Research on the FSW-GWO Algorithm for UAV Swarm Task Scheduling Under Uncertain Information Conditions
Abstract
1. Introduction
2. Research Methods
2.1. Target Position Estimation Under Uncertain Information
2.1.1. Analysis of the Limitations of Traditional Methods
2.1.2. Series Memory Iterative Method Integrated with Gaussian Markov Movement Model
2.1.3. Simulation Comparison of Position Distribution Estimation Methods
2.2. Modeling of Cluster Task Scheduling Problems
2.2.1. Optimization of Task Allocation Logic
2.2.2. Calculation of Task Execution Position
2.2.3. Modeling of Task Scheduling Cost
2.2.4. Modeling of Target Value Degree
2.2.5. Quantitative Assessment of Task Execution Benefits
2.3. Optimization of Cluster Task Scheduling Strategy Based on Improved Gray Wolf Algorithm
2.3.1. Overall Framework of the Gray Wolf Optimization Algorithm
2.3.2. Decay Law of Convergence Factor
2.3.3. Adaptive Dynamic Update Mechanism for Decay Rate Integrated with Sliding Window Technology
3. Results and Discussion
3.1. Experimental Parameter Setting
3.2. Target Position Estimation and Verification
3.3. High-Dimensional Multi-Peak Characteristics of the Task Scheduling Optimization Problem
3.4. Changes in Population Optimal Fitness During the Iteration Process
3.5. Visualization of Cluster Task Scheduling
4. Conclusions
4.1. Main Contributions
4.2. Research Limitations and Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RPPM | Recursive probability propagation method |
GMMIM | Gaussian–Markov memory iteration method |
FSW-GWO | The Grey Wolf Optimizer integrated with sliding window technology |
References
- Jiang, Z.; Sun, X.; Wang, W.; Zhou, S.; Li, Q.; Da, L. Path planning method for maritime dynamic target search based on improved GBNN. Complex Intell. Syst. 2025, 11, 296. [Google Scholar] [CrossRef]
- Tong, P.; Yang, X.; Yang, Y.; Liu, W.; Wu, P. Multi-UAV Collaborative Absolute Vision Positioning and Navigation: A Survey and Discussion. Drones 2023, 7, 261. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Jiang, C.; Zhang, W. A Survey of Maritime Unmanned Search System: Theory, Applications and Future Directions. Ocean Eng. 2023, 285, 115359. [Google Scholar] [CrossRef]
- Luo, J.; Dong, W. Accurate Positioning Method of Maritime Search and Rescue Target Based on Binocular Vision. Signal Image Video Process. 2025, 19, 311. [Google Scholar] [CrossRef]
- Ai, B.; Jia, M.; Xu, H.; Xu, J.; Wen, Z.; Li, B.; Zhang, D. Coverage Path Planning for Maritime Search and Rescue Using Reinforcement Learning. Ocean Eng. 2021, 241, 110098. [Google Scholar] [CrossRef]
- Wang, G.; Wei, F.; Jiang, Y.; Zhao, M.; Wang, K.; Qi, H. A Multi-AUV Maritime Target Search Method for Moving and Invisible Objects Based on Multi-Agent Deep Reinforcement Learning. Sensors 2022, 22, 8562. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Shi, Y.; Wang, S.; Chen, T.; Di, P.; Yang, L. Route Planning for UAVs Maritime Search and Rescue Considering the Targets Moving Situation. Ocean Eng. 2024, 310, 118623. [Google Scholar] [CrossRef]
- Bays, M.J.; Wettergren, T.A.; Shin, J.; Chang, S.; Ferrari, S. Persistent Schedule Evaluation and Adaptive Re-Planning for Maritime Search Tasks. J. Intell. Robot. Syst. 2024, 110, 65. [Google Scholar] [CrossRef]
- Gungor, M. Classification and comparison of integer programming formulations for the single-machine sequencing problem. Comput. Oper. Res. 2025, 173, 106844. [Google Scholar] [CrossRef]
- Dias, F.; Rey, D. Aircraft Conflict Resolution with Trajectory Recovery Using Mixed-Integer Programming. J. Glob. Optim. 2024, 90, 1031–1067. [Google Scholar] [CrossRef]
- Clausen, J.V.; Crama, Y.; Lusby, R.; Rodriguez-Heck, E.; Ropke, S. Solving unconstrained binary polynomial programs with limited reach: Application to low autocorrelation binary sequences. Comput. Oper. Res. 2024, 165, 106586. [Google Scholar] [CrossRef]
- Zaccone, R. A Dynamic Programming Approach to the Collision Avoidance of Autonomous Ships. Mathematics 2024, 12, 1546. [Google Scholar] [CrossRef]
- Lin, A.; Liu, D.; Li, Z.; Hasanien, H.M.; Shi, Y. Heterogeneous differential evolution particle swarm optimization with local search. Complex Intell. Syst. 2023, 9, 6905–6925. [Google Scholar] [CrossRef]
- Zhou, X.; Li, R.; Wu, Z. Scheduling optimization for laminated door machining shop based on improved genetic algorithm. Comput. Oper. Res. 2025, 180, 107078. [Google Scholar] [CrossRef]
- Yao, P.; Duan, X.; Tang, J. An Improved Gray Wolf Optimization to Solve the Multi-Objective Tugboat Scheduling Problem. PLoS ONE 2024, 19, e0296966. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Duan, H.; Lao, S. Swarm Intelligence Algorithms for Multiple Unmanned Aerial Vehicles Collaboration: A Comprehensive Review. Artif. Intell. Rev. 2023, 56, 4295–4327. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Al-Betar, M.A.; Abu Doush, I.; Awadallah, M.A.; Kassaymeh, S.; Mirjalili, S.; Abu Zitar, R. Recent Advances in Grey Wolf Optimizer, Its Versions and Applications: Review. IEEE Access 2024, 12, 22991–23028. [Google Scholar] [CrossRef]
- Plummer, M. Simulation-Based Bayesian Analysis. Annu. Rev. Stat. Its Appl. 2023, 10, 401–425. [Google Scholar] [CrossRef]
- Baz, J.; Alonso, P.; Pena, J.M.; Perez-Fernandez, R. Gaussian Markov Random Fields over Graphs of Paths and High Relative Accuracy. J. Comput. Appl. Math. 2025, 453, 116142. [Google Scholar] [CrossRef]
- Kang, S.; Oh, H.-S. Novel Sampling Method for the von Mises-Fisher Distribution. Stat. Comput. 2024, 34, 106. [Google Scholar] [CrossRef]
- Luo, J.; Su, Y. Path Planning for Multi-USV Target Coverage in Complex Environments. Ocean Eng. 2024, 312, 119090. [Google Scholar] [CrossRef]
- Lu, Y.; Li, K.; Lin, R.; Wang, Y.; Han, H. Intelligent Layout Method of Ship Pipelines Based on an Improved Grey Wolf Optimization Algorithm. J. Mar. Sci. Eng. 2024, 12, 1971. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, X.; Chen, S. An Improved Gray Wolf Optimization Algorithm Solving to Functional Optimization and Engineering Design Problems. Sci. Rep. 2024, 14, 14190. [Google Scholar] [CrossRef] [PubMed]
- Arvaneh, F.; Zarafshan, F.; Karimi, A. Applying the Cheetah Algorithm to Optimize Resource Allocation in the Fog Computing Environment. Appl. Artif. Intell. 2024, 38, 2349982. [Google Scholar] [CrossRef]
- Nasir, M.; Sadollah, A.; Mirjalili, S.; Mansouri, S.A.; Safaraliev, M.; Jordehi, A.R. A Comprehensive Review on Applications of Grey Wolf Optimizer in Energy Systems. Arch. Comput. Methods Eng. 2025, 32, 2279–2319. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Tjortjis, C. Adaptive Sliding Window Normalization. Inf. Syst. 2025, 129, 102515. [Google Scholar] [CrossRef]
- Allaoui, M.; Belhaouari, S.B.; Hedjam, R.; Bouanane, K.; Kherfi, M.L. T-SNE-PSO: Optimizing t-SNE Using Particle Swarm Optimization. Expert Syst. Appl. 2025, 269, 126398. [Google Scholar] [CrossRef]
- Neto, A.C.; Levada, A.L.M.; Haddad, M.F.C. Supervised t -SNE for Metric Learning With Stochastic and Geodesic Distances T-SNE Supervise Pour l’apprentissage Metrique Avec Des Distances Stochastiques et Geodesiques. IEEE Can. J. Electr. Comput. Eng. 2024, 47, 199–205. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An Overview of Variants and Advancements of PSO Algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Kassaymeh, S.; Rjoub, G.; Bataineh, B.; Sanjalawe, Y.; Al-Betar, M.A. Recent Advances in Multi-Objective Whale Optimization Algorithm, Its Versions and Applications. J. King Saud Univ. Comput. Inf. Sci. 2025, 37, 200. [Google Scholar] [CrossRef]
Target | /m | /(kn) | /rad | |
---|---|---|---|---|
(500, 450) | 10.179 | 1.278 | 0.089 | |
(500, 400) | 10.198 | 1.423 | 0.294 | |
(500, 350) | 8.121 | 0.200 | 0.751 | |
(500, 300) | 10.212 | 1.435 | 0.353 | |
(450, 500) | 10.178 | 0.993 | 0.391 | |
(400, 500) | 8.964 | 0.153 | 0.870 | |
(350, 500) | 9.774 | 0.438 | 0.246 | |
(300, 500) | 8.081 | 0.859 | 0.464 |
Symbol | Physical Meaning | Value |
---|---|---|
Parameters of the logical function | 1 | |
The number of grey wolf individuals in the population | 50 | |
Maximum number of iterations | 10,000 | |
The length of the sliding window | 10 | |
Adjustment parameter for the decay rate | 5 |
Search Units | Baseline Control Group | Ablation Experimental Group | ||
---|---|---|---|---|
X-Coordinate/m | X-Coordinate/m | X-Coordinate/m | X-Coordinate/m | |
Unit 1 | 1536.08 | 1098.53 | 1514.91 | 1474.49 |
Unit 2 | 1424.26 | 1228.00 | 1749.96 | 1288.57 |
Unit 3 | 1472.76 | 1137.96 | 1580.46 | 1373.33 |
Unit 4 | 1473.69 | 1092.04 | 1658.25 | 1267.78 |
Unit 5 | 1308.51 | 1230.56 | 1682.13 | 1121.60 |
Unit 6 | 1490.50 | 1000.48 | 1413.01 | 1302.29 |
Optimal Fitness | 2.166 | 2.050 |
Key Parameters | Parameter Value | Parameter Meaning |
---|---|---|
Number of Particles | 50 | Controls population size and affects the algorithm’s search diversity and computational efficiency; consistent with FSW-GWO |
Maximum Number of Iterations | 10,000 | Affects convergence accuracy and convergence speed; consistent with FSW-GWO |
Problem Dimension | 6 × 8 | Determined by the task assignment matrix; consistent with FSW-GWO |
Initial Inertia Weight | 0.9 | Controls the degree of the particle’s inheritance of its historical velocity |
Final Inertia Weight | 0.4 | Linearly decreases to 0.4 with iterations, enhancing the algorithm’s local exploitation capability in the later stage |
Cognitive Factor | 1.5 | Controls the particle’s tendency to move toward its own historical optimal position |
Social Factor | 1.5 | Controls the particle’s tendency to move toward the global optimal position |
Key Parameters | Parameter Value | Parameter Meaning |
---|---|---|
Population Size | 50 | Number of whale individuals; affects search diversity and computational efficiency; consistent with FSW-GWO |
Maximum Number of Iterations | 10,000 | Affects convergence accuracy and convergence time; consistent with FSW-GWO |
Problem Dimension | 6 × 8 | Determined by the task assignment matrix; consistent with FSW-GWO |
Encircling Coefficient | shrinks from [−2, 2] to [0, 0] | Controls the algorithm’s switch between random search strategy and shrinking encircling strategy |
Weight Coefficient | [0, 2) | Introduces randomness to enhance the algorithm’s ability to jump out of local optima |
Spiral Shape Coefficient | 1 | Defines the spiral shape and intensity during spiral update; controls the tightness of the spiral trajectory of individuals around the optimal solution |
Spiral Angle Coefficient | [−1, 1] | Controls the angle during spiral update; simulates the change in rotation angle of whales around prey |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, X.; Xu, H.; Shi, Z.; Hu, W.; Zhang, G. Research on the FSW-GWO Algorithm for UAV Swarm Task Scheduling Under Uncertain Information Conditions. Drones 2025, 9, 670. https://doi.org/10.3390/drones9100670
Bao X, Xu H, Shi Z, Hu W, Zhang G. Research on the FSW-GWO Algorithm for UAV Swarm Task Scheduling Under Uncertain Information Conditions. Drones. 2025; 9(10):670. https://doi.org/10.3390/drones9100670
Chicago/Turabian StyleBao, Xiaopeng, Huihui Xu, Zhangsong Shi, Weiqiang Hu, and Guoliang Zhang. 2025. "Research on the FSW-GWO Algorithm for UAV Swarm Task Scheduling Under Uncertain Information Conditions" Drones 9, no. 10: 670. https://doi.org/10.3390/drones9100670
APA StyleBao, X., Xu, H., Shi, Z., Hu, W., & Zhang, G. (2025). Research on the FSW-GWO Algorithm for UAV Swarm Task Scheduling Under Uncertain Information Conditions. Drones, 9(10), 670. https://doi.org/10.3390/drones9100670