Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (345)

Search Parameters:
Keywords = G actin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3987 KiB  
Article
Cardioprotective Effects of Bosentan in Rats Subjected to Lung Ischemia–Reperfusion Injury
by Şevki Mustafa Demiröz, Ayşegül Küçük, Esra Tekin, Sibel Söylemez, Hanife Yılmaz, Şaban Cem Sezen, Muharrem Atlı, Hüseyin Demirtaş, Abdullah Özer, Yusuf Ünal and Mustafa Arslan
Medicina 2025, 61(7), 1298; https://doi.org/10.3390/medicina61071298 - 18 Jul 2025
Viewed by 291
Abstract
Objective: This study aimed to investigate the cardioprotective effects of bosentan, an endothelin receptor antagonist, in a rat model of lung ischemia–reperfusion (I/R) injury, with a focus on myocardial tissue involvement. Methods: Twenty-four male Wistar rats were randomly assigned to four [...] Read more.
Objective: This study aimed to investigate the cardioprotective effects of bosentan, an endothelin receptor antagonist, in a rat model of lung ischemia–reperfusion (I/R) injury, with a focus on myocardial tissue involvement. Methods: Twenty-four male Wistar rats were randomly assigned to four groups: sham, bosentan, I/R, and I/R + bosentan. Lung I/R injury was induced by hilar clamping for 45 min, followed by 60 min of reperfusion. Bosentan (30 mg/kg) was administered intraperitoneally 30 min prior to the procedure. Myocardial tissue was evaluated histopathologically for structural disorganization, inflammation, fibrosis, and edema. TGF-β1 protein levels in myocardial tissue were compared across the groups using β-actin as the loading control. ELISA was used to quantify ET-1, NF-κB, and p53 levels, while spectrophotometric analysis was employed to assess MDA levels and the activities of SOD and CAT enzymes in heart tissue. Results: The I/R group exhibited significant myocardial disorganization, inflammation, and interstitial edema compared to the sham and bosentan groups. Bosentan treatment markedly ameliorated these histopathological alterations. Additionally, the I/R group showed elevated levels of ET-1, NF-κB, p53, and MDA, along with reduced SOD and CAT activities; these changes were significantly attenuated by bosentan administration. Bosentan treatment significantly reduced myocardial ET-1 levels (from 136.88 ± 5.02 to 120.18 ± 2.67 nmol/g, p = 0.003), NF-κB levels (from 0.87 ± 0.04 to 0.51 ± 0.03 ng/mg, p = 0.002), and TGF-β1 expression (from 1.72 ± 0.10 to 0.91 ± 0.08 relative units, p = 0.001). Moreover, bosentan increased antioxidant enzyme activities, elevating SOD levels from 21.45 ± 1.23 to 32.67 ± 1.45 U/mg protein (p = 0.001) and CAT levels from 15.22 ± 0.98 to 25.36 ± 1.12 U/mg protein (p = 0.002). Conclusions: Bosentan exerts cardioprotective effects in rats subjected to lung I/R injury by reducing myocardial damage, inflammation, and oxidative stress. These findings suggest that bosentan may serve as a potential therapeutic agent for preventing remote organ injury associated with pulmonary I/R. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

18 pages, 1642 KiB  
Article
Changes in the Physicochemical Properties of Reduced Salt Pangasius (Pangasianodon hypophthalmus) Gels Induced by High Pressure and Setting Treatment
by Binh Q. Truong, Binh T. T. Vo, Roman Buckow and Van Chuyen Hoang
Sci 2025, 7(3), 99; https://doi.org/10.3390/sci7030099 - 17 Jul 2025
Viewed by 510
Abstract
Pangasius (Pangasianodon hypophthalmus) minced muscle with 1 and 2% salt was treated with different high-pressure processing and thermal methods, including conventional heat-induced gels (HIGs), high-pressure processing (HPP) prior to cooking (PC), HPP prior to setting (PS), and setting prior to HPP [...] Read more.
Pangasius (Pangasianodon hypophthalmus) minced muscle with 1 and 2% salt was treated with different high-pressure processing and thermal methods, including conventional heat-induced gels (HIGs), high-pressure processing (HPP) prior to cooking (PC), HPP prior to setting (PS), and setting prior to HPP (SP), to evaluate for their effects on the selected physicochemical properties. The results showed that the PC treatment produced gels with a significantly higher gel strength (496.72–501.26 N·mm), hardness (9.62–10.14 N), and water-holding capacity (87.79–89.74%) compared to the HIG treatment, which showed a gel strength of 391.24 N·mm, a hardness of 7.36 N, and a water-holding capacity of 77.98%. PC gels also exhibited the typical microstructure of pressure-induced gels, with a denser and homogeneous microstructure compared to the rough and loosely connected structure of HIGs. In contrast, SP treatment exhibited the poorest gel quality in all parameters, with gel strength ranging from 319.79 to 338.34 N·mm, hardness from 5.87 to 6.31 N, and WHC from 71.91 to 73.72%. Meanwhile, the PS treatment showed a comparable gel quality to HIGs. SDS-PAGE analysis revealed protein degradation and aggregation in HPP-treated samples, with a decrease in the intensity of myosin heavy chains and actin bands. Fourier-transform infrared spectroscopy (FTIR) analysis showed minor shifts in protein secondary structures, with the PC treatment showing a significant increase in α-helices (28.09 ± 0.51%) and a decrease in random coil content (6.69 ± 0.92%) compared to α-helices (23.61 ± 0.83) and random coil structures (9.47 ± 1.48) in HIGs (p < 0.05). Only the PC treatment resulted in a significant reduction in total plate count (TPC) (1.51–1.58 log CFU/g) compared to 2.33 ± 0.33 log CFU/g in the HIG treatment. These findings suggest that HPP should be applied prior to thermal treatments (cooking or setting) to achieve an improved gel quality in reduced-salt pangasius products. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Graphical abstract

10 pages, 1373 KiB  
Communication
Phosphoinositide Signaling and Actin Polymerization Are Critical for Tip Growth in the Marine Red Alga Pyropia yezoensis
by Ryunosuke Irie and Koji Mikami
Plants 2025, 14(14), 2194; https://doi.org/10.3390/plants14142194 - 15 Jul 2025
Viewed by 305
Abstract
In the marine red alga Pyropia yezoensis, filamentous phases of the life cycle, e.g., the conchocelis (sporophyte) and conchosporangium (conchosporophyte), proliferate by tip growth. In this study, we investigated the possible involvement of phosphoinositide turnover and actin polymerization in the spontaneous initiation [...] Read more.
In the marine red alga Pyropia yezoensis, filamentous phases of the life cycle, e.g., the conchocelis (sporophyte) and conchosporangium (conchosporophyte), proliferate by tip growth. In this study, we investigated the possible involvement of phosphoinositide turnover and actin polymerization in the spontaneous initiation and tip growth of new branches in isolated single-celled conchocelis cells using pharmacological treatments. Treatment with LY294002 and U73122, specific inhibitors of phosphoinositide-phosphate 3-kinase and phospholipase C, respectively, reduced side-branch formation and inhibited the elongation of branches. In addition, two inhibitors of the actin cytoskeleton, cytochalasin B (CCB) and latrunculin B (LAT-B), had similar effects on tip growth. However, CCB did not alter the branching rate of single-celled conchocelis, whereas LAT-B did. As CCB and LAT-B affect actin polymerization through different mechanisms, this result suggests differences in the contributions of actin polymerization to branch initiation versus tip growth. These findings demonstrate the critical and diverse functional roles played by phosphoinositide turnover and actin polymerization in the regulation of the initiation and maintenance of tip growth in the conchocelis phase of P. yezoensis. Full article
(This article belongs to the Special Issue Algal Morphogenesis and Response to Abiotic Stresses)
Show Figures

Figure 1

21 pages, 3852 KiB  
Article
PCSK9 Inhibitor Inclisiran Attenuates Cardiotoxicity Induced by Sequential Anthracycline and Trastuzumab Exposure via NLRP3 and MyD88 Pathway Inhibition
by Vincenzo Quagliariello, Massimiliano Berretta, Irma Bisceglia, Martina Iovine, Matteo Barbato, Raffaele Arianna, Maria Laura Canale, Andrea Paccone, Alessandro Inno, Marino Scherillo, Stefano Oliva, Christian Cadeddu Dessalvi, Alfredo Mauriello, Carlo Maurea, Celeste Fonderico, Anna Chiara Maratea, Domenico Gabrielli and Nicola Maurea
Int. J. Mol. Sci. 2025, 26(14), 6617; https://doi.org/10.3390/ijms26146617 - 10 Jul 2025
Viewed by 435
Abstract
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), [...] Read more.
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), such as inclisiran, are known for their lipid-lowering effects, but emerging data indicate that they may also exert pleiotropic benefits beyond cholesterol reduction. This study investigates whether inclisiran can mitigate the cardiotoxic effects of anthracyclines and trastuzumab through reduction of NLRP3 activation and MyD88 signaling, independently of its effects on dyslipidemia. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were exposed to subclinical concentrations of doxorubicin (1 µM) and trastuzumab in sequential therapy (200 nM), alone or in combination with inclisiran (100 nM) for 24 h. After the incubation period, we performed the following tests: determination of cardiomyocytes apoptosis, analysis of intracellular reactive oxygen species, lipid peroxidation products (including malondialdehyde and 4-hydroxynonenal), intracellular mitofusin-2 and Ca++ levels. Troponin and BNP were quantified through selective ELISA methods. A confocal laser scanning microscope was used to study cardiomyocyte morphology and F-actin staining after treatments. Moreover, pro-inflammatory studies were also performed, including the intracellular expression of NLRP-3, MyD-88 and twelve cytokines/growth factors involved in cardiotoxicity (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IFN-γ, TNF-α, G-CSF, GM-CSF). Inclisiran co-incubated with doxorubicin and trastuzumab exerts significant cardioprotective effects, enhancing cell viability by 88.9% compared to only DOXO/TRA treated cells (p < 0.001 for all). Significant reduction of oxidative stress, and intracellular levels of NLRP-3, MyD88, IL-1α, IL-1β, IL-6, IL-12, IL17-α, TNF-α, G-CSF were seen in the inclisiran group vs. only DOXO/TRA (p < 0.001). For the first time, PCSK9i inclisiran has been shown to exert significant anti-inflammatory effects to reduce anthracycline-HER-2 blocking agent-mediated cardiotoxicity through NLRP-3 and Myd-88 related pathways. The overall conclusions of the study warrant further investigation of the use of PCSK9i in primary prevention of CTRCD in cancer patients, independently from dyslipidemia. Full article
Show Figures

Figure 1

15 pages, 937 KiB  
Article
Sleep Deprivation in Rats Causes Dissociation of the Synaptic NMDA Receptor/D1 Dopamine Receptor Heterocomplex
by Natalia Kiknadze, Nana Narmania, Maia Sepashvili, Tamar Barbakadze, Elene Zhuravliova, Tamar Shetekauri, Nino Tkemaladze, Nikoloz Oniani and David Mikeladze
NeuroSci 2025, 6(3), 61; https://doi.org/10.3390/neurosci6030061 - 5 Jul 2025
Viewed by 426
Abstract
Glutamate and dopamine receptors play a crucial role in regulating synaptic plasticity throughout the sleep–wake cycle. These receptors form various heterocomplexes in synaptic areas; however, the role of this protein interactome in sleep–wake cycles remains unclear. Co-immunoprecipitation experiments were conducted to observe the [...] Read more.
Glutamate and dopamine receptors play a crucial role in regulating synaptic plasticity throughout the sleep–wake cycle. These receptors form various heterocomplexes in synaptic areas; however, the role of this protein interactome in sleep–wake cycles remains unclear. Co-immunoprecipitation experiments were conducted to observe the complexation of the NMDA glutamate receptor (NMDAR) subunits GluN2A and GluN2B, metabotropic glutamate receptors mGluR1/5, and dopamine receptors (D1R and D2R) with the scaffold protein Homer in the synaptic membranes of the hippocampus after six hours of sleep deprivation (SD) in rats. Our findings indicate that the level of Homer in the GluN2A/mGluR1/D1R interactome decreased during SD, while the content of Homer remained unchanged in the GluN2B/mGluR1/D2R heterocomplex. Moreover, Homer immunoprecipitated a reduced amount of inositol trisphosphate receptor (IP3R) in the microsomal and synaptic fractions, confirming the dissociation of the ternary supercomplex Homer/mGluR1/IP3R during SD. Additionally, our findings indicate that SD increases the synaptic content of the AMPA receptor (AMPAR) subunit GluA1. Unlike AMPAR, NMDAR subunits in synaptic membranes do not undergo significant changes. Furthermore, the G-to-F actin ratio decreases during SD. Changes in the assembly of actin filaments occur due to the dephosphorylation of cofilin. These results suggest that SD causes the dissociation of the GluN2A/mGluR1/D1R/Homer/IP3R heterocomplex in synaptic and endoplasmic membranes. Full article
Show Figures

Figure 1

17 pages, 1642 KiB  
Review
Ankyrin-G and Its Binding Partners in Neurons: Orchestrating the Molecular Structure of the Axon Initial Segment
by Xiaowei Zhu, Yanyan Yu, Zhuqian Jiang, Yoshinori Otani and Masashi Fujitani
Biomolecules 2025, 15(6), 901; https://doi.org/10.3390/biom15060901 - 19 Jun 2025
Viewed by 825
Abstract
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules [...] Read more.
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules (CAMs), and cytoskeletal components at this critical neuronal domain. Recent proteomic analyses have revealed a complex network of proteins in the AIS, emphasizing Ankyrin-G’s central role in its molecular architecture. This review discusses new findings in the study of AIS-associated proteins. It explains how Ankyrin-G and its binding partners (such as ion channels, CAMs, spectrins, actin, and microtubule-associated proteins including end-binding protein 3, tripartite motif-containing protein 46, and calmodulin-regulated spectrin-associated protein 2) organize their structure. Understanding the dynamic regulation and molecular interactions within the AIS offers insights into neuronal excitability and reveals potential therapeutic targets for axonal dysfunction–related diseases. Through these dynamic interactions, Ankyrin-G ensures the proper alignment and dense clustering of key channel complexes, thereby maintaining the AIS’s distinctive molecular and functional identity. By further unraveling the complexity of Ankyrin-G’s interactome, our understanding of AIS formation, maintenance, and plasticity will be considerably enhanced, contributing to the elucidation of the pathogenesis of neurological and neuropsychiatric disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodevelopment)
Show Figures

Figure 1

10 pages, 3865 KiB  
Communication
Defective Mitochondrial Respiration in Hereditary Thoracic Aneurysms
by Daniel Marcos-Ríos, Antonio Rochano-Ortiz, Nerea Méndez-Barbero and Jorge Oller
Cells 2025, 14(11), 768; https://doi.org/10.3390/cells14110768 - 23 May 2025
Cited by 1 | Viewed by 649
Abstract
Thoracic aortic aneurysms are life-threatening vascular conditions linked to inherited disorders such as Marfan syndrome, Loeys–Dietz syndrome, vascular Ehlers–Danlos syndrome, and familial thoracic aortic aneurysms and dissections. While traditionally associated with the extracellular matrix and contractile defects in vascular smooth muscle cells, emerging [...] Read more.
Thoracic aortic aneurysms are life-threatening vascular conditions linked to inherited disorders such as Marfan syndrome, Loeys–Dietz syndrome, vascular Ehlers–Danlos syndrome, and familial thoracic aortic aneurysms and dissections. While traditionally associated with the extracellular matrix and contractile defects in vascular smooth muscle cells, emerging evidence suggests the key role of mitochondrial dysfunction. Here, we show that the overexpression of ACTA2R179H and TGFBR2G357W in murine aortic VSMCs reduces Mitochondrial Transcription Factor A (Tfam) expression, decreases mitochondrial DNA (mtDNA) content, and impairs oxidative phosphorylation, shifting metabolism toward glycolysis. Notably, nicotinamide riboside, a NAD+ precursor, restores mitochondrial respiration, increases Tfam and mtDNA levels, and promotes a contractile phenotype by enhancing actin polymerization and reducing matrix metalloproteinase activity. These findings identify mitochondrial dysfunction as a shared feature in hereditary thoracic aortic aneurysm, not only in Marfan syndrome, but also in other genetic forms, and highlight mitochondrial boosters as a potential therapeutic strategy. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Marfan Syndrome)
Show Figures

Figure 1

21 pages, 4025 KiB  
Article
Proliferation of Human Cervical Cancer Cells Responds to Surface Properties of Bicomponent Polymer Coatings
by Emil Rosqvist, Erik Niemelä, Shujun Liang, John E. Eriksson, Xiaoju Wang and Jouko Peltonen
Nanomaterials 2025, 15(10), 716; https://doi.org/10.3390/nano15100716 - 9 May 2025
Viewed by 536
Abstract
The proliferation of human cervical cancer (Hela) cells was investigated on a series of nanostructured polymer latex surfaces. The physico-chemical properties of the surfaces, composed of mixtures of polystyrene and acrylonitrile butadiene styrene dispersions, were precisely controlled in the nanoscale range by adjusting [...] Read more.
The proliferation of human cervical cancer (Hela) cells was investigated on a series of nanostructured polymer latex surfaces. The physico-chemical properties of the surfaces, composed of mixtures of polystyrene and acrylonitrile butadiene styrene dispersions, were precisely controlled in the nanoscale range by adjusting the mixing ratio of the components and thermal treatment. In addition, the proliferation response of HeLa cells was compared to that of human dermal fibroblast (HDF) cells. A low dispersive surface energy and peak or valley dominance (Spk/Svk) were observed to increase the proliferation yield of the Hela cells. The HDF cells were less influenced by the surface chemistry and showed improved proliferation on surfaces without dominant peak or valley features (Spk and Svk). The observed changes in Hela cell behaviour underscored the critical role of material surface properties in influencing cellular responses, with more significant accumulation of nuclear patterning of filamentous actin (F-actin) on stiffer and smoother surfaces (e.g., borosilicate glass) due to higher mechanical stress. A more dynamic reorganisation of the cytoskeleton was observed for cells grown on polymer surfaces with moderate roughness and surface energy. These results emphasise the importance of characterising and tuning surface properties to accommodate the specific behaviours of different cell types. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

17 pages, 6693 KiB  
Article
Covalent Grafting of Inorganic Selenium to the Water-Soluble and Nondigestive Chinese Yam Polysaccharides Causes Greater Protection of IEC-6 Cells with Acrylamide Injury
by Zhen-Xing Wang, Li-Li Zhang and Xin-Huai Zhao
Foods 2025, 14(9), 1560; https://doi.org/10.3390/foods14091560 - 29 Apr 2025
Viewed by 425
Abstract
Acrylamide, a harmful substance generated during the normal thermal treatment of foods, has been shown to adversely affect human health, particularly the vital intestinal barrier function. Meanwhile, natural polysaccharides are recognized to exert an important biofunction in the intestine by protecting barrier integrity. [...] Read more.
Acrylamide, a harmful substance generated during the normal thermal treatment of foods, has been shown to adversely affect human health, particularly the vital intestinal barrier function. Meanwhile, natural polysaccharides are recognized to exert an important biofunction in the intestine by protecting barrier integrity. In this study, the non-starch, water-soluble, and nondigestive yam polysaccharide (YP) was extracted from fresh Chinese yam, while two selenylated derivatives with different extents of selenylation were prepared via the HNO3-Na2SeO3 reaction system, and designated as YPSe-I and YPSe-II, respectively. Their protective activities and the associated molecular mechanisms of these substances against acrylamide-induced damage in rat intestinal epithelial (IEC-6) cells were thereby investigated. The experimental results demonstrated that the selenium contents of YPSe-I and YPSe-II were 0.80 and 1.48 g/kg, respectively, whereas that of the original YP was merely 0.04 g/kg. In IEC-6 cells, in comparison with YP, both YPSe-I and YPSe-II showed higher efficacy than YP in alleviating acrylamide-induced cell toxicity through promoting cell viability, suppressing the release of lactate dehydrogenase, and decreasing the generation of intracellular reactive oxygen species. Both YPSe-I and YPSe-II could also manifest higher effectiveness than YP in maintaining cell barrier integrity against the acrylamide-induced barrier disruption. The mentioned barrier protection was achieved by increasing transepithelial electrical resistance, reducing paracellular permeability, facilitating the distribution and expression of F-actin between the cells, and up-regulating the production of three tight junctions, namely ZO-1, occludin, and claudin-1. Additionally, acrylamide was observed to trigger the activation of the MAPK signaling pathway, thereby leading to cell barrier dysfunction. In contrast, YPSe-I and particularly YPSe-II were capable of down-regulating two MAPK-related proteins, namely p-p38 and p-JNK, and thereby inhibiting the acrylamide-induced activation of the MAPK signaling pathway. Moreover, YPSe-II in the cells was consistently shown to provide greater barrier protection than YPSe-I. In conclusion, chemical selenylation of YP could cause higher activity in mitigating acrylamide-induced cytotoxicity and intestinal barrier dysfunction, while the efficacy of activity enhancement was positively affected by the selenylation extent. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Graphical abstract

22 pages, 3303 KiB  
Article
Disparate Molecular Properties of Two Hypertrophic Cardiomyopathy-Associated cMyBP-C Mutants Reveal Distinct Pathogenic Mechanisms Beyond Haploinsufficiency
by Angelos Thanassoulas, Emna Riguene, Maria Theodoridou, Laila Barrak, Hamad Almaraghi, Mohammed Hussain, Sahar Isa Da’as, Mohamed A. Elrayess, F. Anthony Lai and Michail Nomikos
Biomedicines 2025, 13(5), 1010; https://doi.org/10.3390/biomedicines13051010 - 22 Apr 2025
Viewed by 545
Abstract
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is a common genetic cardiac disorder marked by abnormal thickening of the left ventricular myocardium, often leading to arrhythmias and heart failure. Mutations in sarcomeric protein genes, particularly MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), are [...] Read more.
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is a common genetic cardiac disorder marked by abnormal thickening of the left ventricular myocardium, often leading to arrhythmias and heart failure. Mutations in sarcomeric protein genes, particularly MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), are major contributors to HCM pathogenesis. This study aims to investigate the structural and functional effects of two HCM-associated missense mutations, p.S236G and p.E334K, located within the C0–C2 domains of cMyBP-C. Methods: Following in silico analysis, a bacterial expression system was applied, enabling the discrete C0–C2 domains of wild-type (cMyBP-CWT) and mutant (cMyBP-CS236G and cMyBP-CE334K) cMyBP-C proteins to be expressed and purified as recombinant proteins. Structural and stability changes were assessed using circular dichroism (CD), differential scanning calorimetry (DSC), and chemical denaturation assays. Functional impact on actin binding was also evaluated in vitro. Results: CD analysis revealed altered secondary structure in both mutants compared to the wild-type protein. Thermal and chemical stability assays indicated increased stability in the cMyBP-CE334K mutant, suggesting that it exhibits a more rigid conformation. This increased rigidity corresponded with a significant reduction in the actin-binding affinity relative to the wild-type protein. Conclusions: Our findings demonstrate specific detrimental effects of the p.E334K mutation and underscore the importance of understanding the structural and functional consequences of HCM-associated mutations to assist the development of targeted therapeutic strategies. Full article
Show Figures

Figure 1

24 pages, 6330 KiB  
Article
Modular-Based Synergetic Mechanisms of Jasminoidin and Ursodeoxycholic Acid in Cerebral Ischemia Therapy
by Jingai Wang, Qikai Niu, Yanan Yu, Jun Liu, Siqi Zhang, Wenjing Zong, Siwei Tian, Zhong Wang and Bing Li
Biomedicines 2025, 13(4), 938; https://doi.org/10.3390/biomedicines13040938 - 11 Apr 2025
Viewed by 563
Abstract
Objectives: Jasminoidin (JA) and ursodeoxycholic acid (UA) have been shown to exert synergistic effects on cerebral ischemia (CI) therapy, but the underlying mechanisms remain to be elucidated. Objective: To elucidate the synergistic mechanisms involved in the combined use of JA and UA [...] Read more.
Objectives: Jasminoidin (JA) and ursodeoxycholic acid (UA) have been shown to exert synergistic effects on cerebral ischemia (CI) therapy, but the underlying mechanisms remain to be elucidated. Objective: To elucidate the synergistic mechanisms involved in the combined use of JA and UA (JU) for CI therapy using a driver-induced modular screening (DiMS) strategy. Methods: Network proximity and topology-based approaches were used to identify synergistic modules and driver genes from an anti-ischemic microarray dataset (ArrayExpress, E-TABM-662). A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in 30 Sprague Dawley rats, divided into sham, vehicle, JA (25 mg/mL), UA (7 mg/mL), and JU (JA:UA = 1:1) groups. After 90 minutes of ischemia, infarct volume and neurological deficit scores were evaluated. Western blotting was performed 24 h after administration to validate key protein changes. Results: Six, eleven, and four drug-responsive On_modules were identified for JA, UA, and JU, respectively. Three synergistic modules (Sy-modules, JU-Mod-7, 8, and 10) and 12 driver genes (e.g., NRF1, FN1, CUL3) were identified, mainly involving the PI3K-Akt and MAPK pathways and regulation of the actin cytoskeleton. JA and UA synergistically reduced infarct volume and neurological deficit score (2.5, p < 0.05) in MCAO/R rats. In vivo studies demonstrated that JU suppressed the expression of CUL3, FN1, and ITGA4, while it increased that of NRF1. Conclusions: JU acts synergistically on CI–reperfusion injury by regulating FN1, CUL3, ITGA4, and NRF1 and inducing the PI3K-Akt, MAPK, and actin cytoskeleton pathways. DiMS provides a new approach to uncover mechanisms of combination therapies. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

11 pages, 951 KiB  
Communication
Deconvolution Analysis of G and F-Actin Unfolding: Insights into the Thermal Stability and Structural Modifications Induced by PACAP
by Péter Bukovics and Dénes Lőrinczy
Int. J. Mol. Sci. 2025, 26(7), 3336; https://doi.org/10.3390/ijms26073336 - 3 Apr 2025
Viewed by 431
Abstract
Actin, a key component of the cytoskeleton, undergoes significant structural and thermal changes in response to various regulatory factors, including the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). In this study, we applied deconvolution analysis to previously obtained differential scanning calorimetry (DSC) data to [...] Read more.
Actin, a key component of the cytoskeleton, undergoes significant structural and thermal changes in response to various regulatory factors, including the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). In this study, we applied deconvolution analysis to previously obtained differential scanning calorimetry (DSC) data to resolve overlapping thermal transitions in G- and F-actin unfolding. Our findings reveal that PACAP38 and PACAP6-38 significantly alter actin stability, increasing structural cooperativity in G-actin while reducing monomer–monomer interactions in F-actin. These thermodynamic changes suggest a potential role for PACAP in modulating actin polymerization and depolymerization dynamics, contributing to cytoskeletal remodeling. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

17 pages, 7957 KiB  
Article
Unveiling Genetic Markers for Milk Yield in Xinjiang Donkeys: A Genome-Wide Association Study and Kompetitive Allele-Specific PCR-Based Approach
by Chao Fang, Frederic Farnir, Lingling Liu and Haixia Xiao
Int. J. Mol. Sci. 2025, 26(7), 2961; https://doi.org/10.3390/ijms26072961 - 25 Mar 2025
Viewed by 537
Abstract
Lactation traits are critical economic attributes in domestic animals. This study investigates genetic markers and functional genes associated with lactation traits in Xinjiang donkeys. We analyzed 112 Xinjiang donkeys using 10× whole genome re-sequencing to obtain genome-wide single nucleotide polymorphisms (SNPs). Genome-wide association [...] Read more.
Lactation traits are critical economic attributes in domestic animals. This study investigates genetic markers and functional genes associated with lactation traits in Xinjiang donkeys. We analyzed 112 Xinjiang donkeys using 10× whole genome re-sequencing to obtain genome-wide single nucleotide polymorphisms (SNPs). Genome-wide association analyses were conducted using PLINK 2.0 and GEMMA 0.98.5 software, employing mixed linear models to assess several lactation traits: average monthly milk yield (AY), fat percentage (FP), protein percentage (PP), and lactose percentage (LP). A total of 236 SNPs were significantly associated with one or more milk production traits (p < 0.000001). While the two-software identified distinct SNP associations, they consistently detected the same 11, 95, 5, and 103 SNPs for AY, FP, PP, and LP, respectively. Several of these SNPs are located within potential candidate genes, including glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1), FLII actin remodeling protein (FLII), mitochondrial topoisomerase 1 (TOP1MT), thirty-eight-negative kinase 1 (TNK1), polo like kinase 1 (PLK1), notch homolog 1 (NOTCH1), developmentally regulated GTP-binding protein 2 (DRG2), mitochondrial elongation factor 2 (MIEF2), glutamine-fructose-6-phosphate transaminase 2 (GFPT2), and dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2). Additionally, we validated the polymorphism of 16 SNPs (10 genes) using Kompetitive Allele Specific PCR, revealing that TOP1MT_g.9133371T > C, GPIHBP1_g.38365122C > T, DRG2_g.4912631C > A, FLII_g.5046888C > T, and PLK1_g.23585377T > C were significantly correlated with average daily milk yield and total milk yield in the studied donkeys. This study represents the first genome-wide association analysis of markers and milk components in Xinjiang donkeys, offering valuable insights into the genetic mechanisms underlying milk production traits. Further research with larger sample sizes is essential to confirm these findings and identify potential causal genetic variants. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 6787 KiB  
Article
Potential Mechanisms Underlying the Minimal Impact of Cry1Ab1 Protein on Myzus persicae
by Liang Jin, Binwu Zhang, Luis Carlos Ramos Aguila, Jingwen Lu, Xueke Gao, Junyu Luo, Jinjie Cui and Yi Lin
Int. J. Mol. Sci. 2025, 26(7), 2924; https://doi.org/10.3390/ijms26072924 - 24 Mar 2025
Viewed by 478
Abstract
Transgenic crops have been commercially cultivated for nearly three decades, leading to increasing concerns about their environmental safety, particularly their effects on non-target organisms. This study investigated the underlying mechanisms behind the lack of impact of the Cry1Ab1 protein on the Myzus persicae [...] Read more.
Transgenic crops have been commercially cultivated for nearly three decades, leading to increasing concerns about their environmental safety, particularly their effects on non-target organisms. This study investigated the underlying mechanisms behind the lack of impact of the Cry1Ab1 protein on the Myzus persicae. The Cry1Ab1 protein showed no significant impact on the survival and development of M. persicae. Compared to other Cry protein, fewer Cry1Ab1-binding proteins were identified including beta-actin, ATP synthase subunit alpha, and GPN-loop GTPase 2. Transcriptomic analysis showed that a small set of pathways, mainly involved in immune defense, were temporarily enriched at 24 h after exposure to the Cry1Ab1 protein, while no significant pathways were enriched at 48 h in M. persicae. The results suggest that the Cry1Ab1 protein has a transient and minimal impact on M. persicae. Further structural comparisons between Cry1Ab1 and other Cry proteins (e.g., Cry1Ac) revealed significant differences in Domain III, which likely reduced the binding efficiency and impact on M. persicae’s metabolism and biological traits. This study provides valuable insights into the molecular and functional mechanisms behind the ineffectiveness of Cry1Ab1 on M. persicae and contributes to the safety evaluation of Bt for non-target organisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 6443 KiB  
Article
Biocompatible and Antibacterial Chemical Coatings on TiZr Dental Implants
by Vlad Gabriel Vasilescu, Toma Lucian Ciocan, Andreea Mihaela Custura, Florin Miculescu, Miruna Stan, Ionela Cristina Voinea, Dumitru Dima, Florentina Ionela Bucur, Andreea Veronica Dediu-Botezatu, Marian Iulian Neacșu, Elisabeta Vasilescu and Marina Imre
J. Funct. Biomater. 2025, 16(3), 112; https://doi.org/10.3390/jfb16030112 - 20 Mar 2025
Viewed by 984
Abstract
This research aims to study the antibacterial coatings of invasive surgical medical devices, including dental implants, to reduce superficial and deep local infections over the long term. To obtain the coating without altering the initial properties of the substrate (dental implant made of [...] Read more.
This research aims to study the antibacterial coatings of invasive surgical medical devices, including dental implants, to reduce superficial and deep local infections over the long term. To obtain the coating without altering the initial properties of the substrate (dental implant made of TiZr bioalloy), simple, cost-effective, and efficient methods were employed, such as chemical deposition of silver (Ag). The deposition characteristics were analyzed using scanning electron microscopy (SEM), EDX analysis, and FT-IR infrared analysis. The in vitro testing of antimicrobial activity was conducted using the diffusion method by cultivating the bacterial strains Escherichia coli (E. coli) ATCC25922 and Staphylococcus aureus (S. aureus) ATCC25923 and measuring the diameter of the bacterial inhibition zone. Investigations and biocompatibility evaluations were performed on both uncoated and silver-coated (Ag) samples by analyzing cell viability and morphology in the presence of human fetal osteoblasts (hFOB cell line) and human gingival fibroblasts (HFIB-G cells) after 8 days of incubation. The research results confirm the biocompatibility of the coating, demonstrated by the lack of significant differences in cell density between the Ag-coated samples and the control group, as well as by the fact that the silver-coated surface effectively supports actin cytoskeleton organization, adhesion, and migration of both human osteoblasts and gingival fibroblasts. The results regarding the antibacterial efficiency of the silver implant coating indicated that the E. coli bacterial strain is more resistant than S. aureus. The resistance difference between the two bacterial strains was attributed to differences in the structure of their cell envelopes. Full article
(This article belongs to the Special Issue The Development and Future of Dental Implants)
Show Figures

Figure 1

Back to TopTop