Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,027)

Search Parameters:
Keywords = GIS systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 (registering DOI) - 1 Aug 2025
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

36 pages, 6966 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
22 pages, 2136 KiB  
Article
Methodology and Innovation in the Design of Shared Transportation Systems for Academic Environments
by Roberto López-Chila, Mario Dávila-Moreno, Gustavo Muñoz-Franco and Marcelo Estrella-Guayasamin
Sustainability 2025, 17(15), 6946; https://doi.org/10.3390/su17156946 (registering DOI) - 31 Jul 2025
Abstract
At the Politecnica Salesiana University (UPS) in Guayaquil, Ecuador, urban mobility challenges were addressed with the aim of improving students’ quality of life and promoting sustainability. This study evaluated the technical, economic, and social feasibility of implementing a shared transportation (carpooling) system using [...] Read more.
At the Politecnica Salesiana University (UPS) in Guayaquil, Ecuador, urban mobility challenges were addressed with the aim of improving students’ quality of life and promoting sustainability. This study evaluated the technical, economic, and social feasibility of implementing a shared transportation (carpooling) system using a quantitative-descriptive approach. Surveys were applied to a stratified sample of 256 students to analyze transportation habits. Route planning was performed using ArcGIS software, and costs were calculated with Microsoft Excel. Social impact assessment involved focus groups and analysis of variables such as changes in mobility patterns, system acceptance, and perceived safety, comfort, and accessibility. Key indicators included the percentage of students willing to participate in the pilot (82.7%), satisfaction with travel time savings (85.7% fully satisfied), and positive perceptions of safety and comfort. The results suggest that the proposed system is not only economically viable but also widely accepted by students, contributing to reduced stress, travel time, and single-occupancy vehicle use. This study demonstrates the feasibility of shared transport in urban universities and provides a replicable model to guide sustainable mobility policies that improve safety, comfort, and efficiency in student commuting. Full article
Show Figures

Figure 1

24 pages, 1016 KiB  
Article
Harnessing Intelligent GISs for Educational Innovation: A Bibliometric Analysis of Real-Time Data Models
by Eloy López-Meneses, Irene-Magdalena Palomero-Ilardia, Noelia Pelícano-Piris and María-Belén Morales-Cevallos
Educ. Sci. 2025, 15(8), 976; https://doi.org/10.3390/educsci15080976 - 29 Jul 2025
Viewed by 204
Abstract
This study explores the potential of Intelligent Geographic Information Systems (GISs) in advancing educational practices through the integration of real-time data models. The objective is to investigate how GIS technology can enhance teaching and learning by providing interactive and dynamic learning environments. The [...] Read more.
This study explores the potential of Intelligent Geographic Information Systems (GISs) in advancing educational practices through the integration of real-time data models. The objective is to investigate how GIS technology can enhance teaching and learning by providing interactive and dynamic learning environments. The research employs a bibliometric analysis based on the Scopus database, covering the period from 2000 to 2024, to identify key trends, the evolution of GIS applications in education, and their pedagogical impact. Findings reveal that GISs, particularly when incorporating real-time data, enable a more immersive learning experience, facilitate data-driven decision-making, and promote student engagement through project-based learning. However, challenges such as the lack of specialized training for educators and limitations in technological infrastructure remain significant barriers to widespread adoption. The study concludes that Intelligent GISs have the potential to transform education by fostering personalized, interdisciplinary learning and enhancing educational management. It emphasizes the need for further research aimed at developing user-friendly systems and addressing ethical concerns to ensure the benefits of GIS technology are accessible to all students. Future studies should examine the long-term effects of GISs on student outcomes and explore their integration into diverse educational contexts. Full article
Show Figures

Figure 1

16 pages, 7721 KiB  
Article
From Landscape to Legacy: Developing an Integrated Hiking Route with Cultural Heritage and Environmental Appeal Through Spatial Analysis
by İsmet Sarıbal, Mesut Çoşlu and Serdar Selim
Sustainability 2025, 17(15), 6897; https://doi.org/10.3390/su17156897 - 29 Jul 2025
Viewed by 191
Abstract
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies [...] Read more.
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies were utilized, and land surveys were conducted to support the analysis and validate the existing data. Data for slope, one of the most critical factors for hiking route selection, were generated, and the optimal route between the starting and destination points was identified using least cost path analysis (LCPA). Historical, touristic, and recreational rest stops along the route were mapped with precise coordinates, and both the existing and the newly generated routes were assessed in terms of their accessibility to these points. Field validation was carried out based on the experiences of expert hikers. According to the results, the length of the existing hiking route was determined to be 15.72 km, while the newly developed trekking route measured 17.36 km. These two routes overlap for 7.75 km, with 9.78 km following separate paths in a round-trip scenario. It was concluded that the existing route is more suitable for hiking, whereas the newly developed route is better suited for trekking. Full article
Show Figures

Figure 1

18 pages, 5309 KiB  
Article
LGM-YOLO: A Context-Aware Multi-Scale YOLO-Based Network for Automated Structural Defect Detection
by Chuanqi Liu, Yi Huang, Zaiyou Zhao, Wenjing Geng and Tianhong Luo
Processes 2025, 13(8), 2411; https://doi.org/10.3390/pr13082411 - 29 Jul 2025
Viewed by 123
Abstract
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable [...] Read more.
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable for identifying subtle surface imperfections. To address these limitations, a novel context-aware, multi-scale deep learning framework based on the YOLOv5 architecture is proposed, which is specifically designed for automated structural defect detection in escalator steel trusses. Firstly, a method called GIES is proposed to synthesize pseudo-multi-channel representations from single-channel grayscale images, which enhances the network’s channel-wise representation and mitigates issues arising from image noise and defocused blur. To further improve detection performance, a context enhancement pipeline is developed, consisting of a local feature module (LFM) for capturing fine-grained surface details and a global context module (GCM) for modeling large-scale structural deformations. In addition, a multi-scale feature fusion module (MSFM) is employed to effectively integrate spatial features across various resolutions, enabling the detection of defects with diverse sizes and complexities. Comprehensive testing on the NEU-DET and GC10-DET datasets reveals that the proposed method achieves 79.8% mAP on NEU-DET and 68.1% mAP on GC10-DET, outperforming the baseline YOLOv5s by 8.0% and 2.7%, respectively. Although challenges remain in identifying extremely fine defects such as crazing, the proposed approach offers improved accuracy while maintaining real-time inference speed. These results indicate the potential of the method for intelligent visual inspection in structural health monitoring and industrial safety applications. Full article
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 92
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

17 pages, 11812 KiB  
Article
Heritage GIS: Deep Mapping, Preserving, and Sustaining the Intangibility of Cultures and the Palimpsests of Landscape in the West of Ireland
by Charles Travis
Sustainability 2025, 17(15), 6870; https://doi.org/10.3390/su17156870 - 29 Jul 2025
Viewed by 199
Abstract
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s [...] Read more.
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s “Yeats Country.” Drawing on interdisciplinary dialogues from the humanities, social sciences, and geospatial sciences, it illustrates how digital spatial technologies can excavate, preserve, and sustain intangible cultural knowledge embedded within such palimpsestic landscapes. Using MAXQDA 24 software to mine and code historical, literary, folkloric, and environmental texts, the study constructed bespoke GIS attribute tables and visualizations integrated with elevation models and open-source archaeological data. The result is a richly layered cartographic method that reveals the spectral and affective dimensions of heritage landscapes through climate, memory, literature, and spatial storytelling. By engaging with “deep mapping” and theories such as “Spectral Geography,” the research offers new avenues for sustainable heritage conservation, cultural tourism, and public education that are sensitive to both ecological and cultural resilience in the West of Ireland. Full article
Show Figures

Figure 1

22 pages, 3476 KiB  
Article
Digital Inequality and Smart Inclusion: A Socio-Spatial Perspective from the Region of Xanthi, Greece
by Kyriaki Kourtidou, Yannis Frangopoulos, Asimenia Salepaki and Dimitris Kourkouridis
Smart Cities 2025, 8(4), 123; https://doi.org/10.3390/smartcities8040123 - 28 Jul 2025
Viewed by 256
Abstract
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with [...] Read more.
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with qualitative insights from semi-structured interviews, aiming to uncover how spatial, demographic, and cultural variables shape digital engagement. Geographic Information System (GIS) tools are employed to map disparities in internet access and ICT infrastructure, revealing significant gaps linked to geography, education, and economic status. The findings demonstrate that digital inequality is particularly acute in rural, minority, and economically marginalized communities, where limited infrastructure intersects with low digital literacy and socio-economic disadvantage. Interview data further illuminate how residents navigate exclusion, emphasizing generational divides, perceptions of technology, and place-based constraints. By bridging spatial analysis with lived experience, this study advances the conceptualization of digitally inclusive smart regions. It offers policy-relevant insights into how territorial inequality undermines the goals of smart development and proposes context-sensitive interventions to promote equitable digital participation. The case of Xanthi underscores the importance of integrating spatial justice into smart city and regional planning agendas. Full article
Show Figures

Figure 1

15 pages, 7415 KiB  
Article
Development and Protective Efficacy of a Novel Nanoparticle Vaccine for Gammacoronavirus Avain Infectious Bronchitis Virus
by Ting Xiong, Yanfen Lyu, Hongmei Li, Ting Xu, Shuting Wu, Zekun Yang, Mengyao Jing, Fei Xu, Dingxiang Liu and Ruiai Chen
Vaccines 2025, 13(8), 802; https://doi.org/10.3390/vaccines13080802 - 28 Jul 2025
Viewed by 208
Abstract
Background: Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. The GI-19 is a predominant lineage. However, no effective commercially available vaccines against this virus are available. Methods: In [...] Read more.
Background: Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. The GI-19 is a predominant lineage. However, no effective commercially available vaccines against this virus are available. Methods: In this present study, the CHO eukaryotic and the E.coli prokaryotic expression system were used to express S1-SpyTag and AP205-SpyCatcher, respectively. Subsequently, the purified S1-SpyTag and AP205-SpyCatcher were coupled to form the nanoparticles AP205-S1 (nAP205-S1) in PBS buffer at 4 °C for 48 h. S1-SpyTag and nAP205-S1 were formulated into vaccines with white oil adjuvant and employed to immunize 1-day-old SPF chickens for the comparative evaluation of their immune efficacy. Results: The nAP205-S1 vaccine in chickens induced robust IBV-specific humoral and cellular immune responses in vivo. Importantly, the humoral and cellular immune responses elicited by the nAP205-S1 vaccine were more robust than those induced by the IBV S1-SpyTag vaccine at both the same dose and double the dose, with a notably significant difference observed in the cellular immune response. Furthermore, experimental data revealed that chicken flocks vaccinated with nAP205-S1 achieved 100% group protection following a challenge, exhibiting a potent protective immune response and effectively inhibiting viral shedding. Conclusions: These results reveal the potential of developing a novel nanoparticle vaccine with broadly protective immunity against GI-19 IBV. Full article
(This article belongs to the Special Issue Vaccines for Poultry Viruses)
Show Figures

Figure 1

36 pages, 25831 KiB  
Article
Identification of Cultural Landscapes and Spatial Distribution Characteristics in Traditional Villages of Three Gorges Reservoir Area
by Jia Jiang, Zhiliang Yu and Ende Yang
Buildings 2025, 15(15), 2663; https://doi.org/10.3390/buildings15152663 - 28 Jul 2025
Viewed by 240
Abstract
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and [...] Read more.
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and development under the impact of modernisation and ecological pressure. This study takes 112 traditional villages in the TGRA that have been included in the protection list as the research objects, aiming to construct a cultural landscape identification framework for the traditional villages in the TGRA. Through field surveys, landscape feature assessments, GIS spatial analysis, and multi-source data analysis, we systematically analyse their cultural landscape type systems and spatial differentiation characteristics, and then reveal their cultural landscape types and spatial differentiation patterns. (1) The results of the study show that the spatial distribution of traditional villages exhibits significant altitude gradient differentiation—the low-altitude area is dominated by traffic and trade villages, the middle-altitude area is dominated by patriarchal manor villages and mountain farming villages, and the high-altitude area is dominated by ethno-cultural and ecologically dependent villages. (2) Slope and direction analyses further reveal that the gently sloping areas are conducive to the development of commercial and agricultural settlements, while the steeply sloping areas strengthen the function of ethnic and cultural defence. The results indicate that topographic conditions drive the synergistic evolution of the human–land system in traditional villages through the mechanisms of agricultural optimisation, trade networks, cultural defence, and ecological adaptation. The study provides a paradigm of “nature–humanities” interaction analysis for the conservation and development of traditional villages in mountainous areas, which is of practical value in coordinating the construction of ecological barriers and the revitalisation of villages in the reservoir area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 326
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 289
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop