Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = GSK3 (glycogen synthase kinase 3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5787 KB  
Article
Network Pharmacology-Guided Discovery of Traditional Chinese Medicine Extracts for Alzheimer’s Disease: Targeting Neuroinflammation and Gut–Brain Axis Dysfunction
by Ting Zhang and Sunmin Park
Int. J. Mol. Sci. 2025, 26(17), 8545; https://doi.org/10.3390/ijms26178545 - 3 Sep 2025
Cited by 1 | Viewed by 1861
Abstract
Neuroinflammation plays a central role in the pathogenesis of Alzheimer’s disease (AD), with amyloid-β (Aβ) deposition and neurofibrillary tangles driving both central and peripheral inflammatory responses. This study investigated the neuroprotective and anti-inflammatory effects of Vitex trifolia (VT), Plantago major (PM), Apocyni Veneti [...] Read more.
Neuroinflammation plays a central role in the pathogenesis of Alzheimer’s disease (AD), with amyloid-β (Aβ) deposition and neurofibrillary tangles driving both central and peripheral inflammatory responses. This study investigated the neuroprotective and anti-inflammatory effects of Vitex trifolia (VT), Plantago major (PM), Apocyni Veneti Folium (AVF), and Eucommiae folium (EF) using network pharmacology and a co-culture model of PC12 neuronal and Caco-2 intestinal epithelial cells. Bioactive compounds were identified via high-performance liquid chromatography (HPLC) and screened with network pharmacology analysis, yielding 27 for VT, 10 for PM, 6 for AVF, and 3 for EF. Molecular docking confirmed strong binding affinities between the key bioactive compounds and AD-related targets. A co-culture system of PC12 neuronal and Caco-2 intestinal epithelial cells was established to evaluate the effects of VT, PM, AVF, and EF extracts (at concentrations of 10 µg/mL, 20 µg/mL, and 50 µg/mL) and donepezil hydrochloride (positive-control) on Aβ25–35-induced neurotoxicity and lipopolysaccharide (LPS)-induced intestinal inflammation, to assess cell viability, and effects on oxidative stress, mitochondrial function, and inflammatory markers. The VT, PM, AVF, and EF extracts activated phosphoinositide 3-kinase (PI3K)-Akt-glycogen synthase kinase-3β (GSK-3β) signaling, enhanced phosphorylation of AMP kinase, suggesting inhibition of Aβ accumulation and tau hyperphosphorylation (p < 0.05). However, donepezil hydrochloride only enhanced AMPK phosphorylation. The extracts reduced lipid peroxidation and acetylcholinesterase by about 5-fold. JC-1 staining confirmed preserved mitochondrial membrane potential, while hematoxylin and eosin staining indicated improved intestinal barrier integrity (p < 0.05). PM and AVF reduced the number of mast cells (p < 0.05). In conclusion, these findings highlight the multi-target potential of VT, PM, AVF, and EF in mitigating both neuronal and intestinal inflammation. Their dual regulatory effects on the gut–brain axis suggest promising therapeutic applications in AD through the modulation of central and peripheral immune responses. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

16 pages, 779 KB  
Article
Exploring the Neuroprotective Properties of Celery (Apium graveolens Linn) Extract Against Amyloid-Beta Toxicity and Enzymes Associated with Alzheimer’s Disease
by Layla Mohamud Dirie, Tahire Yurdakul, Sevim Isik and Shirin Tarbiat
Molecules 2025, 30(10), 2187; https://doi.org/10.3390/molecules30102187 - 16 May 2025
Viewed by 3989
Abstract
Celery (Apium graveolens L.), one of the numerous members of the Apiaceae family, has been traditionally used as food and medicine due to its nutraceutical properties. Nevertheless, understanding the neuroprotective effects of this species requires evaluation through different mechanisms relevant to Alzheimer’s [...] Read more.
Celery (Apium graveolens L.), one of the numerous members of the Apiaceae family, has been traditionally used as food and medicine due to its nutraceutical properties. Nevertheless, understanding the neuroprotective effects of this species requires evaluation through different mechanisms relevant to Alzheimer’s disease (AD) treatment. This study explored the neuroprotective potential of ethanolic extracts of celery leaves. Liquid chromatography and mass spectrometry-based metabolomics analysis of the extract revealed the existence of a diverse array of secondary metabolites, including phenolic acids, hydroxycinnamic acid, flavonoids, flavonoid O-glycosides, flavonol, glycosides, and isoflavones. Celery extract protects human neuroblastoma SH-SY5Y cells against 15 µM amyloid-beta (Aβ1–42) toxicity, enhancing their vitality from 67% to 81.74% at 100 µg/mL. The extract inhibited the enzymes associated with AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glycogen synthase kinase 3 beta (GSK3β), cyclooxygenase 1 (COX-1), and cyclooxygenase 2 (COX-2) with IC50 values of 21.84, 61.27, 45.94, 34.1, and 52.2 µg/mL, respectively. In conclusion, celery leaf extract components may be potential therapeutic candidates for AD prevention and treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

30 pages, 7740 KB  
Article
Protective Effects of Lotus Seedpod Extract on Hepatic Lipid and Glucose Metabolism via AMPK-Associated Mechanisms in a Mouse Model of Metabolic Syndrome and Oleic Acid-Induced HepG2 Cells
by Hui-Hsuan Lin, Pei-Rong Yu, Chiao-Yun Tseng, Ming-Shih Lee and Jing-Hsien Chen
Antioxidants 2025, 14(5), 595; https://doi.org/10.3390/antiox14050595 - 16 May 2025
Cited by 3 | Viewed by 1738
Abstract
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod [...] Read more.
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod extract (LSE) in alleviating MetS and MASLD-related hepatic disturbances. In vivo, mice subjected to a high-fat diet (HFD) and streptozotocin (STZ) injection were supplemented with LSE or simvastatin for 6 weeks. Obesity indicators included body weight and epididymal fat, while insulin resistance was measured by fasting serum glucose, serum insulin, homeostasis model assessment–insulin resistance index (HOMA-IR), and oral glucose tolerance (OGTT). Also, the levels of serum lipid profiles and blood pressure were evaluated. Adipokines, proinflammatory cytokines, liver fat droplets, and peri-portal fibrosis were analyzed to clarify the mechanism of MetS. LSE significantly reduced the HFD/STZ-induced MetS markers better than simvastatin, as demonstrated by hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects. In vitro, LSE improved oleic acid (OA)-triggered phenotypes of MASLD in hepatocyte HepG2 cells by reducing lipid accumulation and enhancing cell viability. This effect might be mediated through proteins involved in lipogenesis that are downregulated by adenosine monophosphate-activated protein kinase (AMPK). In addition, LSE reduced reactive oxygen species (ROS) generation and glycogen levels, as demonstrated by enhancing insulin signaling involving reducing insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation and increasing glycogen synthase kinase 3 beta (GSK3β) and protein kinase B (PKB) expression. These benefits were dependent on AMPK activation, as confirmed by the AMPK inhibitor compound C. These results indicate that LSE exhibits protective effects against MetS-caused toxicological disturbances in hepatic carbohydrate and lipid metabolism, potentially contributing to its efficacy in preventing MASLD or MetS. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Graphical abstract

19 pages, 2409 KB  
Brief Report
Anti-Influenza Activity of 6BIGOE: Improved Pharmacological Profile After Encapsulation in PLGA Nanoparticles
by Josefine Schroeder, Jan Westhoff, Ivan Vilotijević, Oliver Werz, Stephanie Hoeppener, Bettina Löffler, Dagmar Fischer and Christina Ehrhardt
Int. J. Mol. Sci. 2025, 26(9), 4235; https://doi.org/10.3390/ijms26094235 - 29 Apr 2025
Cited by 1 | Viewed by 1295
Abstract
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and [...] Read more.
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and the encapsulation of candidate substances in poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) is intended to improve their bioavailability. This study investigates the potential of the indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE), a glycogen synthase kinase 3 (GSK-3)β inhibitor, for its potential to regulate IAV replication in vitro. The effects of 6BIGOE-loaded PLGA NPs on cell metabolism were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays in A549 and Calu-3 cells. Viral replication and spread were monitored in various IAV-infected cell lines in the absence and presence of free and 6BIGOE-loaded PLGA NPs via plaque assays and Western blot analysis. The encapsulation of 6BIGOE in PLGA NPs resulted in reduced negative side effects on cell viability while maintaining antiviral efficacy. Both encapsulated and free 6BIGOE exhibited antiviral activity, potentially through GSK-3β inhibition and the disruption of key signaling pathways required for viral replication. The data indicate 6BIGOE, particularly after encapsulation in NPs, as a potential candidate for further investigation and development as an antiviral agent to treat IAV infections. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

40 pages, 1048 KB  
Review
Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer’s Disease
by Melinda Urkon, Elek Ferencz, József Attila Szász, Monica Iudita Maria Szabo, Károly Orbán-Kis, Szabolcs Szatmári and Előd Ernő Nagy
Pharmaceuticals 2025, 18(5), 614; https://doi.org/10.3390/ph18050614 - 23 Apr 2025
Cited by 11 | Viewed by 8747
Abstract
In addition to the classically accepted pathophysiological features of Alzheimer’s disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The [...] Read more.
In addition to the classically accepted pathophysiological features of Alzheimer’s disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The present review aims to offer a comprehensive overview of the neuroprotective properties of GLP-1R agonists (GLP-1RAs), with a particular focus on experimental animal models of AD. Ameliorated amyloid-β plaque and neurofibrillary tangle formation and deposition following exenatide, liraglutide, and lixisenatide treatment was confirmed in several models. The GLP-1RAs studied alleviated central insulin resistance, as evidenced by the decreased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and restored downstream phosphoinositide 3-kinase/RAC serine/threonine–protein kinase (PI3K/Akt) signaling. Furthermore, the GLP-1RAs influenced multiple mitogen-activated protein kinases (extracellular signal-regulated kinase: ERK; c-Jun N-terminal kinase: JNK, p38) positively and suppressed glycogen synthase kinase 3 (GSK-3β) hyperactivation. A lower proportion of reactive microglia and astrocytes was associated with better neuronal preservation following their administration. Finally, restoration of cognitive functions, particularly spatial memory, was also observed for semaglutide and dulaglutide. GLP-1RAs, therefore, hold promising disease-modifying potential in the management of AD. Full article
Show Figures

Graphical abstract

15 pages, 2964 KB  
Article
Semisynthetic Flavonoids as GSK-3β Inhibitors: Computational Methods and Enzymatic Assay
by Heberth de Paula, Fernanda Souza, Lara Ferreira, Jéssica A. B. Silva, Rayssa Ribeiro, Juliana Vilachã, Flávio S. Emery, Valdemar Lacerda and Pedro A. B. Morais
Targets 2025, 3(2), 13; https://doi.org/10.3390/targets3020013 - 15 Apr 2025
Cited by 1 | Viewed by 1205
Abstract
Glycogen synthase kinase-3 beta (GSK-3β) plays a crucial role in multiple cellular processes and is implicated in different types of cancers and neurological disorders, including Alzheimer’s disease. Despite extensive efforts to develop novel GSK-3β inhibitors, the discovery of potent and selective lead compounds [...] Read more.
Glycogen synthase kinase-3 beta (GSK-3β) plays a crucial role in multiple cellular processes and is implicated in different types of cancers and neurological disorders, including Alzheimer’s disease. Despite extensive efforts to develop novel GSK-3β inhibitors, the discovery of potent and selective lead compounds remains a challenge. In this study, we evaluated the GSK-3β inhibitory potential of semisynthetic flavonoid derivatives, which exhibited sub-micromolar activity. To gain further insights, we employed molecular docking, molecular dynamics simulations, and pharmacokinetic profile predictions. The docking studies revealed that the most potent inhibitor, compound 10, establishes key interactions with the ATP-binding site. Molecular dynamics simulations further confirmed that compound 10 maintains stable interactions with GSK-3β throughout the simulation. Additionally, pharmacokinetic predictions identified compound 3 as a promising candidate for Alzheimer’s disease therapy due to its ability to cross the blood–brain barrier. These findings suggest that, within the studied flavonoid derivatives, these compounds (particularly 10 and 3) hold potential as lead compounds for GSK-3β inhibition. The combination of strong enzymatic inhibition, stable binding interactions, and favorable pharmacokinetic properties highlights their promise for further development in cancer and neurodegenerative disease research. Full article
Show Figures

Figure 1

20 pages, 4379 KB  
Article
Dual GSK-3β/HDAC Inhibitors Enhance the Efficacy of Macrophages to Control Mycobacterium tuberculosis Infection
by Sadaf Kalsum, Ruilan Xu, Mira Akber, Shengjie Huang, Maria Lerm, Yuqing Chen, Magda Lourda, Yang Zhou and Susanna Brighenti
Biomolecules 2025, 15(4), 550; https://doi.org/10.3390/biom15040550 - 9 Apr 2025
Viewed by 1489
Abstract
Multitarget drug discovery, including host-directed therapy, is particularly promising for tuberculosis (TB) due to the resilience of Mycobacterium tuberculosis (Mtb) as well as the complexity of the host’s immune response. In this proof-of-concept study, we used high-content imaging to test a novel panel [...] Read more.
Multitarget drug discovery, including host-directed therapy, is particularly promising for tuberculosis (TB) due to the resilience of Mycobacterium tuberculosis (Mtb) as well as the complexity of the host’s immune response. In this proof-of-concept study, we used high-content imaging to test a novel panel of dual glycogen synthase kinase 3 beta (GSK-3β) and histone deacetylase (HDAC) 1 and 6 inhibitor candidates for their efficacy in reducing the growth of green fluorescent protein (GFP)-expressing mycobacteria in human primary macrophages. We demonstrate that all ten test compounds, also including the GSK-3β inhibitor SB415286, exhibit an antimycobacterial effect of 20–60% at low micromolar doses and are non-toxic to host cells. Mtb growth showed a positive correlation with the respective 50% inhibitory concentration (IC50) values of GSK-3β, HDAC1, and HDAC6 in each compound, indicating that compounds with a potent IC50 value for HDAC1, in particular, corresponded to higher antimycobacterial activity. Furthermore, the results from multiparametric flow cytometry and a customized multiplex RNA array demonstrated that SB415286 and selected compounds, C02 and C06, could modulate immune polarization and inflammation in Mtb-infected macrophages involving an enhanced expression of CCL2, IL-10 and S100A9, but a decrease in inflammatory mediators including COX-2, TNF-α, and NFκB. These data suggest that GSK-3β inhibition alone can decrease the intracellular growth of mycobacteria and regulate macrophage inflammation, while dual GSK-3β/HDAC inhibitors enhance this efficacy. Accordingly, the tailored design of dual GSK-3β/HDAC inhibitors could represent an innovative approach to host-directed therapy in TB. Full article
(This article belongs to the Special Issue Tuberculosis: Immunopathogenesis and Therapeutic Strategies)
Show Figures

Graphical abstract

11 pages, 5071 KB  
Article
Identification of GSK3 Family Genes in Pear and Their Expression Analysis Under Drought Stress
by Kairan Hu, Ziyi Zhang, Guoliang Li, Shuliang Zhao, Yali Zhang, Qingjiang Wang and Fuhou Cheng
Life 2025, 15(3), 349; https://doi.org/10.3390/life15030349 - 24 Feb 2025
Cited by 4 | Viewed by 995
Abstract
Members of the glycogen synthase kinase 3 (GSK3) family in plants, as a class of serine/threonine protein kinases, have been demonstrated to play crucial roles in a wide range of biological processes and environmental stresses. However, the GSK3 gene family has not been [...] Read more.
Members of the glycogen synthase kinase 3 (GSK3) family in plants, as a class of serine/threonine protein kinases, have been demonstrated to play crucial roles in a wide range of biological processes and environmental stresses. However, the GSK3 gene family has not been analyzed in pears. In this study, 12 GSK3 gene family members were identified in the Pyrus bretschneideri genome. These genes were located on 10 chromosomes and phylogenetically classified into four subfamilies. All 12 PbGSK3 proteins possessed highly conserved domains. The results demonstrated the structural characteristics of all 12 PbGSK3s and the evolutionary processes of their putative proteins. The presence of several cis-acting elements in the promoter region of the PbGSK3s associated with hormonal and stress responses suggested that the PbGSK3s might be involved in the growth and development of pears and in stress response. The expression profiles of PbGSK3s under drought stress were also analyzed. When the pears were subjected to drought stress for different durations, the expression patterns of 12 PbGSK3s exhibited variations. The findings would provide a scientific foundation for further exploration of the potential functions of the GSK3 genes in pears. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

20 pages, 10154 KB  
Article
Integrin-Linked Kinase (ILK) Promotes Mitochondrial Dysfunction by Decreasing CPT1A Expression in a Folic Acid-Based Model of Kidney Disease
by Mariano de la Serna-Soto, Laura Calleros, María Martos-Elvira, Ariadna Moreno-Piedra, Sergio García-Villoria, Mercedes Griera, Elena Alcalde-Estévez, Ana Asenjo-Bueno, Diego Rodríguez-Puyol, Sergio de Frutos and María Piedad Ruiz-Torres
Int. J. Mol. Sci. 2025, 26(5), 1861; https://doi.org/10.3390/ijms26051861 - 21 Feb 2025
Viewed by 1847
Abstract
Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK [...] Read more.
Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK and its downstream regulations in renal damage and mitochondria function both in vivo and vitro, using a folic acid (FA)-induced kidney disease model. Wild type (WT) and ILK conditional-knockdown (cKD-ILK) mice were injected with a single intraperitoneal dose of FA and studied after 15 days of chronic renal damage progression. Human Kidney tubular epithelial cells (HK2) were transfected with specific siRNAs targeting ILK, glycogen synthase kinase 3-β (GSK3β), or CCAAT/enhancer binding protein-β (C/EBPβ). The expressions and activities of renal ILK, GSK3β, C/EBPβ, mitochondrial oxidative phosphorylation enzymes, and mitochondrial membrane potential were assessed. Additionally, the expression of markers for fibrosis fibronectin (FN) and collagen 1 (COL1A1), for autophagy p62 and cytosolic light chain 3 (LC3B) isoforms II and I, and mitochondrial homeostasis marker carnitine palmitoyl-transferase 1A (CPT1A) were evaluated using immunoblotting, RT-qPCR, immunofluorescence, or colorimetric assays. FA upregulated ILK expression, leading to the decrease of GSK3β activity, increased tubular fibrosis, and produced mitochondrial dysfunction, both in vivo and vitro. These alterations were fully or partially reversed upon ILK depletion, mitigating FA-induced renal damage. The signaling axis composed by ILK, GSK3β, and C/EBPβ regulated CPT1A transcription as the limiting factor in the FA-based impaired mitochondrial activity. We highlight ILK as a potential therapeutical target for preserving mitochondrial function in kidney injury. Full article
(This article belongs to the Special Issue Exploring the Molecular Mechanisms of Chronic Kidney Disease)
Show Figures

Figure 1

18 pages, 3727 KB  
Article
The Protective Effect of Nimodipine in Schwann Cells Is Related to the Upregulation of LMO4 and SERCA3 Accompanied by the Fine-Tuning of Intracellular Calcium Levels
by Sandra Leisz, Saskia Fritzsche, Christian Strauss and Christian Scheller
Int. J. Mol. Sci. 2025, 26(2), 864; https://doi.org/10.3390/ijms26020864 - 20 Jan 2025
Cited by 1 | Viewed by 2404
Abstract
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical [...] Read more.
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery. However, the molecular mode of action of nimodipine pre-treatment has not been well investigated. In the present study, using real-time cell death assays, we demonstrated that nimodipine not only reduces cell death induced by osmotic and oxidative stress but also protects cells directly at the time of stress induction in Schwann cells. Nimodipine counteracts stress-induced calcium overload and the overexpression of the Cav1.2 calcium channel. In addition, we found nimodipine-dependent upregulation of sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (SERCA3) and LIM domain only 4 (LMO4) protein. Analysis of anti-apoptotic cell signaling showed an inhibition of the pro-apoptotic protein glycogen synthase kinase 3 beta (GSK3β). Nimodipine-treated Schwann cells exhibited higher levels of phosphorylated GSK3β at serine residue 9 during osmotic and oxidative stress. In conclusion, nimodipine prevents cell death by protecting cells from calcium overload by fine-tuning intracellular calcium signaling and gene expression. Full article
(This article belongs to the Special Issue Calcium Signaling in Health and Diseases)
Show Figures

Figure 1

23 pages, 37713 KB  
Article
Adropin/Tirzepatide Combination Mitigates Cardiac Metabolic Aberrations in a Rat Model of Polycystic Ovarian Syndrome, Implicating the Role of the AKT/GSK3β/NF-κB/NLRP3 Pathway
by Islam Ibrahim Hegab, Hemat El-sayed El-Horany, Rania Nagi Abd-Ellatif, Nahla Anas Nasef, Asmaa H. Okasha, Marwa Nagy Emam, Shereen Hassan, Walaa S. Elseady, Doaa A. Radwan, Rasha Osama ElEsawy, Yasser Mostafa Hafez, Maha Elsayed Hassan, Nouran Mostafa Mansour, Gamaleldien Elsayed Abdelkader, Mohamed H. Fouda, Amira M. Abd El Maged and Hanan M. Abdallah
Int. J. Mol. Sci. 2025, 26(1), 1; https://doi.org/10.3390/ijms26010001 - 24 Dec 2024
Cited by 2 | Viewed by 5532
Abstract
Polycystic ovarian syndrome (PCOS) is a multifaceted metabolic and hormonal disorder in females of reproductive age, frequently associated with cardiac disturbances. This research aimed to explore the protective potential of adropin and/or tirzepatide (Tirze) on cardiometabolic aberrations in the letrozole-induced PCOS model. Female [...] Read more.
Polycystic ovarian syndrome (PCOS) is a multifaceted metabolic and hormonal disorder in females of reproductive age, frequently associated with cardiac disturbances. This research aimed to explore the protective potential of adropin and/or tirzepatide (Tirze) on cardiometabolic aberrations in the letrozole-induced PCOS model. Female Wistar non-pregnant rats were allotted into five groups: CON; PCOS; PCOS + adropin; PCOS + Tirze; and PCOS + adropin+ Tirze. The serum sex hormones, glucose, and lipid profiles were securitized. Cardiac phosphorylated levels of AKT(pAKT), glycogen synthase kinase-3 beta (pGSK-3β), NOD-like receptor family pyrin domain containing 3 (NLPR3), IL-1β and IL-18 were assayed. The cardiac redox status and endoplasmic reticulum stress (ER) parameters including relative glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) gene expressions were detected. Finally, the immunoreactivity of cardiac NF-κB, Bcl2, and BAX were assessed. Our results displayed that adropin and/or Tirze intervention successfully alleviated the PCOS-provoked cardiometabolic derangements with better results recorded for the combination treatment. The synergistic effect of adropin and Tirze is mostly mediated via activating the cardiac Akt, which dampens the GSK3β/NF-κB/NLRP3 signaling pathway, with a sequel of alleviating oxidative damage, inflammatory response, ER stress, and related apoptosis, making them alluring desirable therapeutic targets in PCOS-associated cardiac complications. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 10207 KB  
Article
Neurotrophic Effects of Foeniculum vulgare Ethanol Extracts on Hippocampal Neurons: Role of Anethole in Neurite Outgrowth and Synaptic Development
by Sarmin Ummey Habiba, Ho Jin Choi, Yeasmin Akter Munni, In-Jun Yang, Md. Nazmul Haque and Il Soo Moon
Int. J. Mol. Sci. 2024, 25(23), 12701; https://doi.org/10.3390/ijms252312701 - 26 Nov 2024
Cited by 1 | Viewed by 4310
Abstract
Foeniculum vulgare Mill, commonly known as fennel, is an aromatic herb traditionally used for culinary and medicinal purposes, with potential therapeutic effects on neurological disorders. However, limited research has focused on its neurotrophic impact, particularly on neuronal maturation and synaptic development. This study [...] Read more.
Foeniculum vulgare Mill, commonly known as fennel, is an aromatic herb traditionally used for culinary and medicinal purposes, with potential therapeutic effects on neurological disorders. However, limited research has focused on its neurotrophic impact, particularly on neuronal maturation and synaptic development. This study investigates the neurotrophic effects of F. vulgare ethanol extracts (FVSE) on the maturation of rat primary hippocampal neurons. Results show that FVSE and its prominent component, anethole, significantly promote neurite outgrowth in a dose-dependent manner. Optimal axonal and dendritic growth occurred at concentrations of 40 µg/mL FVSE and 20 µM anethole, respectively, without causing cytotoxicity, underscoring the safety of FVSE for neuronal health. Additionally, FVSE enhances the formation of synapses, essential for neuronal communication. Network pharmacology analysis revealed that FVSE components influence critical neurotrophic pathways, including PI3K-AKT and Alzheimer’s disease pathways. Specifically, FVSE modulates key proteins, including tropomyosin receptor kinase (Trk), glycogen synthase kinase 3 (GSK3βser9), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated protein kinase (Erk1/2). Anethole was found to play a key role in regulating these pathways, which was confirmed by immunocytochemistry experiments demonstrating its effect on promoting neuronal growth and synaptic development. In conclusion, this study highlights the neurotrophic properties of FVSE, with anethole emerging as a critical bioactive compound. These findings provide valuable insights into the therapeutic potential of fennel in treating neurological disorders, offering a basis for future research into interventions promoting neuronal growth and survival. Full article
Show Figures

Figure 1

18 pages, 13191 KB  
Article
Estrogen Enhances FDFT1 Expression in Theca Cells of Chicken Hierarchical Ovarian Follicles by Increasing LSD1Ser54p Level Through GSK3β Phosphorylation at 216th Tyrosine
by Yanhong Zhang, Conghao Zhong, Xinmei Shu, Qingxin Liu and Yunliang Jiang
Biomolecules 2024, 14(11), 1343; https://doi.org/10.3390/biom14111343 - 22 Oct 2024
Cited by 3 | Viewed by 2073
Abstract
The development of chicken ovarian follicles involves two key stages of primordial follicle recruitment and follicle selection that are tightly regulated by multiple reproductive hormones and cytokines. Our previous study revealed an estrogen-stimulated increase in the phosphorylation level of serine at position 54 [...] Read more.
The development of chicken ovarian follicles involves two key stages of primordial follicle recruitment and follicle selection that are tightly regulated by multiple reproductive hormones and cytokines. Our previous study revealed an estrogen-stimulated increase in the phosphorylation level of serine at position 54 of lysine demethylase 1A (LSD1Ser54p) in the theca cells of chicken hierarchical ovarian follicles (Post-TCs). In this study, we further found that the upregulation of LSD1Ser54p by estrogen was performed by glycogen synthase kinase 3 beta (GSK3β) and that GSK3β promoted LSD1Ser54p levels by directly binding to the SWIRM and AOL1 domains of LSD1. Upon estrogen stimulation, the phosphorylation level of tyrosine at position 216 of GSK3β (GSK3βTyr216p) increased, which enhanced the binding between LSD1 and GSK3β. The subsequent transcriptome sequencing on chicken Post-TCs treated with estrogen and CUT&RUN sequencing against the LSD1Ser54p protein revealed that the expression of the farnesyl-diphosphate farnesyltransferase 1 (FDFT1) gene was simultaneously upregulated by estrogen, GSK3β, and LSD1Ser54p. Moreover, the overexpression of FDFT1 further promoted cholesterol biosynthesis in chicken Post-TCs. In short, the findings of this study suggest that estrogen-induced tyrosine phosphorylation at position 216 of GSK3β can upregulate the level of LSD1Ser54p, leading to the activation of FDFT1 expression and subsequently promoting cholesterol biosynthesis in chicken Post-TCs, which may in turn enhance estrogen synthesis. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

14 pages, 1019 KB  
Commentary
Elucidating the Role of Sirtuin 3 in Mammalian Oocyte Aging
by Pawel Kordowitzki
Cells 2024, 13(18), 1592; https://doi.org/10.3390/cells13181592 - 22 Sep 2024
Cited by 7 | Viewed by 2451
Abstract
The field of reproductive biology has made significant progress in recent years, identifying specific molecular players that influence oocyte development and function. Among them, sirtuin 3 (SIRT3) has attracted particular attention for its central role in mediating mitochondrial function and cellular stress responses [...] Read more.
The field of reproductive biology has made significant progress in recent years, identifying specific molecular players that influence oocyte development and function. Among them, sirtuin 3 (SIRT3) has attracted particular attention for its central role in mediating mitochondrial function and cellular stress responses in oocytes. So far, studies have demonstrated that the knockdown of SIRT3 leads to a decrease in blastocyst formation and an increase in oxidative stress within an embryo, underscoring the importance of SIRT3 in maintaining the cellular redox balance critical for embryonic survival and growth. Furthermore, the literature reveals specific signaling pathways, such as the SIRT3- Glycogen synthase kinase-3 beta (GSK3β) deacetylation pathway, crucial for mitigating oxidative stress-related anomalies in oocyte meiosis, particularly under conditions like maternal diabetes. Overall, the emerging role of SIRT3 in regulating oocyte mitochondrial function and development highlights the critical importance of understanding the intricate connections between cellular metabolism, stress response pathways, and overall reproductive health and function. This knowledge could lead to the development of novel strategies to support oocyte quality and fertility, with far-reaching implications for assisted reproductive technologies and women’s healthcare. This commentary aims to provide an overview of the importance of SIRT3 in oocytes by synthesizing results from a multitude of studies. The aim is to elucidate the role of SIRT3 in oocyte development, maturation, and aging and to identify areas where further research is needed. Full article
Show Figures

Figure 1

38 pages, 7020 KB  
Article
Antidiabetic and Antihyperlipidemic Activities and Molecular Mechanisms of Phyllanthus emblica L. Extract in Mice on a High-Fat Diet
by Hsing-Yi Lin, Cheng-Hsiu Lin, Yueh-Hsiung Kuo and Chun-Ching Shih
Curr. Issues Mol. Biol. 2024, 46(9), 10492-10529; https://doi.org/10.3390/cimb46090623 - 20 Sep 2024
Cited by 2 | Viewed by 2864
Abstract
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by [...] Read more.
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by EPE, fenofibrate (Feno), or metformin (Metf) treatment daily for another 4-week HFD in HFD-fed mice. Finally, we harvested blood to analyze some tests on circulating glycemia and blood lipid levels. Western blotting analysis was performed on target gene expressions in peripheral tissues. The present findings indicated that EPE treatment reversed the HFD-induced increases in blood glucose, glycosylated HbA1C, and insulin levels. Our findings proved that treatment with EPE in HFD mice effectively controls hyperglycemia and hyperinsulinemia. Our results showed that EPE reduced blood lipid levels, including a reduction in blood triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA); moreover, EPE reduced blood leptin levels and enhanced adiponectin concentrations. EPE treatment in HFD mice reduced BUN and creatinine in both blood and urine and lowered albumin levels in urine; moreover, EPE decreased circulating concentrations of inflammatory NLR family pyrin domain containing 3 (NLRP3) and kidney injury molecule-1 (KIM-1). These results indicated that EPE displayed antihyperglycemic and antihyperlipidemic activities but alleviated renal dysfunction in HFD mice. The histology examinations indicated that EPE treatment decreased adipose hypertrophy and hepatic ballooning, thus contributing to amelioration of lipid accumulation. EPE treatment decreased visceral fat amounts and led to improved systemic insulin resistance. For target gene expression levels, EPE enhanced AMP-activated protein kinase (AMPK) phosphorylation expressions both in livers and skeletal muscles and elevated the muscular membrane glucose transporter 4 (GLUT4) expressions. Treatment with EPE reduced hepatic glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) expressions to suppress glucose production in the livers and decreased phosphorylation of glycogen synthase kinase 3β (GSK3β) expressions to affect hepatic glycogen synthesis, thus convergently contributing to an antidiabetic effect and improving insulin resistance. The mechanism of the antihyperlipidemic activity of EPE involved a decrease in the hepatic phosphorylation of mammalian target of rapamycin complex C1 (mTORC1) and p70 S6 kinase 1 (S6K1) expressions to improve insulin resistance but also a reduction in hepatic sterol regulatory element binding protein (SREBP)-1c expressions, and suppression of ACC activity, thus resulting in the decreased fatty acid synthesis but elevated hepatic peroxisome proliferator-activated receptor (PPAR) α and SREBP-2 expressions, resulting in lowering TG and TC concentrations. Our results demonstrated that EPE improves insulin resistance and ameliorates hyperlipidemia in HFD mice. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

Back to TopTop