Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = FinFET (Fin Field Effect Transistor)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2423 KiB  
Article
A Stepped-Spacer FinFET Design for Enhanced Device Performance in FPGA Applications
by Meysam Zareiee, Mahsa Mehrad and Abdulkarim Tawfik
Micromachines 2025, 16(8), 867; https://doi.org/10.3390/mi16080867 - 27 Jul 2025
Viewed by 202
Abstract
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled [...] Read more.
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled nodes. In this work, we propose a novel Stepped-Spacer Structured FinFET (S3-FinFET) that incorporates a three-layer HfO2/Si3N4/HfO2 spacer configuration designed to enhance electrostatics and suppress parasitic effects. Using 2D TCAD simulations, the S3-FinFET is evaluated in terms of key performance metrics, including transfer/output characteristics, ON/OFF current ratio, subthreshold swing (SS), drain-induced barrier lowering (DIBL), gate capacitance, and cut-off frequency. The results show significant improvements in leakage control and high-frequency behavior. These enhancements make the S3-FinFET particularly well-suited for Field-Programmable Gate Arrays (FPGAs), where power efficiency, speed, and signal integrity are critical to performance in reconfigurable logic environments. Full article
Show Figures

Figure 1

12 pages, 1917 KiB  
Article
Aging Analysis and Anti-Aging Circuit Design of Strong-Arm Latch Circuits in 14 nm FinFET Technology
by Xin Xu, Meng Li, Yiqun Shi, Yunpeng Li, Hao Zhu and Qingqing Sun
Electronics 2025, 14(4), 772; https://doi.org/10.3390/electronics14040772 - 17 Feb 2025
Viewed by 819
Abstract
Despite the advantages of fin field-effect transistors (FinFETs), there are hidden issues such as electric field enhancement and exacerbated self-heating effects, which will intensify device aging effects. Due to the escalating costs associated with aging protection at the device process level, there is [...] Read more.
Despite the advantages of fin field-effect transistors (FinFETs), there are hidden issues such as electric field enhancement and exacerbated self-heating effects, which will intensify device aging effects. Due to the escalating costs associated with aging protection at the device process level, there is an urgent need to reduce the impact of aging on circuit performance from the circuit design perspective. This study focuses on the specific structure of the strong-arm latch comparator and conducts a detailed aging analysis. Based on the quasi-static approximation (QSA) model, the threshold voltage shift under operational stress is simulated. It is concluded that both the hot carrier injection (HCI) effect and negative bias temperature instability (NBTI) effect play equally non-negligible roles. Furthermore, aging tests were conducted based on 14 nm FinFET devices, validating the substantial HCI effects induced by short-duration pulses. Simultaneously, the test results suggest that the aging effect becomes more remarkable with increasing current. An improved circuit is proposed to reduce the HCI effect by reducing the current pulse by the way of pre-charging, which effectively reduces the threshold voltage shift of the latch comparator input transistors. Full article
Show Figures

Figure 1

14 pages, 2803 KiB  
Article
Enhanced Drive Current in 10 nm Channel Length Gate-All-Around Field-Effect Transistor Using Ultrathin Strained Si/SiGe Channel
by Potaraju Yugender, Rudra Sankar Dhar, Swagat Nanda, Kuleen Kumar, Pandurengan Sakthivel and Arun Thirumurugan
Micromachines 2024, 15(12), 1455; https://doi.org/10.3390/mi15121455 - 29 Nov 2024
Cited by 1 | Viewed by 2107
Abstract
The continuous scaling down of MOSFETs is one of the present trends in semiconductor devices to increase device performance. Nevertheless, with scaling down beyond 22 nm technology, the performance of even the newer nanodevices with multi-gate architecture declines with an increase in short [...] Read more.
The continuous scaling down of MOSFETs is one of the present trends in semiconductor devices to increase device performance. Nevertheless, with scaling down beyond 22 nm technology, the performance of even the newer nanodevices with multi-gate architecture declines with an increase in short channel effects (SCEs). Consequently, to facilitate further increases in the drain current, the use of strained silicon technology provides a better solution. Thus, the development of a novel Gate-All-Around Field-Effect Transistor (GAAFET) incorporating a strained silicon channel with a 10 nm gate length is initiated and discussed. In this device, strain is incorporated in the channel, where a strained silicon germanium layer is wedged between two strained silicon layers. The GAAFET device has four gates that surround the channel to provide improved control of the gate over the strained channel region and also reduce the short channel effects in the devices. The electrical properties, such as the on current, off current, threshold voltage (VTH), subthreshold slope, drain-induced barrier lowering (DIBL), and Ion/Ioff current ratio, of the 10 nm channel length GAAFET are compared with the 22 nm strained silicon channel GAAFET, the existing SOI FinFET device on 10 nm gate length, and IRDS 2022 specifications device. The developed 10 nm channel length GAAFET, having an ultrathin strained silicon channel, delivers enriched device performance, being augmented in contrast to the IRDS 2022 specifications device, showing improved characteristics along with amended SCEs. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

21 pages, 4200 KiB  
Article
A Conclusive Algorithm with Kink Effects for Fitting 3-D FinFET and Planar MOSFET Characteristic Curves
by Hsin-Chia Yang, Sung-Ching Chi, Han-Ya Yang and Yu-Tzu Yang
Appl. Sci. 2024, 14(20), 9371; https://doi.org/10.3390/app14209371 - 14 Oct 2024
Viewed by 1127
Abstract
FinFET transistors with fin channel lengths of 160 nm and 2000 nm and a planar MOSFET transistor with channel lengths of 180 nm and 90 nm are presented with characteristic curves at various Gate biases. A finalized algorithm with kink effects was effectively [...] Read more.
FinFET transistors with fin channel lengths of 160 nm and 2000 nm and a planar MOSFET transistor with channel lengths of 180 nm and 90 nm are presented with characteristic curves at various Gate biases. A finalized algorithm with kink effects was effectively responsible for addressing the field effect transistors. The algorithm included the modified conventional current–voltage formula and a nonlinear heat-associated kink solution which was simplified as a Gaussian form. Three parameters in the modified model included kN (which was related with channel width, channel length, and gate oxide capacitor, and was proportional to the mobility of carriers), Vth (threshold voltage), and λ (the inverse of early voltage). Those parameters were determined to minimize the discrepancies between the measured data and the fitting values, but left kinks located at around (VGS-Vth), which were deliberately eliminated by the Gaussian form because of the agitation of thermal kink effects. The whole fitting was made to be as close as possible to the as-measured IDS-VDS. In the meantime, those determined parameters were physically meaningful after the analysis had been performed. Full article
Show Figures

Figure 1

10 pages, 3712 KiB  
Article
A Novel Isolation Approach for GaN-Based Power Integrated Devices
by Zahraa Zaidan, Nedal Al Taradeh, Mohammed Benjelloun, Christophe Rodriguez, Ali Soltani, Josiane Tasselli, Karine Isoird, Luong Viet Phung, Camille Sonneville, Dominique Planson, Yvon Cordier, Frédéric Morancho and Hassan Maher
Micromachines 2024, 15(10), 1223; https://doi.org/10.3390/mi15101223 - 30 Sep 2024
Viewed by 2068
Abstract
This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant [...] Read more.
This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant challenge in this technology is ensuring electrical isolation between the two types of devices. We propose a new isolation method designed to prevent any degradation of the lateral transistor’s performance. Specifically, high voltage applied to the drain of the vertical GaN power FinFET can adversely affect the lateral GaN HEMT’s performance, leading to a shift in the threshold voltage and potentially compromising device stability and driver performance. To address this issue, we introduce a highly doped n+ GaN layer positioned between the epitaxial layers of the two devices. This approach is validated using the TCAD-Sentaurus simulator, demonstrating that the n+ GaN layer effectively blocks the vertical electric field and prevents any depletion or enhancement of the 2D electron gas (2DEG) in the lateral GaN HEMT. To our knowledge, this represents the first publication of such an innovative isolation strategy between vertical and lateral GaN devices. Full article
(This article belongs to the Special Issue GaN Heterostructure Devices: From Materials to Application)
Show Figures

Figure 1

11 pages, 3249 KiB  
Article
Simulation of Novel Nano Low-Dimensional FETs at the Scaling Limit
by Pengwen Guo, Yuxue Zhou, Haolin Yang, Jiong Pan, Jiaju Yin, Bingchen Zhao, Shangjian Liu, Jiali Peng, Xinyuan Jia, Mengmeng Jia, Yi Yang and Tianling Ren
Nanomaterials 2024, 14(17), 1375; https://doi.org/10.3390/nano14171375 - 23 Aug 2024
Cited by 1 | Viewed by 1790
Abstract
The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects [...] Read more.
The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects (SCEs) is the integration of low-dimensional materials into novel device architectures, leveraging the coupling between multiple gates to achieve efficient electrostatic control of the channel. We employed TCAD simulations to model multi-gate FETs based on various dimensional systems and comprehensively investigated electric fields, potentials, current densities, and electron densities within the devices. Through continuous parameter scaling and extracting the sub-threshold swing (SS) and DIBL from the electrical outputs, we offered optimal MoS2 layer numbers and single-walled carbon nanotube (SWCNT) diameters, as well as designed structures for multi-gate FETs based on monolayer MoS2, identifying dual-gate transistors as suitable for high-speed switching applications. Comparing the switching performance of two device types at the same node revealed CNT’s advantages as a channel material in mitigating SCEs at sub-3 nm nodes. We validated the performance enhancement of 2D materials in the novel device architecture and reduced the complexity of the related experimental processes. Consequently, our research provides crucial insights for designing next-generation high-performance transistors based on low-dimensional materials at the scaling limit. Full article
(This article belongs to the Special Issue Simulation Study of Nanoelectronics)
Show Figures

Figure 1

15 pages, 2264 KiB  
Article
Enhanced CPU Design for SDN Controller
by Hiba S. Bazzi, Ramzi A. Jaber, Ahmad M. El-Hajj, Fathelalem A. Hija and Ali M. Haidar
Micromachines 2024, 15(8), 997; https://doi.org/10.3390/mi15080997 - 31 Jul 2024
Cited by 3 | Viewed by 1781
Abstract
Software-Defined Networking (SDN) revolutionizes network management by decoupling control plane functionality from data plane devices, enabling the centralized control and programmability of network behavior. This paper uses the ternary system to improve the Central Processing Unit (CPU) inside the SDN controller to enhance [...] Read more.
Software-Defined Networking (SDN) revolutionizes network management by decoupling control plane functionality from data plane devices, enabling the centralized control and programmability of network behavior. This paper uses the ternary system to improve the Central Processing Unit (CPU) inside the SDN controller to enhance network management. The Multiple-Valued Logic (MVL) circuit shows remarkable improvement compared to the binary circuit regarding the chip area, propagation delay, and energy consumption. Moreover, the Carbon Nanotube Field-Effect Transistor (CNTFET) shows improvement compared to other transistor technologies regarding energy efficiency and circuit speed. To the best of our knowledge, this is the first time that a ternary design has been applied inside the CPU of an SDN controller. Earlier studies focused on Ternary Content-Addressable Memory (TCAM) in SDN. This paper proposes a new 1-trit Ternary Full Adder (TFA) to decrease the propagation delay and the Power–Delay Product (PDP). The proposed design is compared to the latest 17 designs, including 15 designs that are 1-trit TFA CNTFET-based, 2-bit binary FA FinFET-based, and 2-bit binary FA CMOS-based, using the HSPICE simulator, to optimize the CPU utilization in SDN environments, thereby enhancing programmability. The results show the success of the proposed design in reducing the propagation delays by over 99% compared to the 2-bit binary FA CMOS-based design, over 78% compared to the 2-bit binary FA FinFET-based design, over 91% compared to the worst-case TFA, and over 49% compared to the best-case TFAs. Full article
Show Figures

Figure 1

16 pages, 3611 KiB  
Article
A Novel CNFET SRAM-Based Compute-In-Memory for BNN Considering Chirality and Nanotubes
by Youngbae Kim, Nader Alnatsheh, Nandakishor Yadav, Jaeik Cho, Heeyoung Jo and Kyuwon Ken Choi
Electronics 2024, 13(11), 2192; https://doi.org/10.3390/electronics13112192 - 4 Jun 2024
Cited by 1 | Viewed by 1624
Abstract
As AI models grow in complexity to enhance accuracy, supporting hardware encounters challenges such as heightened power consumption and diminished processing speed due to high throughput demands. Compute-in-memory (CIM) technology emerges as a promising solution. Furthermore, carbon nanotube field-effect transistors (CNFETs) show significant [...] Read more.
As AI models grow in complexity to enhance accuracy, supporting hardware encounters challenges such as heightened power consumption and diminished processing speed due to high throughput demands. Compute-in-memory (CIM) technology emerges as a promising solution. Furthermore, carbon nanotube field-effect transistors (CNFETs) show significant potential in bolstering CIM technology. Despite advancements in silicon semiconductor technology, CNFETs pose as formidable competitors, offering advantages in reliability, performance, and power efficiency. This is particularly pertinent given the ongoing challenges posed by the reduction in silicon feature size. We proposed an ultra-low-power architecture leveraging CNFETs for Binary Neural Networks (BNNs), featuring an advanced state-of-the-art 8T SRAM bit cell and CNFET model to optimize performance in intricate AI computations. Through meticulous optimization, we fine-tune the CNFET model by adjusting tube counts and chiral vectors, as well as optimizing transistor ratios for SRAM transistors and nanotube diameters. SPICE simulation in 32 nm CNFET technology facilitates the determination of optimal transistor ratios and chiral vectors across various nanotube diameters under a 0.9 V supply voltage. Comparative analysis with conventional FinFET-based CIM structures underscores the superior performance of our CNFET SRAM-based CIM design, boasting a 99% reduction in power consumption and a 91.2% decrease in delay compared to state-of-the-art designs. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

14 pages, 2520 KiB  
Article
Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons
by Hansol Kim, Sung Yun Woo and Hyungjin Kim
Biomimetics 2024, 9(6), 335; https://doi.org/10.3390/biomimetics9060335 - 31 May 2024
Viewed by 1621
Abstract
To mimic the homeostatic functionality of biological neurons, a split-gate field-effect transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the number of charges trapped in the Si3N4 layer, the threshold voltage (V [...] Read more.
To mimic the homeostatic functionality of biological neurons, a split-gate field-effect transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the number of charges trapped in the Si3N4 layer, the threshold voltage (Vth) of the S-G FET changes. To prevent degradation of the gate dielectric due to program/erase pulses, the gates for read operation and Vth control were separated through the fin structure. A circuit that modulates the width and amplitude of the pulse was constructed to generate a Program/Erase pulse for the S-G FET as the output pulse of the neuron circuit. By adjusting the Vth of the neuron circuit, the firing rate can be lowered by increasing the Vth of the neuron circuit with a high firing rate. To verify the performance of the neural network based on S-G FET, a simulation of online unsupervised learning and classification in a 2-layer SNN is performed. The results show that the recognition rate was improved by 8% by increasing the threshold of the neuron circuit fired. Full article
(This article belongs to the Special Issue New Insights into Bio-Inspired Neural Networks)
Show Figures

Figure 1

26 pages, 7311 KiB  
Article
Reducing Off-State and Leakage Currents by Dielectric Permittivity-Graded Stacked Gate Oxides on Trigate FinFETs: A TCAD Study
by Alper Ülkü, Esin Uçar, Ramis Berkay Serin, Rifat Kaçar, Murat Artuç, Ebru Menşur and Ahmet Yavuz Oral
Micromachines 2024, 15(6), 726; https://doi.org/10.3390/mi15060726 - 30 May 2024
Cited by 2 | Viewed by 1625
Abstract
Since its invention in the 1960s, one of the most significant evolutions of metal-oxide semiconductor field effect transistors (MOSFETs) would be the 3D version that makes the semiconducting channel vertically wrapped by conformal gate electrodes, also recognized as FinFET. During recent decades, the [...] Read more.
Since its invention in the 1960s, one of the most significant evolutions of metal-oxide semiconductor field effect transistors (MOSFETs) would be the 3D version that makes the semiconducting channel vertically wrapped by conformal gate electrodes, also recognized as FinFET. During recent decades, the width of fin (Wfin) and the neighboring gate oxide width (tox) in FinFETs has shrunk from about 150 nm to a few nanometers. However, both widths seem to have been leveling off in recent years, owing to the limitation of lithography precision. Here, we show that by adapting the Penn model and Maxwell–Garnett mixing formula for a dielectric constant (κ) calculation for nanolaminate structures, FinFETs with two- and three-stage κ-graded stacked combinations of gate dielectrics with SiO2, Si3N4, Al2O3, HfO2, La2O3, and TiO2 perform better against the same structures with their single-layer dielectrics counterparts. Based on this, FinFETs simulated with κ-graded gate oxides achieved an off-state drain current (IOFF) reduced down to 6.45 × 10−15 A for the Al2O3: TiO2 combination and a gate leakage current (IG) reaching down to 2.04 × 10−11 A for the Al2O3: HfO2: La2O3 combination. While our findings push the individual dielectric laminates to the sub 1 nm limit, the effects of dielectric permittivity matching and κ-grading for gate oxides remain to have the potential to shed light on the next generation of nanoelectronics for higher integration and lower power consumption opportunities. Full article
(This article belongs to the Special Issue Multifunctional-Nanomaterials-Based Semiconductor Devices and Sensors)
Show Figures

Figure 1

20 pages, 8766 KiB  
Review
A Review of Reliability in Gate-All-Around Nanosheet Devices
by Miaomiao Wang
Micromachines 2024, 15(2), 269; https://doi.org/10.3390/mi15020269 - 13 Feb 2024
Cited by 12 | Viewed by 8696
Abstract
The gate-all-around (GAA) nanosheet (NS) field-effect-transistor (FET) is poised to replace FinFET in the 3 nm CMOS technology node and beyond, marking the second seminal shift in device architecture across the extensive 60-plus-year history of MOSFET. The introduction of a new device structure, [...] Read more.
The gate-all-around (GAA) nanosheet (NS) field-effect-transistor (FET) is poised to replace FinFET in the 3 nm CMOS technology node and beyond, marking the second seminal shift in device architecture across the extensive 60-plus-year history of MOSFET. The introduction of a new device structure, coupled with aggressive pitch scaling, can give rise to reliability challenges. In this article, we present a review of the key reliability mechanisms in GAA NS FET, including bias temperature instability (BTI), hot carrier injection (HCI), gate oxide (Gox) time-dependent dielectric breakdown (TDDB), and middle-of-line (MOL) TDDB. We aim to not only underscore the unique reliability attributes inherent to NS architecture but also provide a holistic view of the status and prospects of NS reliability, taking into account the challenges posed by future scaling. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes)
Show Figures

Figure 1

9 pages, 1496 KiB  
Article
Investigation of Single-Event Upset in Graphene Nano-Ribbon FET SRAM Cell
by Naheem Olakunle Adesina
Micromachines 2023, 14(7), 1449; https://doi.org/10.3390/mi14071449 - 19 Jul 2023
Cited by 3 | Viewed by 1580
Abstract
In recent years, graphene has received so much attention because of its superlative properties and its potential to revolutionize electronics, especially in VLSI. This study analyzes the effect of single-event upset (SEU) in an SRAM cell, which employs a metal-oxide semiconductor type graphene [...] Read more.
In recent years, graphene has received so much attention because of its superlative properties and its potential to revolutionize electronics, especially in VLSI. This study analyzes the effect of single-event upset (SEU) in an SRAM cell, which employs a metal-oxide semiconductor type graphene nano-ribbon field effect transistor (MOS-GNRFET) and compares the results with another SRAM cell designed using a PTM 10 nm FinFET node. Our simulations show that there is a change in the data stored in the SRAM after a heavy ion strike. However, it recovers from radiation effects after 0.46 ns for GNRFET and 0.51 ns for FinFET. Since the degradation observed in Q and Qb of GNRFET SRAM are 2.7X and 2.16X as compared to PTM nano-MOSFET, we can conclude that GNRFET is less robust to single effect upset. In addition, the stability of SRAM is improved by increasing the supply voltage VDD. Full article
(This article belongs to the Special Issue 2D Material-Based Semiconductors: Design and Applications)
Show Figures

Figure 1

13 pages, 10307 KiB  
Article
High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale
by Zhuo Chen, Huilong Zhu, Guilei Wang, Qi Wang, Zhongrui Xiao, Yongkui Zhang, Jinbiao Liu, Shunshun Lu, Yong Du, Jiahan Yu, Wenjuan Xiong, Zhenzhen Kong, Anyan Du, Zijin Yan and Yantong Zheng
Nanomaterials 2023, 13(12), 1867; https://doi.org/10.3390/nano13121867 - 15 Jun 2023
Cited by 1 | Viewed by 2609
Abstract
At sub-3 nm nodes, the scaling of lateral devices represented by a fin field-effect transistor (FinFET) and gate-all-around field effect transistors (GAAFET) faces increasing technical challenges. At the same time, the development of vertical devices in the three-dimensional direction has excellent potential for [...] Read more.
At sub-3 nm nodes, the scaling of lateral devices represented by a fin field-effect transistor (FinFET) and gate-all-around field effect transistors (GAAFET) faces increasing technical challenges. At the same time, the development of vertical devices in the three-dimensional direction has excellent potential for scaling. However, existing vertical devices face two technical challenges: “self-alignment of gate and channel” and “precise gate length control”. A recrystallization-based vertical C-shaped-channel nanosheet field effect transistor (RC-VCNFET) was proposed, and related process modules were developed. The vertical nanosheet with an “exposed top” structure was successfully fabricated. Moreover, through physical characterization methods such as scanning electron microscopy (SEM), atomic force microscopy (AFM), conductive atomic force microscopy (C-AFM) and transmission electron microscopy (TEM), the influencing factors of the crystal structure of the vertical nanosheet were analyzed. This lays the foundation for fabricating high-performance and low-cost RC-VCNFETs devices in the future. Full article
(This article belongs to the Special Issue Memory Nanomaterials: Growth, Characterization and Device Fabrication)
Show Figures

Figure 1

10 pages, 2108 KiB  
Article
Performance Degradation in Static Random Access Memory of 10 nm Node FinFET Owing to Displacement Defects
by Minji Bang, Jonghyeon Ha, Gyeongyeop Lee, Minki Suh and Jungsik Kim
Micromachines 2023, 14(5), 1090; https://doi.org/10.3390/mi14051090 - 22 May 2023
Cited by 3 | Viewed by 1951
Abstract
We comprehensively investigate displacement-defect-induced current and static noise margin variations in six-transistor (6T) static random access memory (SRAM) based on a 10 nm node fin field-effect transistor (FinFET) using technology computer-aided design (TCAD). Various defect cluster conditions and fin structures are considered as [...] Read more.
We comprehensively investigate displacement-defect-induced current and static noise margin variations in six-transistor (6T) static random access memory (SRAM) based on a 10 nm node fin field-effect transistor (FinFET) using technology computer-aided design (TCAD). Various defect cluster conditions and fin structures are considered as variables to estimate the worst-case scenario for displacement defects. The rectangular defect clusters capture more widely distributed charges at the fin top, reducing the on- and off-current. The read static noise margin (RSNM) is the most degraded in the pull-down transistor during the read operation. The increased fin width decreases the RSNM due to the gate field. The current per cross-sectional area increases when the fin height decreases, but the energy barrier lowering by the gate field is similar. Therefore, the reduced fin width and increased fin height structure suit the 10 nm node FinFET 6T SRAMs with high radiation hardness. Full article
(This article belongs to the Special Issue Spintronic Memory and Logic Devices)
Show Figures

Figure 1

19 pages, 3639 KiB  
Article
Development and Analysis of a Three-Fin Trigate Q-FinFET for a 3 nm Technology Node with a Strained-Silicon Channel System
by Swagat Nanda, Rudra Sankar Dhar, Falah Awwad and Mousa I. Hussein
Nanomaterials 2023, 13(10), 1662; https://doi.org/10.3390/nano13101662 - 18 May 2023
Cited by 10 | Viewed by 3174
Abstract
Multi-gate field effect transistors (FETs) such as FinFETs are severely affected by short-channel effects (SCEs) below 14 nm technology nodes, with even taller fins incurring fringing capacitances. This leads to performance degradation of the devices, which inhibits further scaling of nanoFETs, deterring the [...] Read more.
Multi-gate field effect transistors (FETs) such as FinFETs are severely affected by short-channel effects (SCEs) below 14 nm technology nodes, with even taller fins incurring fringing capacitances. This leads to performance degradation of the devices, which inhibits further scaling of nanoFETs, deterring the progress of semiconductor industries. Therefore, research has not kept pace with the technological requirements of the International Roadmap for Devices and Systems (IRDS). Thus, the development of newer devices with superior performances in terms of higher ON currents, acceptable leakage currents and improved SCEs is needed to enable the continuance of integrated circuit (IC) technologies. The literature has advocated integration of strained-silicon technology in existing FinFETs, which is highly effective in enhancing ON currents through the strain effect. However, the ON currents can also be amplified by intensifying the number of fins in trigate (TG) FinFETs. Thus, three-fin TG quantum (Q)-FinFETs, using a novel tri-layered strained-silicon channel, are deployed here at 10 nm and 8 nm channel lengths. Threshold voltage is calculated analytically to validate the designs. The electrical parameters and quantum effects of both devices are explored, analysed and compared with respect to existing heterostructure-on-insulator (HOI) FinFETs and the proposed existing standard requirement of IRDS 2022 for a 3 nm technology node. The comparisons demonstrated a significant increase in the drive currents upon employing three fins of the same dimensions (8 nm gate length) and specifications in a device-based system. The performance is augmented in contrast to the 3 nm technology node device of IRDS 2022, with SCEs within the limits. Thus, employing a tri-layered strained-silicon channel system in each fin allowed for forming a three-fin Q-FinFET that, in our opinion, is the technique for consolidating the performance of the devices and enabling future generation device for faster switching operation in a sub-nano regime. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop