS), integrating a 12 V/10 Ah lithium-ion battery and a 12 V/24 Ah lead-acid battery, was validated using a priority charging strategy. During testing, the lithium-ion unit was first charged to stabilize the control circuits, after which excess solar energy was redirected to the lead-acid battery for long-term storage. This hierarchical design ensured both immediate power stability and extended endurance under cloudy or low-irradiance conditions. The results demonstrate a practical, low-cost, and modular pathway to couple FPV with hybrid storage for coastal energy resilience, improving yield and maintaining safe operation during adverse weather, and enabling scalable deployment across cage-aquaculture facilities. Full article
Show Figures

Figure 1

25 pages, 2295 KB  
Article
Vehicle Wind Noise Prediction Using Auto-Encoder-Based Point Cloud Compression and GWO-ResNet
by Yan Ma, Jifeng Wang, Zuofeng Pan, Hongwei Yi, Shixu Jia and Haibo Huang
Machines 2025, 13(10), 920; https://doi.org/10.3390/machines13100920 - 5 Oct 2025
Viewed by 172
Abstract
In response to the inability to quickly assess wind noise performance during the early stages of automotive styling design, this paper proposes a method for predicting interior wind noise by integrating automotive point cloud models with the Gray Wolf Optimization Residual Network model [...] Read more.
In response to the inability to quickly assess wind noise performance during the early stages of automotive styling design, this paper proposes a method for predicting interior wind noise by integrating automotive point cloud models with the Gray Wolf Optimization Residual Network model (GWO-ResNet). Based on wind tunnel test data under typical operating conditions, the point cloud model of the test vehicle is compressed using an auto-encoder and used as input features to construct a nonlinear mapping model between the whole vehicle point cloud and the wind noise level at the driver’s left ear. Through adaptive optimization of key hyperparameters of the ResNet model using the gray wolf optimization algorithm, the accuracy and generalization of the prediction model are improved. The prediction results on the test set indicate that the proposed GWO-ResNet model achieves prediction results that are consistent with the actual measured values for the test samples, thereby validating the effectiveness of the proposed method. A comparative analysis with traditional ResNet models, GWO-LSTM models, and LSTM models revealed that the GWO-ResNet model achieved Mean Absolute Percentage Error (MAPE) and mean squared error (MSE) of 9.72% and 20.96, and 9.88% and 19.69, respectively, on the sedan and SUV test sets, significantly outperforming the other comparison models. The prediction results on the independent validation set also demonstrate good generalization ability and stability (MAPE of 10.14% and 10.15%, MSE of 23.97 and 29.15), further proving the reliability of this model in practical applications. The research results provide an efficient and feasible technical approach for the rapid evaluation of wind noise performance in vehicles and provide a reference for wind noise control in the early design stage of vehicles. At the same time, due to the limitations of the current test data, it is impossible to predict the wind noise during the actual driving of the vehicle. Subsequently, the wind noise during actual driving can be predicted by the test data of multiple working conditions. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

21 pages, 3794 KB  
Article
Computational Intelligence-Based Modeling of UAV-Integrated PV Systems
by Mohammad Hosein Saeedinia, Shamsodin Taheri and Ana-Maria Cretu
Solar 2025, 5(4), 45; https://doi.org/10.3390/solar5040045 - 3 Oct 2025
Viewed by 198
Abstract
The optimal utilization of UAV-integrated photovoltaic (PV) systems demands accurate modeling that accounts for dynamic flight conditions. This paper introduces a novel computational intelligence-based framework that models the behavior of a moving PV system mounted on a UAV. A unique mathematical approach is [...] Read more.
The optimal utilization of UAV-integrated photovoltaic (PV) systems demands accurate modeling that accounts for dynamic flight conditions. This paper introduces a novel computational intelligence-based framework that models the behavior of a moving PV system mounted on a UAV. A unique mathematical approach is developed to translate UAV flight dynamics, specifically roll, pitch, and yaw, into the tilt and azimuth angles of the PV module. To adaptively estimate the diode ideality factor under varying conditions, the Grey Wolf Optimization (GWO) algorithm is employed, outperforming traditional methods like Particle Swarm Optimization (PSO). Using a one-year environmental dataset, multiple machine learning (ML) models are trained to predict maximum power point (MPP) parameters for a commercial PV panel. The best-performing model, Rational Quadratic Gaussian Process Regression (RQGPR), demonstrates high accuracy and low computational cost. Furthermore, the proposed ML-based model is experimentally integrated into an incremental conductance (IC) MPPT technique, forming a hybrid MPPT controller. Hardware and experimental validations confirm the model’s effectiveness in real-time MPP prediction and tracking, highlighting its potential for enhancing UAV endurance and energy efficiency. Full article
(This article belongs to the Special Issue Efficient and Reliable Solar Photovoltaic Systems: 2nd Edition)
Show Figures

Figure 1

21 pages, 1625 KB  
Article
Multi-Objective Feature Selection for Intrusion Detection Systems: A Comparative Analysis of Bio-Inspired Optimization Algorithms
by Anıl Sezgin, Mustafa Ulaş and Aytuğ Boyacı
Sensors 2025, 25(19), 6099; https://doi.org/10.3390/s25196099 - 3 Oct 2025
Viewed by 302
Abstract
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm [...] Read more.
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—on the X-IIoTID dataset. GA achieved the highest accuracy (99.60%) with the lowest FPR (0.39%) using 34 features. GWO offered the best accuracy–subset balance, reaching 99.50% accuracy with 22 features (65.08% reduction) within 0.10 percentage points of GA while using ~35% fewer features. PSO delivered competitive performance with 99.58% accuracy, 32 features (49.21% reduction), FPR 0.40%, and FNR 0.44%. ACO was the fastest (total training time 3001 s) and produced the smallest subset (7 features; 88.89% reduction), at an accuracy of 97.65% (FPR 2.30%, FNR 2.40%). These results delineate clear trade-off regions of high accuracy (GA/PSO/GWO), balanced (GWO), and efficiency-oriented (ACO) and underscore that algorithm choice should align with deployment constraints (e.g., edge vs. enterprise vs. cloud). We selected this quartet because it spans distinct search paradigms (hierarchical hunting, evolutionary recombination, social swarming, pheromone-guided foraging) commonly used in IDS feature selection, aiming for a representative, reproducible comparison rather than exhaustiveness; extending to additional bio-inspired and hybrid methods is left for future work. Full article
Show Figures

Figure 1

22 pages, 2620 KB  
Article
Optimal Scheduling of Microgrids Based on a Two-Population Cooperative Search Mechanism
by Liming Wei and Heng Zhong
Biomimetics 2025, 10(10), 665; https://doi.org/10.3390/biomimetics10100665 - 1 Oct 2025
Viewed by 253
Abstract
Aiming at the problems of high-dimensional nonlinear constraints, multi-objective conflicts, and low solution efficiency in microgrid optimal scheduling, this paper proposes a multi-objective Harris Hawk–Grey Wolf hybrid intelligent algorithm (IMOHHOGWO). The problem of balancing the global exploration and local exploitation of the algorithm [...] Read more.
Aiming at the problems of high-dimensional nonlinear constraints, multi-objective conflicts, and low solution efficiency in microgrid optimal scheduling, this paper proposes a multi-objective Harris Hawk–Grey Wolf hybrid intelligent algorithm (IMOHHOGWO). The problem of balancing the global exploration and local exploitation of the algorithm is solved by introducing an adaptive energy factor and a nonlinear convergence factor; in terms of the algorithm’s exploration scope, the stochastic raid strategy of Harris Hawk optimization (HHO) is used to generate diversified solutions to expand the search scope, and constraints such as the energy storage SOC and DG outflow are finely tuned through the α/β/δ wolf bootstrapping of the Grey Wolf Optimizer (GWO). It is combined with a simulated annealing perturbation strategy to enhance the adaptability of complex constraints and local search accuracy, at the same time considering various constraints such as power generation, energy storage, power sales, and power purchase. We establish the microgrid multi-objective operation cost and carbon emission cost objective function, and through the simulation examples, we verify and determine that the IMOHHOGWO hybrid intelligent algorithm is better than the other three algorithms in terms of both convergence speed and convergence accuracy. According to the results of the multi-objective test function analysis, its performance is superior to the other four algorithms. The IMOHHOGWO hybrid intelligent algorithm reduces the grid operation cost and carbon emissions in the microgrid optimal scheduling model and is more suitable for the microgrid multi-objective model, which provides a feasible reference for future integrated microgrid optimal scheduling. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

34 pages, 4632 KB  
Article
Multi-Objective GWO with Opposition-Based Learning for Optimal Wind Turbine DG Allocation Considering Uncertainty and Seasonal Variability
by Abdullah Aljumah and Ahmed Darwish
Sustainability 2025, 17(19), 8819; https://doi.org/10.3390/su17198819 - 1 Oct 2025
Viewed by 213
Abstract
Optimally positioning renewable-based distributed generation (DG) units is vital for mitigating technical challenges in active distribution networks (ADNs). With the goal of achieving technical goals such as reduced losses and mitigated unstable voltage, two available optimization methods have been combined for positioning wind-energy [...] Read more.
Optimally positioning renewable-based distributed generation (DG) units is vital for mitigating technical challenges in active distribution networks (ADNs). With the goal of achieving technical goals such as reduced losses and mitigated unstable voltage, two available optimization methods have been combined for positioning wind-energy DGs: grey wolf optimization (GWO) and opposition-based learning (OBL), which tries out opposite possibilities for each assessed population, thus addressing GWO’s susceptibility to becoming stuck in local optima. This new fusion technique enhances the algorithm’s scrutiny of each area under consideration and reduces the likelihood of premature convergence. Results show that, compared with standard GWO, the proposed OBL-GWO reduced active power losses by up to 95.16%, improved total voltage deviation (TVD) by 99.7%, and increased the minimum bus voltage from 0.907 p.u. to 0.994 p.u. In addition, the voltage stability index (VSI) was also enhanced by nearly 30%. The proposed methodology outperformed both standard GWO on the IEEE 33-bus test system and comparable techniques reported in the literature consistently. By accounting for the uncertainty in wind generation, load demand, and future growth, this framework offers a more reliable and practical planning approach that better reflects real operating conditions. Full article
(This article belongs to the Special Issue Sustainable Renewable Energy: Smart Grid and Electric Power System)
Show Figures

Figure 1

25 pages, 2008 KB  
Article
Optimizing Agricultural Management Practices for Maize Crops: Integrating Clusterwise Linear Regression with an Adaptation of the Grey Wolf Optimizer
by Germán-Homero Morán-Figueroa, Carlos-Alberto Cobos-Lozada and Oscar-Fernando Bedoya-Leyva
Agriculture 2025, 15(19), 2068; https://doi.org/10.3390/agriculture15192068 - 1 Oct 2025
Viewed by 594
Abstract
Effectively managing agricultural practices is crucial for maximizing yield, reducing investment costs, preserving soil health, ensuring sustainability, and mitigating environmental impact. This study proposes an adaptation of the Grey Wolf Optimizer (GWO) metaheuristic to operate under specific constraints, with the goal of identifying [...] Read more.
Effectively managing agricultural practices is crucial for maximizing yield, reducing investment costs, preserving soil health, ensuring sustainability, and mitigating environmental impact. This study proposes an adaptation of the Grey Wolf Optimizer (GWO) metaheuristic to operate under specific constraints, with the goal of identifying optimal agricultural practices that boost maize crop yields and enhance economic profitability for each farm. To achieve this objective, we employ a probabilistic algorithm that constructs a model based on Clusterwise Linear Regression (CLR) as the primary method for predicting crop yield. This model considers several factors, including climate, soil conditions, and agricultural practices, which can vary depending on the specific location of the crop. We compare the performance of the Grey Wolf Optimizer (GWO) algorithm with other optimization techniques, including Hill Climbing (HC) and Simulated Annealing (SA). This analysis utilizes a dataset of maize crops from the Department of Córdoba in Colombia, where agricultural practices were optimized. The results indicate that the probabilistic algorithm defines a two-group CLR model as the best approach for predicting maize yield, achieving a 5% higher fit compared to other machine learning algorithms. Furthermore, the Grey Wolf Optimizer (GWO) metaheuristic achieved the best optimization performance, recommending agricultural practices that increased farm yield and profitability by 50% relative to the original practices. Overall, these findings demonstrate that the proposed algorithm can recommend optimal practices that are both technically feasible and economically viable for implementation and replication. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 655 KB  
Article
Capacity Configuration Optimization of Wind–Light–Load Storage Based on Improved PSO
by Benhong Wang, Ligui Wu, Peng Zhang, Yifeng Gu, Fangqing Zhang and Jiang Guo
Energies 2025, 18(19), 5212; https://doi.org/10.3390/en18195212 - 30 Sep 2025
Viewed by 295
Abstract
To improve the economy and stability of data center green power direct supply, the capacity configuration optimization of wind–light–load storage based on improved particle swarm optimization (PSO) is conducted. According to wind speed, the Weibull distribution of wind output is established, while the [...] Read more.
To improve the economy and stability of data center green power direct supply, the capacity configuration optimization of wind–light–load storage based on improved particle swarm optimization (PSO) is conducted. According to wind speed, the Weibull distribution of wind output is established, while the Beta distribution of solar output is established according to light intensity. Furthermore, by conducting the correlation analysis, it is indicated that there is a negative correlation between wind and solar output, which is helpful to optimize the mix of wind and solar output. To minimize the yearly average cost of wind–light–load storage, the capacity configuration optimization model is established, where the constraints include wind and solar output, energy storage capacity, balance between wind and solar output and data center load. To solve the capacity configuration optimization model, the improved PSO is adopted, compared to other optimization algorithms, like differential evolution (DE), genetic algorithm (GA) and grey wolf optimizer (GWO); by adjusting the inertia weight factor dynamically, the improved PSO is more likely to escape the local optimal solution. To validate the feasibility of data center green power direct supply with wind–light–load storage, a case study is conducted. By solving the capacity configuration optimization model of wind–light–load storage with the improved PSO, the balance rate between wind–solar output and data center load is improved by 12.5%, while the rate of abandoned wind and solar output is reduced by 17.5%, which is helpful to improve the economy and stability of data center green power direct supply. Full article
Show Figures

Figure 1

26 pages, 7761 KB  
Article
Artificial Intelligence-Based Optimized Nonlinear Control for Multi-Source Direct Current Converters in Hybrid Electric Vehicle Energy Systems
by Atif Rehman, Rimsha Ghias and Hammad Iqbal Sherazi
Energies 2025, 18(19), 5152; https://doi.org/10.3390/en18195152 - 28 Sep 2025
Viewed by 291
Abstract
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a [...] Read more.
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a condition-based integral terminal super-twisting sliding mode control (CBITSTSMC) strategy, with gains optimally tuned using an improved gray wolf optimization (I-GWO) algorithm, for coordinated control of a multi-source DC–DC converter system comprising photovoltaic (PV) arrays, fuel cells (FCs), lithium-ion batteries, and supercapacitors. The CBITSTSMC ensures finite-time convergence, reduces chattering, and dynamically adapts to operating conditions, thereby achieving superior performance. Compared to SMC and STSMC, the proposed controller delivers substantial reductions in steady-state error, overshoot, and undershoot, while improving rise time and settling time by up to 50%. Transient stability and disturbance rejection are significantly enhanced across all subsystems. Controller-in-the-loop (CIL) validation on a Delfino C2000 platform confirms the real-time feasibility and robustness of the approach. These results establish the CBITSTSMC as a highly effective solution for next-generation EV hybrid energy management systems, enabling precise power-sharing, improved stability, and enhanced renewable energy utilization. Full article
Show Figures

Figure 1

28 pages, 6039 KB  
Article
Detection and Classification of Unhealthy Heartbeats Using Deep Learning Techniques
by Abdullah M. Albarrak, Raneem Alharbi and Ibrahim A. Ibrahim
Sensors 2025, 25(19), 5976; https://doi.org/10.3390/s25195976 - 26 Sep 2025
Viewed by 442
Abstract
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the [...] Read more.
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the signals. This research investigates the effectiveness of machine learning and deep learning techniques for automated arrhythmia classification using ECG signals from the MIT-BIH dataset. We compared Gradient Boosting Machine (GBM) and Multilayer Perceptron (MLP) as traditional machine learning models with a hybrid deep learning model combining one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM) networks. Furthermore, the Grey Wolf Optimizer (GWO) was utilized to automatically optimize the hyperparameters of the 1D-CNN-LSTM model, enhancing its performance. Experimental results show that the proposed 1D-CNN-LSTM model achieved the highest accuracy of 97%, outperforming both classical machine learning and other deep learning baselines. The classification report and confusion matrix confirm the model’s robustness in identifying various arrhythmia types. These findings emphasize the possible benefits of integrating metaheuristic optimization with hybrid deep learning. Full article
(This article belongs to the Special Issue Sensors Technology and Application in ECG Signal Processing)
Show Figures

Figure 1

43 pages, 16029 KB  
Article
Research on Trajectory Planning for a Limited Number of Logistics Drones (≤3) Based on Double-Layer Fusion GWOP
by Jian Deng, Honghai Zhang, Yuetan Zhang and Yaru Sun
Drones 2025, 9(10), 671; https://doi.org/10.3390/drones9100671 - 24 Sep 2025
Viewed by 246
Abstract
Trajectory planning for logistics UAVs in complex environments faces a key challenge: balancing global search breadth with fine constraint accuracy. Traditional algorithms struggle to simultaneously manage large-scale exploration and complex constraints, and lack sufficient modeling capabilities for multi-UAV systems, limiting cluster logistics efficiency. [...] Read more.
Trajectory planning for logistics UAVs in complex environments faces a key challenge: balancing global search breadth with fine constraint accuracy. Traditional algorithms struggle to simultaneously manage large-scale exploration and complex constraints, and lack sufficient modeling capabilities for multi-UAV systems, limiting cluster logistics efficiency. To address these issues, we propose a GWOP algorithm based on dual-layer fusion of GWO and GRPO and incorporate a graph attention network (GAT). First, CEC2017 benchmark functions evaluate GWOP convergence accuracy and balanced exploration in multi-peak, high-dimensional environments. A hierarchical collaborative architecture, “GWO global coarse-grained search + GRPO local fine-tuning”, is used to overcome the limitations of single-algorithm frameworks. The GAT model constructs a dynamic “environment–UAV–task” association network, enabling environmental feature quantification and multi-constraint adaptation. A multi-factor objective function and constraints are integrated with multi-task cascading decoupling optimization to form a closed-loop collaborative optimization framework. Experimental results show that in single UAV scenarios, GWOP reduces flight cost (FV) by over 15.85% on average. In multi-UAV collaborative scenarios, average path length (APL), optimal path length (OPL), and FV are reduced by 4.08%, 14.08%, and 24.73%, respectively. In conclusion, the proposed method outperforms traditional approaches in path length, obstacle avoidance, and trajectory smoothness, offering a more efficient planning solution for smart logistics. Full article
Show Figures

Figure 1

24 pages, 4788 KB  
Article
Research on the FSW-GWO Algorithm for UAV Swarm Task Scheduling Under Uncertain Information Conditions
by Xiaopeng Bao, Huihui Xu, Zhangsong Shi, Weiqiang Hu and Guoliang Zhang
Drones 2025, 9(10), 670; https://doi.org/10.3390/drones9100670 - 24 Sep 2025
Viewed by 407
Abstract
In maritime target search missions, UAV swarm task scheduling faces several challenges. These include uncertainties in target states, the high-dimensional multimodal characteristic of the solution space, and dynamic constraints on swarm collaboration. In terms of target position estimation, existing methods ignore the spatiotemporal [...] Read more.
In maritime target search missions, UAV swarm task scheduling faces several challenges. These include uncertainties in target states, the high-dimensional multimodal characteristic of the solution space, and dynamic constraints on swarm collaboration. In terms of target position estimation, existing methods ignore the spatiotemporal correlation of target movement. At the level of optimization algorithms, existing algorithms struggle to balance global exploration and local exploitation, and they tend to fall into local optima. To address the above shortcomings, this paper constructs a technical system of “state perception-strategy optimization-collaborative execution”. First, a Serial Memory Iterative Method (GMMIM) integrated with the Gaussian–Markov model is proposed. This method recursively corrects the probability distribution of target positions using historical state data, thereby providing accurate situational support for decision-making. As a result, task scheduling efficiency is improved by 5.36%. Second, the sliding window technique is introduced to improve the Grey Wolf Optimizer (GWO). Based on the convergence of the population’s optimal fitness, the decay rate of the convergence factor is dynamically and adaptively adjusted. This balances the capabilities of global exploration and local exploitation to ensure swarm scheduling efficiency. Simulations demonstrate that the optimization performance of the proposed FSW-GWO algorithm is 16.95% higher than that of the IPSO method. Finally, a dynamic task weight update mechanism is designed. By combining resource load and task timeliness requirements, this mechanism achieves complementary adaptation between swarm resources and tasks. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

23 pages, 1941 KB  
Article
Dynamic Resource Allocation in Full-Duplex Integrated Sensing and Communication: A Multi-Objective Memetic Grey Wolf Optimizer Approach
by Xu Feng, Jianquan Wang, Lei Sun, Chaoyi Zhang and Teng Wang
Electronics 2025, 14(19), 3763; https://doi.org/10.3390/electronics14193763 - 23 Sep 2025
Viewed by 324
Abstract
To meet the dual demands of 6G cellular networks for high spectral efficiency and environmental sensing, this paper proposes a full-duplex (FD) integrated sensing and communication (ISAC) dynamic resource allocation framework. At the heart of the framework lies a dynamic frame structure that [...] Read more.
To meet the dual demands of 6G cellular networks for high spectral efficiency and environmental sensing, this paper proposes a full-duplex (FD) integrated sensing and communication (ISAC) dynamic resource allocation framework. At the heart of the framework lies a dynamic frame structure that can self-adapt the time-domain resource ratio between sensing and communication, designed to flexibly handle complex traffic demands. In FD mode, however, the trade-off between communication and sensing performance, exacerbated by severe self-interference (SI), morphs into a non-convex, NP-hard multi-objective optimization problem (MOP). To tackle this, we propose an Adaptive Hybrid Memetic Multi-Objective Grey Wolf Optimizer (AM-MOGWO). Finally, simulations were conducted on a high-fidelity platform that integrates 3GPP-standardized channels, which was further extended to a challenging multi-cell interference scenario to validate the algorithm’s robustness. AM-MOGWO was systematically benchmarked against standard Grey Wolf Optimizer (GWO), random search (RS), and the genetic algorithm (GA). Simulation results demonstrate that in both the single-cell and the more complex multi-cell environments, the proposed algorithm excels in locating the Pareto-optimal solution set, where its solution set significantly outperforms the baseline methods. Its hypervolume (HV) metric surpasses the second-best approach by more than 93%. This result quantitatively demonstrates the algorithm’s superiority in finding a high-quality set of trade-off solutions, confirming the framework’s high efficiency in complex interference environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

Back to TopTop