Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = GNSS seismology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15904 KiB  
Article
Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications
by Roland Hohensinn, Raphael Stauffer, Marcus Franz Glaner, Iván Darío Herrera Pinzón, Elie Vuadens, Yara Rossi, John Clinton and Markus Rothacher
Remote Sens. 2022, 14(20), 5100; https://doi.org/10.3390/rs14205100 - 12 Oct 2022
Cited by 36 | Viewed by 8049
Abstract
With the availability of low-cost, mass-market dual-frequency GNSS (Global Navigation Satellite System) receivers, standalone processing methods such as Precise Point Positioning (PPP) are no longer restricted to geodetic-grade GNSS equipment only. However, with cheaper equipment, data quality is expected to degrade. This same [...] Read more.
With the availability of low-cost, mass-market dual-frequency GNSS (Global Navigation Satellite System) receivers, standalone processing methods such as Precise Point Positioning (PPP) are no longer restricted to geodetic-grade GNSS equipment only. However, with cheaper equipment, data quality is expected to degrade. This same principle also affects low-cost GNSS antennas, which usually suffer from poorer multipath mitigation and higher antenna noise compared to their geodetic-grade counterparts. This work assesses the quality of a particular piece of low-cost GNSS equipment for real-time PPP and high-rate dynamic monitoring applications, such as strong-motion seismology. We assembled the u-blox ZED-F9P chip in a small and light-weight data logger. With observational data from static experiments—which are processed under kinematic conditions—we assess the precision and stability of the displacement estimates. We tested the impact of different multi-band antenna types, including geodetic medium-grade helical-type (JAVAD GrAnt-G3T), as well as a low-cost helical (Ardusimple AS-ANT2B-CAL) and a patch-type (u-blox ANN-MB) antenna. Besides static tests for the assessment of displacement precision, strong-motion dynamic ground movements are simulated with a robot arm. For cross-validation, we collected measurements with a JAVAD SIGMA G3T geodetic-grade receiver. In terms of precision, we cross-compare the results of three different dual-frequency, real-time PPP solutions: (1) an ambiguity-float solution using the Centre National d’Études Spatiales (CNES) open-source software, (2) an ambiguity-float and an AR (ambiguity-resolved) solution using the raPPPid software from TU Vienna, and (3) and a PPP-RTK solution using the u-blox PointPerfect positioning service. We show that, even with low-cost GNSS equipment, it is possible to obtain a precision of one centimeter. We conclude that these devices provide an excellent basis for the densification of existing GNSS monitoring networks, as needed for strong-motion seismology and earthquake-early-warning. Full article
Show Figures

Figure 1

20 pages, 10860 KiB  
Article
Keyboard Model of Seismic Cycle of Great Earthquakes in Subduction Zones: Simulation Results and Further Generalization
by Leopold I. Lobkovsky, Irina S. Vladimirova, Yurii V. Gabsatarov and Dmitry A. Alekseev
Appl. Sci. 2021, 11(19), 9350; https://doi.org/10.3390/app11199350 - 8 Oct 2021
Cited by 4 | Viewed by 2552
Abstract
Catastrophic megaearthquakes (M > 8) occurring in the subduction zones are among the most devastating hazards on the planet. In this paper we discuss the seismic cycles of the megathrust earthquakes and propose a blockwise geomechanical model explaining certain features of the stress-deformation [...] Read more.
Catastrophic megaearthquakes (M > 8) occurring in the subduction zones are among the most devastating hazards on the planet. In this paper we discuss the seismic cycles of the megathrust earthquakes and propose a blockwise geomechanical model explaining certain features of the stress-deformation cycle revealed in recent decades from seismological and satellite geodesy (GNSS) observations. Starting with an overview of the so-called keyboard model of the seismic cycle by L. Lobkovsky, we outline mathematical formalism describing the motion of seismogenic block system assuming viscous rheology beneath and between the neighboring elastic blocks sitting on top of the subducting slab. By summarizing the GNSS-based evidence from our previous studies concerning the transient motions associated with the 2006–2007 Simushir earthquakes, 2010 Maule earthquake, and 2011 Tohoku earthquake, we demonstrate that those data support the keyboard model and reveal specific effect of the postseismic oceanward motion. However, since the seismogenic blocks in subduction systems are mostly located offshore, the direct analysis of GNSS-measured displacements and velocities is hardly possible in terms of the original keyboard model. Hence, the generalized two-segment keyboard model is introduced, containing both frontal offshore blocks and rear onshore blocks, which allows for direct interpretation of the onshore-collected GNSS data. We present a numerical computation scheme and a series of simulated data, which exhibits the consistency with measured motions and enables estimating the seismic cycle characteristics, important for the long-term earthquake forecasting. Full article
(This article belongs to the Collection Geoinformatics and Data Mining in Earth Sciences)
Show Figures

Figure 1

20 pages, 17698 KiB  
Article
Combined Geodetic and Seismological Study of the December 2020 Mw = 4.6 Thiva (Central Greece) Shallow Earthquake
by Panagiotis Elias, Ioannis Spingos, George Kaviris, Andreas Karavias, Theodoros Gatsios, Vassilis Sakkas and Issaak Parcharidis
Appl. Sci. 2021, 11(13), 5947; https://doi.org/10.3390/app11135947 - 26 Jun 2021
Cited by 10 | Viewed by 3430
Abstract
On 2 December 2020, a moderate and shallow Mw = 4.6 earthquake occurred in Boeotia (Central Greece) near the city of Thiva. Despite its magnitude, the co-seismic ground deformation field was detectable and measurable by Sentinel-1, ascending and descending, synthetic aperture interferometry [...] Read more.
On 2 December 2020, a moderate and shallow Mw = 4.6 earthquake occurred in Boeotia (Central Greece) near the city of Thiva. Despite its magnitude, the co-seismic ground deformation field was detectable and measurable by Sentinel-1, ascending and descending, synthetic aperture interferometry radar (InSAR) acquisitions. The closest available GNSS station to the epicenter, located 11 km west, measured no deformation, as expected. We proceeded to the inversion of the deformation source. Moreover, we reassessed seismological data to identify the activated zone, associated with the mainshock and the aftershock sequence. Additionally, we used the rupture plane information from InSAR to better determine the focal mechanism and the centroid location of the mainshock. We observed that the mainshock occurred at a shallower depth and the rupture then expanded downdip, as revealed by the aftershock distribution. Our geodetic inversion modelling indicated the activation of a normal fault with a small left-lateral component, length of 2.0 km, width of 1.7 km, average slip of 0.2 m, a low dip angle of 33°, and a SW dip-direction. The inferred fault top was buried at a depth of ~0.5 km, rooted at a depth of ~1.4 km, with its geodetic centroid buried at 1.0 km. It was aligned with the Kallithea fault. In addition, the dip-up projection of the modeled fault to the surface was located very close (~0.4 km SW) to the mapped (by existing geological observations) trace of the Kallithea fault. The ruptured area was settled in a transition zone. We suggest the installation of at least one GNSS and seismological station near Kallithea; as the activated zone (inferred by the aftershock sequence and InSAR results) could yield events with M ≥ 5.0, according to empirical laws relating to rupture zone dimensions and earthquake magnitude. Full article
Show Figures

Figure 1

15 pages, 1645 KiB  
Article
An Innovative Approach to Accuracy of Co-Seismic Surface Displacement Detection Using Satellite GNSS Technology
by Hana Staňková, Jakub Kostelecký and Miroslav Novosad
Appl. Sci. 2021, 11(6), 2800; https://doi.org/10.3390/app11062800 - 21 Mar 2021
Cited by 1 | Viewed by 2178
Abstract
This paper discusses a new method for determining co-seismic displacement using the Global Navigation Satellite System (GNSS) for the precise detection of positional changes at permanent stations after an earthquake. Positioning by the Precise Point Positioning (PPP) method is undertaken using data from [...] Read more.
This paper discusses a new method for determining co-seismic displacement using the Global Navigation Satellite System (GNSS) for the precise detection of positional changes at permanent stations after an earthquake. Positioning by the Precise Point Positioning (PPP) method is undertaken using data from the GNSS satellites and one designated station. A time series is processed by an anharmonic analysis before and after an earthquake and these one-day solutions increase the accuracy of measurements. The co-seismic static displacement can be precisely detected from the analysed time series before and after the earthquake, which can be used for the verification of seismic models. Reliability of the estimation of the size of the co-seismic offset is given by the mean square error (RMSE) of the shift. In this study, RMSE was determined by two approaches, initially from variances within PPP processing, and secondly when no positional change from the GNSS before or after the earthquake was assumed. The variance of the data in the time series gives a more realistic estimate of RMSE. This dual approach can affect seismological interpretation due to the need for the interpreting geophysicists to determine which case of co-seismic displacement is more probable for any given locality. The second approach has been shown to provide a more realistic co-seismic displacement accuracy in this study. Full article
(This article belongs to the Special Issue Analyses in Geomatics: Processing Spatial Data on History and Today)
Show Figures

Figure 1

22 pages, 11686 KiB  
Article
Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Tracking
by Yara Rossi, Konstantinos Tatsis, Mudathir Awadaljeed, Konstantin Arbogast, Eleni Chatzi, Markus Rothacher and John Clinton
Sensors 2021, 21(4), 1543; https://doi.org/10.3390/s21041543 - 23 Feb 2021
Cited by 11 | Viewed by 4640
Abstract
The ground motion of an earthquake or the ambient motion of a large engineered structure not only has translational motion, but it also includes rotation around all three axes. No current sensor can record all six components, while the fusion of individual instruments [...] Read more.
The ground motion of an earthquake or the ambient motion of a large engineered structure not only has translational motion, but it also includes rotation around all three axes. No current sensor can record all six components, while the fusion of individual instruments that could provide such recordings, such as accelerometers or Global Navigation Satellite System (GNSS) receivers, and rotational sensors, is non-trivial. We propose achieving such a fusion via a six-component (6C) Kalman filter (KF) that is suitable for structural monitoring applications, as well as earthquake monitoring. In order to develop and validate this methodology, we have set up an experimental case study, relying on the use of an industrial six-axis robot arm, on which the instruments are mounted. The robot simulates the structural motion resulting atop a wind-excited wind turbine tower. The quality of the 6C KF reconstruction is assessed by comparing the estimated response to the feedback system of the robot, which performed the experiments. The fusion of rotational information yields significant improvement for both the acceleration recordings but also the GNSS positions, as evidenced via the substantial reduction of the RMSE, expressed as the difference between the KF predictions and robot feedback. This work puts forth, for the first time, a KF-based fusion for all six motion components, validated against a high-precision ground truth measurement. The proposed filter formulation is able to exploit the strengths of each instrument and recover more precise motion estimates that can be exploited for multiple purposes. Full article
(This article belongs to the Special Issue Rotation Rate Sensors and Their Applications)
Show Figures

Figure 1

27 pages, 9305 KiB  
Article
Characteristics of Recent Aftershocks Sequences (2014, 2015, 2018) Derived from New Seismological and Geodetic Data on the Ionian Islands, Greece
by Alexandra Moshou, Panagiotis Argyrakis, Antonios Konstantaras, Anna-Christina Daverona and Nikos C. Sagias
Data 2021, 6(2), 8; https://doi.org/10.3390/data6020008 - 20 Jan 2021
Cited by 3 | Viewed by 3764
Abstract
In 2014–2018, four strong earthquakes occurred in the Ionian Sea, Greece. After these events, a rich aftershock sequence followed. More analytically, according to the manual solutions of the National Observatory of Athens, the first event occurred on 26 January 2014 in Cephalonia Island [...] Read more.
In 2014–2018, four strong earthquakes occurred in the Ionian Sea, Greece. After these events, a rich aftershock sequence followed. More analytically, according to the manual solutions of the National Observatory of Athens, the first event occurred on 26 January 2014 in Cephalonia Island with magnitude ML = 5.8, followed by another in the same region on 3 February 2014 with magnitude ML = 5.7. The third event occurred on 17 November 2015, ML = 6.0 in Lefkas Island and the last on 25 October 2018, ML = 6.6 in Zakynthos Island. The first three of these earthquakes caused moderate structural damages, mainly in houses and produced particular unrest to the local population. This work determines a seismic moment tensor for both large and intermediate magnitude earthquakes (M > 4.0). Geodetic data from permanent GPS stations were analyzed to investigate the displacement due to the earthquakes. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

23 pages, 11845 KiB  
Article
Copernicus Sentinel-1 MT-InSAR, GNSS and Seismic Monitoring of Deformation Patterns and Trends at the Methana Volcano, Greece
by Theodoros Gatsios, Francesca Cigna, Deodato Tapete, Vassilis Sakkas, Kyriaki Pavlou and Issaak Parcharidis
Appl. Sci. 2020, 10(18), 6445; https://doi.org/10.3390/app10186445 - 16 Sep 2020
Cited by 24 | Viewed by 4990
Abstract
The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the [...] Read more.
The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is therefore crucial to characterize any activity at the volcano that could impact the local population. This study aims to detect surface deformation in the whole Methana peninsula based on a long stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR) processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method, involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula. Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a complex displacement pattern across the volcano edifice, including local-scale land surface processes. In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend. Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of deformation processes and their temporal evolution over the last years for Methana, thus providing initial information to feed into the volcano baseline hazard assessment and monitoring system. Full article
(This article belongs to the Special Issue Data Processing and Modeling on Volcanic and Seismic Areas)
Show Figures

Figure 1

13 pages, 3374 KiB  
Letter
Combined Study of a Significant Mine Collapse Based on Seismological and Geodetic Data—29 January 2019, Rudna Mine, Poland
by Maya Ilieva, Łukasz Rudziński, Kamila Pawłuszek-Filipiak, Grzegorz Lizurek, Iwona Kudłacik, Damian Tondaś and Dorota Olszewska
Remote Sens. 2020, 12(10), 1570; https://doi.org/10.3390/rs12101570 - 15 May 2020
Cited by 27 | Viewed by 4470
Abstract
On 29 January 2019, the collapse of a mine roof resulted in a significant surface deformation and generated a tremor with a magnitude of 4.6 in Rudna Mine, Poland. This study combines the seismological and geodetic monitoring of the event. Data from local [...] Read more.
On 29 January 2019, the collapse of a mine roof resulted in a significant surface deformation and generated a tremor with a magnitude of 4.6 in Rudna Mine, Poland. This study combines the seismological and geodetic monitoring of the event. Data from local and regional seismological networks were used to estimate the mechanism of the source and the ground motion caused by the earthquake. Global Navigation Satellite System data, collected at 10 Hz, and processed as a long-term time-series of daily coordinates solutions and short-term high frequency oscillations, are in good agreement with the seismological outputs, having detected several more tremors. The range and dynamics of the deformed surface area were monitored using satellite radar techniques for slow and fast motion detection. The radar data revealed that a 2-km2 area was affected in the six days after the collapse and that there was an increase in the post-event rate of subsidence. Full article
(This article belongs to the Special Issue Remote Sensing in Applied Geophysics)
Show Figures

Graphical abstract

16 pages, 11055 KiB  
Article
Seismo-Deformation Anomalies Associated with the M6.1 Ludian Earthquake on August 3, 2014
by Chieh-Hung Chen, Xiaoning Su, Kai-Chien Cheng, Guojie Meng, Strong Wen and Peng Han
Remote Sens. 2020, 12(7), 1067; https://doi.org/10.3390/rs12071067 - 26 Mar 2020
Cited by 12 | Viewed by 2840
Abstract
A time-frequency method retrieving the acceleration changes in the terminal stage of the
M6.1 Ludian earthquake in China is discussed in this article. The non-linear, non-stationary
seismo-demformation was obtained by using the Hilbert–Huang transform and followed by a
band-pass filter. We found that [...] Read more.
A time-frequency method retrieving the acceleration changes in the terminal stage of the
M6.1 Ludian earthquake in China is discussed in this article. The non-linear, non-stationary
seismo-demformation was obtained by using the Hilbert–Huang transform and followed by a
band-pass filter. We found that the temporal evolution of the residual GNSS-derived orientation
exhibits a unique disorder-alignment-disorder sequence days before the earthquake which
corresponds well with the four stages of an earthquake: elastic strain buildup, crack developments,
deformation, and the terminal stage of material failure. The disordering orientations are gradually
aligned with a common direction a few days before the terminal stage. This common direction is
consistent with the most compressive axis derived from the seismological method. In addition, the
region of the stress accumulation, as identified by the size of the disordered orientation, is
generally consistent with the earthquake preparation zones estimated by using numerical models. Full article
(This article belongs to the Special Issue GNSS Seismology)
Show Figures

Graphical abstract

14 pages, 6125 KiB  
Technical Note
High-Rate Monitoring of Satellite Clocks Using Two Methods of Averaging Time
by Kamil Maciuk and Paulina Lewińska
Remote Sens. 2019, 11(23), 2754; https://doi.org/10.3390/rs11232754 - 22 Nov 2019
Cited by 18 | Viewed by 4311
Abstract
Knowledge of the global navigation satellite system (GNSS) satellite clock error is crucial in real-time precise point positioning (PPP), seismology, and many other high-rate GNSS applications. In this work, the authors show the characterisation of the atomic GNSS clock’s stability and its dependency [...] Read more.
Knowledge of the global navigation satellite system (GNSS) satellite clock error is crucial in real-time precise point positioning (PPP), seismology, and many other high-rate GNSS applications. In this work, the authors show the characterisation of the atomic GNSS clock’s stability and its dependency on the adopted orbit type using Allan deviation with two methods of averaging time. Four International GNSS Service (IGS) orbit types were used: broadcast, ultra-rapid, rapid and final orbit. The calculations were made using high-rate 1 Hz observations from the IGS stations equipped with external clocks (oscillators). The most stable receiver oscillator was chosen as a reference clock. The results show the advantage of the newest GPS satellite block with respect to the other satellites. Significant differences in the results based on the orbit type used have not been recorded. Many averaging time methods used in Allan deviation (ADEV) show the clock’s fluctuations, usually smoothed in 2n s averaging times. Full article
Show Figures

Graphical abstract

13 pages, 3009 KiB  
Letter
Real-Time Geophysical Applications with Android GNSS Raw Measurements
by Marco Fortunato, Michela Ravanelli and Augusto Mazzoni
Remote Sens. 2019, 11(18), 2113; https://doi.org/10.3390/rs11182113 - 11 Sep 2019
Cited by 37 | Viewed by 7229
Abstract
The number of Android devices enabling access to raw GNSS (Global Navigation Satellite System) measurements is rapidly increasing, thanks to the dedicated Google APIs. In this study, the Xiaomi Mi8, the first GNSS dual-frequency smartphone embedded with the Broadcom BCM47755 GNSS chipset, was [...] Read more.
The number of Android devices enabling access to raw GNSS (Global Navigation Satellite System) measurements is rapidly increasing, thanks to the dedicated Google APIs. In this study, the Xiaomi Mi8, the first GNSS dual-frequency smartphone embedded with the Broadcom BCM47755 GNSS chipset, was employed by leveraging the features of L5/E5a observations in addition to the traditional L1/E1 observations. The aim of this paper is to present two different smartphone applications in Geoscience, both based on the variometric approach and able to work in real time. In particular, tests using both VADASE (Variometric Approach for Displacement Analysis Stand-alone Engine) to retrieve the 3D velocity of a stand-alone receiver in real-time, and VARION (Variometric Approach for Real-Time Ionosphere Observations) algorithms, able to reconstruct real-time sTEC (slant total electron content) variations, were carried out. The results demonstrate the contribution that mass-market devices can offer to the geosciences. In detail, the noise level obtained with VADASE in a static scenario—few mm/s for the horizontal components and around 1 cm/s for the vertical component—underlines the possibility, confirmed from kinematic tests, of detecting fast movements such as periodic oscillations caused by earthquakes. VARION results indicate that the noise level can be brought back to that of geodetic receivers, making the Xiaomi Mi8 suitable for real-time ionosphere monitoring. Full article
Show Figures

Graphical abstract

13 pages, 1520 KiB  
Article
Stand-Alone GNSS Sensors as Velocity Seismometers: Real-Time Monitoring and Earthquake Detection
by Roland Hohensinn and Alain Geiger
Sensors 2018, 18(11), 3712; https://doi.org/10.3390/s18113712 - 31 Oct 2018
Cited by 16 | Viewed by 4636
Abstract
By means of the time derivatives of Global Navigation Satellite System (GNSS) carrier-phase measurements, the instantaneous velocity of a stand-alone, single GNSS receiver can be estimated with a high precision of a few mm/s; it is feasible to even obtain the level of [...] Read more.
By means of the time derivatives of Global Navigation Satellite System (GNSS) carrier-phase measurements, the instantaneous velocity of a stand-alone, single GNSS receiver can be estimated with a high precision of a few mm/s; it is feasible to even obtain the level of tenths of mm/s. Therefore, only data from the satellite navigation message are needed, thus discarding any data from a reference network. Combining this method with an efficient movement-detection algorithm opens some interesting applications for geohazard monitoring; an example is the detection of strong earthquakes. This capability is demonstrated for a case study of the 6.5 Mw earthquake of October 30, 2016, near the city of Norcia in Italy; in that region, there are densely deployed GNSS stations. It is shown that GNSS sensors can detect seismic compressional (P) waves, which are the first to arrive at a measurement station. These findings are substantiated by a comparison with data of strong-motion (SM) seismometers. Furthermore, it is shown that the GNSS-only hypocenter localization comes close (less than a kilometer) to the solutions provided by official seismic services. Finally, we conclude that this method can provide important contributions to a real-time geohazard early-warning system. Full article
(This article belongs to the Special Issue High-Precision GNSS in Remote Sensing Applications)
Show Figures

Figure 1

20 pages, 8359 KiB  
Article
VADASE Reliability and Accuracy of Real-Time Displacement Estimation: Application to the Central Italy 2016 Earthquakes
by Francesca Fratarcangeli, Giorgio Savastano, Maria Chiara D’Achille, Augusto Mazzoni, Mattia Crespi, Federica Riguzzi, Roberto Devoti and Grazia Pietrantonio
Remote Sens. 2018, 10(8), 1201; https://doi.org/10.3390/rs10081201 - 31 Jul 2018
Cited by 31 | Viewed by 5367
Abstract
The goal of this article is the illustration of the new functionalities of the VADASE (Variometric Approach for Displacements Analysis Stand-alone Engine) processing approach. VADASE was presented in previous works as an approach able to estimate in real time the velocities and displacements [...] Read more.
The goal of this article is the illustration of the new functionalities of the VADASE (Variometric Approach for Displacements Analysis Stand-alone Engine) processing approach. VADASE was presented in previous works as an approach able to estimate in real time the velocities and displacements in a global reference frame (ITRF), using high-rate (1 Hz or more) carrier phase observations and broadcast products (orbits, clocks) collected by a stand-alone GNSS receiver, achieving a displacements accuracy within 1–2 cm (usually better) over intervals up to a few minutes. It has been well known since the very first implementation and testing of VADASE that the estimated displacements might be impacted by two different effects: spurious spikes in the velocities due to outliers (consequently, displacements, obtained through velocities integration, are severely corrupted) and trends in the displacements time series, mainly due to broadcast orbit and clock errors. Two strategies are herein introduced, respectively based on Leave-One-Out cross-validation (VADASE-LOO) for a receiver autonomous outlier detection, and on a network augmentation strategy to filter common trends out (A-VADASE); they are combined (first, VADASE-LOO; second, A-VADASE) for a complete solution. Moreover, starting from this VADASE improved solution, an additional strategy is proposed to estimate in real time the overall coseismic displacement occurring at each GNSS receiver. New VADASE advances are successfully applied to the GPS data collected during the recent three strong earthquakes that occurred in Central Italy on 24 August and 26 and 30 October 2016, and the results are herein presented and discussed. The VADASE real-time estimated coseismic displacements are compared to the static ones derived from the daily solutions obtained within the standard post-processing procedure by the Istituto Nazionale di Geofisica e Vulcanologia. Full article
(This article belongs to the Special Issue Environmental Research with Global Navigation Satellite System (GNSS))
Show Figures

Figure 1

18 pages, 92901 KiB  
Article
Focal Mechanisms of the 2016 Central Italy Earthquake Sequence Inferred from High-Rate GPS and Broadband Seismic Waveforms
by Shuhan Zhong, Caijun Xu, Lei Yi and Yanyan Li
Remote Sens. 2018, 10(4), 512; https://doi.org/10.3390/rs10040512 - 25 Mar 2018
Cited by 18 | Viewed by 7014
Abstract
Numerous shallow earthquakes, including a multitude of small shocks and three moderate mainshocks, i.e., the Amatrice earthquake on 24 August, the Visso earthquake on 26 October and the Norcia earthquake on 30 October, occurred throughout central Italy in late 2016 and resulted in [...] Read more.
Numerous shallow earthquakes, including a multitude of small shocks and three moderate mainshocks, i.e., the Amatrice earthquake on 24 August, the Visso earthquake on 26 October and the Norcia earthquake on 30 October, occurred throughout central Italy in late 2016 and resulted in many casualties and property losses. The three mainshocks were successfully recorded by high-rate Global Positioning System (GPS) receivers located near the epicenters, while the broadband seismograms in this area were mostly clipped due to the strong shaking. We retrieved the dynamic displacements from these high-rate GPS records using kinematic precise point positioning analysis. The focal mechanisms of the three mainshocks were estimated both individually and jointly using high-rate GPS waveforms in a very small epicentral distance range (<100 km) and unclipped regional broadband waveforms (100~600 km). The results show that the moment magnitudes of the Amatrice, Visso, and Norcia events are Mw 6.1, Mw 5.9, and Mw 6.5, respectively. Their focal mechanisms are dominated by normal faulting, which is consistent with the local tectonic environment. The moment tensor solution for the Norcia earthquake demonstrates a significant non-double-couple component, which suggests that the faulting interface is complicated. Sparse network tests were conducted to retrieve stable focal mechanisms using a limited number of GPS records. Our results confirm that high-rate GPS waveforms can act as a complement to clipped near-field long-period seismic waveform signals caused by the strong motion and can effectively constrain the focal mechanisms of moderate- to large-magnitude earthquakes. Thus, high-rate GPS observations extremely close to the epicenter can be utilized to rapidly obtain focal mechanisms, which is critical for earthquake emergency response operations. Full article
Show Figures

Graphical abstract

22 pages, 6196 KiB  
Article
Stochastic Models of Very High-Rate (50 Hz) GPS/BeiDou Code and Phase Observations
by Yuanming Shu, Rongxin Fang and Jingnan Liu
Remote Sens. 2017, 9(11), 1188; https://doi.org/10.3390/rs9111188 - 21 Nov 2017
Cited by 10 | Viewed by 4913
Abstract
In recent years, very high-rate (10–50 Hz) Global Navigation Satellite System (GNSS) has gained a rapid development and has been widely applied in seismology, natural hazard early warning system and structural monitoring. However, existing studies on stochastic models of GNSS observations are limited [...] Read more.
In recent years, very high-rate (10–50 Hz) Global Navigation Satellite System (GNSS) has gained a rapid development and has been widely applied in seismology, natural hazard early warning system and structural monitoring. However, existing studies on stochastic models of GNSS observations are limited to sampling rates not higher than 1 Hz. To support very high-rate GNSS applications, we assess the precisions, cross correlations and time correlations of very high-rate (50 Hz) Global Positioning System (GPS)/BeiDou code and phase observations. The method of least-squares variance component estimation is applied with the geometry-based functional model using the GNSS single-differenced observations. The real-data experimental results show that the precisions are elevation-dependent at satellite elevation angles below 40° and nearly constant at satellite elevation angles above 40°. The precisions of undifferenced observations are presented, exhibiting different patterns for different observation types and satellites, especially for BeiDou because different types of satellites are involved. GPS and BeiDou have comparable precisions at high satellite elevation angles, reaching 0.91–1.26 mm and 0.13–0.17 m for phase and code, respectively, while, at low satellite elevation angles, GPS precisions are generally lower than BeiDou ones. The cross correlation between dual-frequency phase is very significant, with the coefficients of 0.773 and 0.927 for GPS and BeiDou, respectively. The cross correlation between dual-frequency code is much less significant, and no correlation can be found between phase and code. Time correlations exist for GPS/BeiDou phase and code at time lags within 1 s. At very small time lags of 0.02–0.12 s, time correlations of 0.041–0.293 and 0.858–0.945 can be observed for phase and code observations, respectively, indicating that the correlations in time should be taken into account in very high-rate applications. Full article
Show Figures

Graphical abstract

Back to TopTop