Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = GLA-SE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2715 KiB  
Article
The Sm14+GLA-SE Recombinant Vaccine Against Schistosoma mansoni and S. haematobium in Adults and School Children: Phase II Clinical Trials in West Africa
by Amadou Tidjani Ly, Doudou Diop, Modou Diop, Anne-Marie Schacht, Abdoulaye Mbengue, Rokhaya Diagne, Marieme Guisse, Jean-Pierre Dompnier, Carolina Messias, Rhea N. Coler, Celso R. Ramos, Jacques-Noël Tendeng, Seynabou Ndiaye, Miryam Marroquin-Quelopana, Juçara de Carvalho Parra, Tatiane dos Santos, Marília Sirianni dos Santos Almeida, Daniella Arêas Mendes-da-Cruz, Steven Reed, Wilson Savino, Gilles Riveau and Miriam Tendleradd Show full author list remove Hide full author list
Vaccines 2025, 13(3), 316; https://doi.org/10.3390/vaccines13030316 - 16 Mar 2025
Viewed by 1336
Abstract
Background/Objectives: Following previous successful Phase I clinical trials conducted in men and women in a non-endemic area for schistosomiasis in Brazil, the Sm14 vaccine was evaluated in an endemic region in Senegal. We report successful clinical trials in adults (Phase IIa) and school [...] Read more.
Background/Objectives: Following previous successful Phase I clinical trials conducted in men and women in a non-endemic area for schistosomiasis in Brazil, the Sm14 vaccine was evaluated in an endemic region in Senegal. We report successful clinical trials in adults (Phase IIa) and school children (Phase IIb), respectively, of a Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) vaccine + a glucopyranosyl lipid A (GLA-SE) adjuvant. Methods: Participants were evaluated based on clinical assessments, laboratory tests (including hematologic and biochemical analyses of renal and hepatic functions), and immunological parameters (humoral and cellular responses) up to 12 months after the first vaccination dose in the Phase IIa trial and after 120 days in the Phase IIb trial. Results: The results showed strong immunogenic responses and good tolerance in both adults and children, with no major adverse effects. Importantly, significant increases in Sm14-specific total IgG (IgG1 and IgG3) were observed as early as 30 days after the first vaccination, with high titres remaining at least 120 days afterwards. Sm14-specific total IgG serum levels were also significantly enhanced in adults and in both infected and non-infected, vaccinated children and elicited robust cytokine responses with increased TNFα, IFN-γ, and IL-2 profiles. Conclusions: Overall, the Sm14+GLA-SE vaccine is safe and highly immunogenic, with a clearly protective potential against schistosomiasis, supporting progression to the next Phase III clinical trials. Full article
(This article belongs to the Special Issue The Development of Vaccine Against Parasite Infection)
Show Figures

Figure 1

25 pages, 4460 KiB  
Article
A Pentavalent HIV-1 Subtype C Vaccine Containing Computationally Selected gp120 Strains Improves the Breadth of V1V2 Region Responses
by Xiaoying Shen, Bette Korber, Rachel L. Spreng, Sheetal S. Sawant, Allan deCamp, Arthur S. McMillan, Ryan Mathura, Susan Zolla-Pazner, Abraham Pinter, Robert Parks, Cindy Bowman, Laura Sutherland, Richard Scearce, Nicole L. Yates, David C. Montefiori, Barton F. Haynes and Georgia D. Tomaras
Vaccines 2025, 13(2), 133; https://doi.org/10.3390/vaccines13020133 - 28 Jan 2025
Cited by 2 | Viewed by 1579
Abstract
Background: HIV-1 envelope (Env) variable loops 1 and 2 (V1V2) directed non-neutralizing antibodies were a correlate of decreased transmission risk in the RV144 vaccine trial. Thus, the elicitation and breadth of antibody responses against the V1V2 of HIV-1 Env are important considerations for [...] Read more.
Background: HIV-1 envelope (Env) variable loops 1 and 2 (V1V2) directed non-neutralizing antibodies were a correlate of decreased transmission risk in the RV144 vaccine trial. Thus, the elicitation and breadth of antibody responses against the V1V2 of HIV-1 Env are important considerations for HIV-1 vaccine candidates. The V1V2 region’s highly variable nature and the extensive diversity of subtype C HIV-1 Envelopes (Envs) make the V1V2 response breadth a high priority for HIV-1 vaccine regimens aiming for V1V2-mediated protection in Southern Africa. Here, we determined whether the breadth of the anti-V1V2 vaccine response can be broadened by including HIV-1 Env strains computationally designed to enhance the coverage of subtype C V1V2 sequence diversity. Methods: Three subtype C Env strains were selected to maximize antibody binding coverage while complementing subtype C vaccine gp120s that were given in human clinical trials in South Africa, as well as to improve epitope accessibility. Humoral immunogenicity of a novel trivalent gp120 vaccine immunogen, a bivalent gp120 boost already in clinical trials (1086C and TV1), and a pentavalent (all five gp120s combined) were evaluated in a preclinical immunization study in guinea pigs. The pentavalent combination was further evaluated with alum versus glucopyranosyl lipid adjuvants formulated in squalene-in-water emulsion (GLA-SE) adjuvants in non-human primates. The breadth of the anti-V1V2 response was assessed using an array of cross-subtype variable loops 1&2 (V1V2) scaffold proteins and linear V2 peptides. Results: The breadth of the IgG response against V1V2 antigens of the trivalent and pentavalent groups was comparable, and both were greater than the breadth of the bivalent group. Linear epitope mapping showed that two linear epitopes in V2 were targeted by the vaccinated animals: the V2 hotspot focused at 169K that potentially correlated with decreased HIV-1 risk in RV144 and the V2.2 site (179LDV/I181) that is part of the integrin α4β7 binding site. The bivalent vaccine elicited a significantly higher magnitude of binding to the V2 hotspot compared to the trivalent vaccine whereas the trivalent vaccine elicited significantly higher binding to the V2.2 epitope compared to the bivalent vaccine, while the pentavalent recognized both regions. Conclusions: These results demonstrate that the three new computationally selected subtype C Envs successfully complemented 1086C and TV1 for broader V1V2 antibody responses, and, in concert with adjuvants that stimulate V1V2 responses, can be considered as part of a rationale immunogen design to improve V1V2 IgG coverage in future vaccine trials in South Africa. Full article
(This article belongs to the Special Issue Advances in HIV Vaccine Development)
Show Figures

Figure 1

20 pages, 5531 KiB  
Article
IgG Subclass Switch in Volunteers Repeatedly Immunized with the Full-Length Plasmodium falciparum Merozoite Surface Protein 1 (MSP1)
by Veronika Rathay, Kristin Fürle, Viktoria Kiehl, Anne Ulmer, Michael Lanzer and Richard Thomson-Luque
Vaccines 2024, 12(2), 208; https://doi.org/10.3390/vaccines12020208 - 17 Feb 2024
Viewed by 6611
Abstract
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length [...] Read more.
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field. Full article
Show Figures

Figure 1

18 pages, 4446 KiB  
Article
CD4+ T Cell Responses to Toxoplasma gondii Are a Double-Edged Sword
by Kamal El Bissati, Paulette A. Krishack, Ying Zhou, Christopher R. Weber, Joseph Lykins, Dragana Jankovic, Karen L. Edelblum, Laura Fraczek, Harshita Grover, Aziz A. Chentoufi, Gurminder Singh, Catherine Reardon, J. P. Dubey, Steve Reed, Jeff Alexander, John Sidney, Alessandro Sette, Nilabh Shastri and Rima McLeod
Vaccines 2023, 11(9), 1485; https://doi.org/10.3390/vaccines11091485 - 14 Sep 2023
Cited by 1 | Viewed by 2629
Abstract
CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found [...] Read more.
CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep. Full article
(This article belongs to the Special Issue Cellular Immune Responses to Infectious Diseases)
Show Figures

Figure 1

21 pages, 7373 KiB  
Article
Novel Adjuvant S-540956 Targets Lymph Nodes and Reduces Genital Recurrences and Vaginal Shedding of HSV-2 DNA When Administered with HSV-2 Glycoprotein D as a Therapeutic Vaccine in Guinea Pigs
by Sita Awasthi, Motoyasu Onishi, John M. Lubinski, Bernard T. Fowler, Alexis M. Naughton, Lauren M. Hook, Kevin P. Egan, Masaki Hagiwara, Seiki Shirai, Akiho Sakai, Takayuki Nakagawa, Kumiko Goto, Osamu Yoshida, Alisa J. Stephens, Grace Choi, Gary H. Cohen, Kazufumi Katayama and Harvey M. Friedman
Viruses 2023, 15(5), 1148; https://doi.org/10.3390/v15051148 - 10 May 2023
Cited by 3 | Viewed by 4840
Abstract
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of [...] Read more.
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens. Full article
(This article belongs to the Special Issue Advances and Novel Concepts in Herpesvirus Vaccines)
Show Figures

Figure 1

17 pages, 1801 KiB  
Article
An RNA-Based Vaccine Platform for Use against Mycobacterium tuberculosis
by Sasha E. Larsen, Jesse H. Erasmus, Valerie A. Reese, Tiffany Pecor, Jacob Archer, Amit Kandahar, Fan-Chi Hsu, Katrina Nicholes, Steven G. Reed, Susan L. Baldwin and Rhea N. Coler
Vaccines 2023, 11(1), 130; https://doi.org/10.3390/vaccines11010130 - 5 Jan 2023
Cited by 47 | Viewed by 7453
Abstract
Mycobacterium tuberculosis (M.tb), a bacterial pathogen that causes tuberculosis disease (TB), exerts an extensive burden on global health. The complex nature of M.tb, coupled with different TB disease stages, has made identifying immune correlates of protection challenging and subsequently slowing vaccine candidate progress. [...] Read more.
Mycobacterium tuberculosis (M.tb), a bacterial pathogen that causes tuberculosis disease (TB), exerts an extensive burden on global health. The complex nature of M.tb, coupled with different TB disease stages, has made identifying immune correlates of protection challenging and subsequently slowing vaccine candidate progress. In this work, we leveraged two delivery platforms as prophylactic vaccines to assess immunity and subsequent efficacy against low-dose and ultra-low-dose aerosol challenges with M.tb H37Rv in C57BL/6 mice. Our second-generation TB vaccine candidate ID91 was produced as a fusion protein formulated with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion) or as a novel replicating-RNA (repRNA) formulated in a nanostructured lipid carrier. Protein subunit- and RNA-based vaccines preferentially elicit cellular immune responses to different ID91 epitopes. In a single prophylactic immunization screen, both platforms reduced pulmonary bacterial burden compared to the controls. Excitingly, in prime-boost strategies, the groups that received heterologous RNA-prime, protein-boost or combination immunizations demonstrated the greatest reduction in bacterial burden and a unique humoral and cellular immune response profile. These data are the first to report that repRNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing CD4+ and CD8+ T-cell epitopes. Full article
(This article belongs to the Special Issue Vaccines Targeting Bacterial Infections)
Show Figures

Figure 1

15 pages, 1669 KiB  
Article
Development of the Sm14/GLA-SE Schistosomiasis Vaccine Candidate: An Open, Non-Placebo-Controlled, Standardized-Dose Immunization Phase Ib Clinical Trial Targeting Healthy Young Women
by Marília Santini-Oliveira, Patrícia Machado Pinto, Tatiane dos Santos, Mônica Magno Vilar, Beatriz Grinsztejn, Valdilea Veloso, Elan C. Paes-de-Almeida, Maria A. Z. Amaral, Celso R. Ramos, Miryam Marroquin-Quelopana, Rhea Coler, Steven Reed, Marcia A. Ciol, Wilson Savino, Juçara de Carvalho Parra, Marília Sirianni dos Santos Almeida and Miriam Tendler
Vaccines 2022, 10(10), 1724; https://doi.org/10.3390/vaccines10101724 - 15 Oct 2022
Cited by 17 | Viewed by 4554
Abstract
We report the successful closure of Phase I clinical trials, comprising Phases Ia and Ib, of the vaccine candidate against human schistosomiasis: the Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) + glucopyranosyl lipid A in squalene emulsion (GLA-SE). Shown here are the [...] Read more.
We report the successful closure of Phase I clinical trials, comprising Phases Ia and Ib, of the vaccine candidate against human schistosomiasis: the Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) + glucopyranosyl lipid A in squalene emulsion (GLA-SE). Shown here are the results of Phase Ib, an open, non-placebo-controlled, standardized-dose immunization trial involving 10 healthy 18–49-year-old women. Fifty micrograms of the Sm14 protein plus 10 µg GLA-SE per dose was given intramuscularly thrice at 30-day intervals. Participants were assessed clinically, biochemically, and immunologically for up to 120 days. In preambular experiments involving vaccinated pregnant female rabbits, we did not find any toxicological features in either the offspring or mothers, and the vaccine induced adaptive immunity in the animals. In women, no adverse events were observed, and vaccination induced high titers of anti-Sm14 serum IgG antibody production. Vaccination also elicited robust cytokine responses, with increased TNFα, IFNγ, and IL-2 profiles in all vaccinees on days 90 and 120. The completion of Phase I clinical trials, which were performed to the highest standards set by Good Clinical Research Practice (GCP) standards, and preclinical data in pregnant rabbits enabled the vaccine candidate to proceed to Phase II clinical trials in endemic areas. Full article
(This article belongs to the Special Issue Advances in Parasite Vaccines)
Show Figures

Figure 1

17 pages, 2297 KiB  
Article
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant
by Laura Fernández, Jose Carlos Solana, Carmen Sánchez, Mª Ángeles Jiménez, Jose M. Requena, Rhea Coler, Steven G. Reed, Jesus G. Valenzuela, Shaden Kamhawi, Fabiano Oliveira, Epifanio Fichera, Reinhard Glueck, Maria Elena Bottazzi, Gaurav Gupta, Pedro Cecilio, Begoña Pérez-Cabezas, Anabela Cordeiro-da-Silva, Luigi Gradoni, Eugenia Carrillo and Javier Moreno
Microorganisms 2021, 9(11), 2253; https://doi.org/10.3390/microorganisms9112253 - 29 Oct 2021
Cited by 15 | Viewed by 4132
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel [...] Read more.
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials. Full article
Show Figures

Graphical abstract

17 pages, 7713 KiB  
Review
Tuberculosis Vaccines: An Update of Recent and Ongoing Clinical Trials
by Sean Saramago, Joana Magalhães and Marina Pinheiro
Appl. Sci. 2021, 11(19), 9250; https://doi.org/10.3390/app11199250 - 5 Oct 2021
Cited by 17 | Viewed by 4555
Abstract
TB remains a global health challenge and, until now, only one licensed vaccine (the BCG vaccine) is available. The main goal of this work is to assess the progress in the development of new TB vaccines and highlight the research in nanovaccines. A [...] Read more.
TB remains a global health challenge and, until now, only one licensed vaccine (the BCG vaccine) is available. The main goal of this work is to assess the progress in the development of new TB vaccines and highlight the research in nanovaccines. A review was conducted using a methodology with the appropriate keywords and inclusion and exclusion criteria. The search revealed 37 clinical trials that were further reviewed. The results available have reported good immunogenicity and safety profiles for the vaccines under investigation. Over the last five years, the vaccines, VPM1002 and Vaccae, have moved ahead to phase III clinical trials, with the remaining candidate vaccines progressing in phase I and II clinical trials. RUTI and ID93+GLA-SE involve the use of nanoparticles. This strategy seems promising to improve the delivery, efficacy, cost, and storage conditions of the existing TB vaccines. In conclusion, the use of nanovaccines may be an option for both prevention and treatment. However, further studies are necessary for the development of novel TB vaccines. Full article
(This article belongs to the Special Issue Antitubercular Drugs: Synthesis, Mechanism and Application)
Show Figures

Figure 1

29 pages, 1655 KiB  
Review
Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development
by Ndibonani Kebonang Qokoyi, Priscilla Masamba and Abidemi Paul Kappo
Vaccines 2021, 9(7), 762; https://doi.org/10.3390/vaccines9070762 - 8 Jul 2021
Cited by 10 | Viewed by 4552
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to [...] Read more.
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein–protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel. Full article
Show Figures

Figure 1

14 pages, 15215 KiB  
Article
Optimization of Cellulase Production by a Novel Endophytic Fungus Penicillium oxalicum R4 Isolated from Taxus cuspidata
by Hongkun Li, Meijia Dou, Xinyu Wang, Na Guo, Ping Kou, Jiao Jiao and Yujie Fu
Sustainability 2021, 13(11), 6006; https://doi.org/10.3390/su13116006 - 26 May 2021
Cited by 42 | Viewed by 5122
Abstract
Endophytic fungi inside a plant can degrade a portion of plant lignin and cellulose. Endophytic Penicillium is one of the industrial microorganisms with the advantage of producing enzymes with a complete enzyme system that can be secreted into the extracellular space. The natural [...] Read more.
Endophytic fungi inside a plant can degrade a portion of plant lignin and cellulose. Endophytic Penicillium is one of the industrial microorganisms with the advantage of producing enzymes with a complete enzyme system that can be secreted into the extracellular space. The natural evolution of ancient tree species from special natural geographic environments to screen out cellulase-producing strains with excellent characteristics provides a promising direction for future industrial enzymes. The present study successfully isolated and screened a novel fungal endophyte, Penicillium oxalicum R4, with higher cellulase activity from Taxus cuspidata. Under the optimized culture conditions obtained by a Box–Behnken design (BBD) and an artificial neural network–genetic algorithm (ANN–GA), yields of Filter Paperase (FPase), Carboxymethyl Cellulase (CMCase) and β-glucosidase (βGLase) produced by P. oxalicum R4 were 1.45, 5.27 and 6.35 U/mL, which were approximately 1.60-fold, 1.59-fold and 2.16-fold higher than those of the non-optimized culture, respectively. The discovery of cellulase-producing strains of endophytic fungi located in special natural geographic environments, such as Taxus cuspidata, which is known as a living plant fossil, provides new research directions for future industrial enzymes. Full article
(This article belongs to the Collection Trends in Municipal Solid Waste Management)
Show Figures

Figure 1

17 pages, 12855 KiB  
Article
Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice
by Rebekah Sherburn, William D. Tolbert, Suneetha Gottumukkala, Guillaume Beaudoin-Bussières, Andrés Finzi and Marzena Pazgier
Microorganisms 2020, 8(10), 1490; https://doi.org/10.3390/microorganisms8101490 - 28 Sep 2020
Cited by 1 | Viewed by 2381
Abstract
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, [...] Read more.
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings. Full article
(This article belongs to the Special Issue Structural and Functional Biology of Retroviral Entry)
Show Figures

Figure 1

1 pages, 168 KiB  
Correction
Correction: Tendler, M., et al. Current Status of the Sm14/GLA-SE Schistosomiasis Vaccine: Overcoming Barriers and Paradigms towards the First Anti-Parasitic Human(itarian) Vaccine. Trop. Med. Infect. Dis. 2018, 3, 121
by Miriam Tendler, Marília S. Almeida, Monica M. Vilar, Patrícia M. Pinto and Gabriel Limaverde-Sousa
Trop. Med. Infect. Dis. 2019, 4(1), 16; https://doi.org/10.3390/tropicalmed4010016 - 19 Jan 2019
Cited by 1 | Viewed by 2465
Abstract
The authors wish to make the following correction to this paper [...] Full article
(This article belongs to the Special Issue Prospects for Schistosomiasis Elimination)
10 pages, 677 KiB  
Review
Current Status of the Sm14/GLA-SE Schistosomiasis Vaccine: Overcoming Barriers and Paradigms towards the First Anti-Parasitic Human(itarian) Vaccine
by Miriam Tendler, Marília S. Almeida, Monica M. Vilar, Patrícia M. Pinto and Gabriel Limaverde-Sousa
Trop. Med. Infect. Dis. 2018, 3(4), 121; https://doi.org/10.3390/tropicalmed3040121 - 21 Nov 2018
Cited by 29 | Viewed by 4983 | Correction
Abstract
Schistosomiasis, a disease historically associated with poverty, lack of sanitation and social inequality, is a chronic, debilitating parasitic infection, affecting hundreds of millions of people in endemic countries. Although chemotherapy is capable of reducing morbidity in humans, rapid re-infection demonstrates that the impact [...] Read more.
Schistosomiasis, a disease historically associated with poverty, lack of sanitation and social inequality, is a chronic, debilitating parasitic infection, affecting hundreds of millions of people in endemic countries. Although chemotherapy is capable of reducing morbidity in humans, rapid re-infection demonstrates that the impact of drug treatment on transmission control or disease elimination is marginal. In addition, despite more than two decades of well-executed control activities based on large-scale chemotherapy, the disease is expanding in many areas including Brazil. The development of the Sm14/GLA-SE schistosomiasis vaccine is an emblematic, open knowledge innovation that has successfully completed phase I and phase IIa clinical trials, with Phase II/III trials underway in the African continent, to be followed by further trials in Brazil. The discovery and experimental phases of the development of this vaccine gathered a robust collection of data that strongly supports the ongoing clinical phase. This paper reviews the development of the Sm14 vaccine, formulated with glucopyranosyl lipid A (GLA-SE), from the initial experimental developments to clinical trials including the current status of phase II studies. Full article
(This article belongs to the Special Issue Prospects for Schistosomiasis Elimination)
Show Figures

Figure 1

17 pages, 2784 KiB  
Article
Enhanced Anti-Mycobacterium tuberculosis Immunity over Time with Combined Drug and Immunotherapy Treatment
by Sasha E. Larsen, Susan L. Baldwin, Mark T. Orr, Valerie A. Reese, Tiffany Pecor, Brian Granger, Natasha Dubois Cauwelaert, Brendan K. Podell and Rhea N. Coler
Vaccines 2018, 6(2), 30; https://doi.org/10.3390/vaccines6020030 - 24 May 2018
Cited by 25 | Viewed by 6230
Abstract
It is estimated that one third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). This astounding statistic, in combination with costly and lengthy treatment regimens make the development of therapeutic vaccines paramount for controlling the global burden of tuberculosis. [...] Read more.
It is estimated that one third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). This astounding statistic, in combination with costly and lengthy treatment regimens make the development of therapeutic vaccines paramount for controlling the global burden of tuberculosis. Unlike prophylactic vaccination, therapeutic immunization relies on the natural pulmonary infection with Mtb as the mucosal prime that directs boost responses back to the lung. The purpose of this work was to determine the protection and safety profile over time following therapeutic administration of our lead Mtb vaccine candidate, ID93 with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion (GLA-SE)), in combination with rifampicin, isoniazid, and pyrazinamide (RHZ) drug treatment. We assessed the host inflammatory immune responses and lung pathology 7–22 weeks post infection, and determined the therapeutic efficacy of combined treatment by enumeration of the bacterial load and survival in the SWR/J mouse model. We show that drug treatment alone, or with immunotherapy, tempered the inflammatory responses measured in brochoalveolar lavage fluid and plasma compared to untreated cohorts. RHZ combined with therapeutic immunizations significantly enhanced TH1-type cytokine responses in the lung over time, corresponding to decreased pulmonary pathology evidenced by a significant decrease in the percentage of lung lesions and destructive lung inflammation. These data suggest that bacterial burden assessment alone may miss important correlates of lung architecture that directly contribute to therapeutic vaccine efficacy in the preclinical mouse model. We also confirmed our previous finding that in combination with antibiotics therapeutic immunizations provide an additive survival advantage. Moreover, therapeutic immunizations with ID93/GLA-SE induced differential T cell immune responses over the course of infection that correlated with periods of enhanced bacterial control over that of drug treatment alone. Here we advance the immunotherapy model and investigate reliable correlates of protection and Mtb control. Full article
Show Figures

Figure 1

Back to TopTop