Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = Feret diameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3748 KiB  
Article
Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree
by Fatima Sarahi Serrano-Villa, Eduardo Morales-Sánchez, José Alfredo Téllez-Morales, Verónica Cuellar-Sánchez, Reynold R. Farrera-Rebollo and Georgina Calderón-Domínguez
Polymers 2025, 17(15), 2069; https://doi.org/10.3390/polym17152069 - 29 Jul 2025
Viewed by 358
Abstract
Electrohydrodynamic atomization (EHDA) has significant advantages for microencapsulating compounds in various structures using biopolymers, where more research using pure starch is required. Concerning this, jicama starch and its hydrolysates have not yet been tested, despite their unique characteristics, which come from an alternative [...] Read more.
Electrohydrodynamic atomization (EHDA) has significant advantages for microencapsulating compounds in various structures using biopolymers, where more research using pure starch is required. Concerning this, jicama starch and its hydrolysates have not yet been tested, despite their unique characteristics, which come from an alternative low-value-added crop source. Rapid acid hydrolysis of jicama starch with H2SO4 resulted in dextrins with a degree of hydrolysis (DE) from 0.4 to 19% within 1–12 h, and syrup solids at 24 h (DE = 42%). This process modifies the water retention capacity of jicama starch, gel viscosity, surface tension, and electrical conductivity. Hydrolyzed starch particles obtained by electrospraying (10 kV, L = 10 cm, Q = 2 mL/h) showed Feret diameters and roundness significantly influenced (p ≤ 0.05) by the degree of hydrolysis rather than the concentration of solids. It was found that hydrolyzed jicama starch with a DE < 6.3% can be used as the sole wall material to form particles by electrospraying, as they facilitate the formation of stable and rounded like-microspheres particles; this was not feasible above this threshold. The results suggest that the jicama starch’s ability to be used as a wall material in the electrospray synthesis of particles or microspheres appears to be determined by the degree of hydrolysis. Full article
Show Figures

Graphical abstract

23 pages, 6601 KiB  
Article
Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites
by Wojciech Piątkiewicz, Piotr Narloch, Zuzanna Wólczyńska and Joanna Mańczak
Materials 2025, 18(15), 3458; https://doi.org/10.3390/ma18153458 - 23 Jul 2025
Viewed by 573
Abstract
This study investigates the effect of hemp shive granulometry on the thermal conductivity and microstructure of hemp–lime composites. Three distinct particle size fractions—fine, medium, and coarse—were characterized using high-resolution image analysis to determine geometric parameters such as Feret diameters, circularity, and elongation. Composite [...] Read more.
This study investigates the effect of hemp shive granulometry on the thermal conductivity and microstructure of hemp–lime composites. Three distinct particle size fractions—fine, medium, and coarse—were characterized using high-resolution image analysis to determine geometric parameters such as Feret diameters, circularity, and elongation. Composite mixtures with varying binder-to-shive and water-to-shive ratios were prepared and compacted at a consistent level to isolate the influence of aggregate granulometry on thermal performance. Results demonstrate a clear inverse relationship between particle size and thermal conductivity, with coarse fractions reducing thermal conductivity by up to 7.6% compared to fine fractions. Composite density was also affected, decreasing with increasing particle size, confirming the impact of granulometry on pore structure and packing density. However, binder content exhibited the most significant effect on thermal conductivity, with a 20% increase observed for higher binder-to-shive ratios irrespective of shive size. The study further establishes that a 15 g sample size (~2400 particles) provides sufficient statistical accuracy for granulometric characterization using image analysis. These findings provide critical insights for optimizing hemp–lime composites for enhanced thermal insulation performance, supporting sustainable construction practices by informing material formulation and processing parameters. Full article
Show Figures

Figure 1

10 pages, 3206 KiB  
Article
Photobiomodulatory Effects of Low-Power LED Light on Cultured Human Umbilical Vein Endothelial Cells
by Ikuro Kato, Toshikatsu Suzumura, Yoshihiko Sugita, Satoshi Doi, Atsuo Komori, Yukinori Ueno, Yuki Ito, Seeta Kato, Waka Yoshida, Ryoko Kawai, Katsutoshi Kubo and Hatsuhiko Maeda
J. Clin. Med. 2025, 14(11), 3959; https://doi.org/10.3390/jcm14113959 - 4 Jun 2025
Viewed by 532
Abstract
Objective: This study aimed to evaluate the photobiomodulatory (PBM) effects of low-power light-emitting diode (LED) irradiation on cultured human umbilical vein endothelial cells (HUVECs), focusing on changes in cellular metabolic activity and morphology. Materials and Methods: HUVECs were cultured and divided into [...] Read more.
Objective: This study aimed to evaluate the photobiomodulatory (PBM) effects of low-power light-emitting diode (LED) irradiation on cultured human umbilical vein endothelial cells (HUVECs), focusing on changes in cellular metabolic activity and morphology. Materials and Methods: HUVECs were cultured and divided into three groups: control (no irradiation), red LED (655 nm), and blue LED (455 nm). Cells were irradiated once with a total energy dose of 4 J over 60 s. Cellular metabolic activity was assessed at 0, 1, 3, and 6 h post-irradiation using the WST-8 assay. Morphological changes were examined 3 h post-irradiation using rhodamine–phalloidin staining and confocal laser scanning microscopy. Results: Red LED irradiation significantly enhanced metabolic activity immediately and at 3 h post-irradiation compared to the control group. Blue LED irradiation showed a non-significant trend toward increased metabolic activity at 1 and 3 h. Morphometric analysis revealed increases in cell area, perimeter, and Feret diameter in both LED-irradiated groups, with more pronounced changes observed in the red LED group. Conclusions: Low-power red LED light (655 nm) effectively promotes metabolic activation and induces morphological changes in vascular endothelial cells, suggesting its potential application in angiogenesis and wound healing. Due to its safety and accessibility, LED-based PBM may serve as a promising therapeutic modality for soft tissue regeneration in both clinical and home-care settings. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

12 pages, 1337 KiB  
Article
KEPPRA: Key Epilepsy Prognostic Parameters with Radiomics in Acute Subdural Hematoma Before Craniotomy
by Alexandru Guranda, Antonia Richter, Johannes Wach, Erdem Güresir and Martin Vychopen
Brain Sci. 2025, 15(2), 204; https://doi.org/10.3390/brainsci15020204 - 16 Feb 2025
Viewed by 840
Abstract
Background: Acute subdural hematoma (aSDH) is associated with a high risk of epilepsy, a complication linked to poor outcomes. Craniotomy is a known risk factor, with an epilepsy incidence of approximately 25%. This study evaluated radiomic features from preoperative CT scans to predict [...] Read more.
Background: Acute subdural hematoma (aSDH) is associated with a high risk of epilepsy, a complication linked to poor outcomes. Craniotomy is a known risk factor, with an epilepsy incidence of approximately 25%. This study evaluated radiomic features from preoperative CT scans to predict epilepsy risk in aSDH patients undergoing craniotomy. Methods: A retrospective analysis of 178 adult aSDH patients treated between 2016 and 2022 identified 64 patients meeting inclusion criteria. Radiomic features (e.g., Feret diameter, elongation, flatness, surface area, and volume) from preoperative CT scans within 24 h of surgery were analyzed alongside clinical factors, including cardiac comorbidities, pupillary response, SOFA score, age, and anticoagulation status. Results: Of the 64 patients, 18 (28%) developed generalized seizures. Univariate analysis showed significant associations with Feret diameter (p = 0.045), elongation (p = 0.005), cardiac comorbidities (p = 0.017), and SOFA score (p = 0.036). ROC analysis showed excellent discriminatory ability for elongation (AUC = 0.82). Multivariate analysis identified elongation as an independent predictor (p = 0.003); elongation ≥ 1.45 increased seizure risk 7.78-fold (OR = 7.778; 95% CI = 1.969–30.723). Conclusions: Radiomic features, particularly elongation, may help predict epilepsy risk in aSDH patients undergoing craniotomy. Prospective validation is needed. Full article
(This article belongs to the Special Issue Application of Surgery in Epilepsy)
Show Figures

Figure 1

18 pages, 4900 KiB  
Article
Quality Evaluation of Small Features Fabricated by Fused Filament Fabrication Method
by Dawid Zieliński, Mariusz Deja and Rui Zhu
Materials 2025, 18(3), 507; https://doi.org/10.3390/ma18030507 - 23 Jan 2025
Viewed by 658
Abstract
The purpose of this research was to evaluate the quality of small features fabricated by the fused filament fabrication (FFF) method. The samples containing circular and square cross-sections through holes with different dimensions, lengths, and orientation angles were printed from ABS (acrylonitrile butadiene [...] Read more.
The purpose of this research was to evaluate the quality of small features fabricated by the fused filament fabrication (FFF) method. The samples containing circular and square cross-sections through holes with different dimensions, lengths, and orientation angles were printed from ABS (acrylonitrile butadiene styrene) filament. The adopted optical inspection method allowed us to conduct observations of individual features and their measurements. The image processing software was used to determine the accuracy of the dimensions and shape of different cross-sections. Feret’s diameters were used for the evaluation of shape accuracy by comparing them with theoretical dimensions assumed in a 3D CAD model. Considering the relationship between the real and theoretical dimensions of different features, general empirical equations for predicting the equivalent dimensions were developed. The proposed method of the quality evaluation of small features can be easily implemented and widely applied to other features, especially internal holes with different cross-sections made using various additive manufacturing methods. Full article
Show Figures

Figure 1

12 pages, 1189 KiB  
Article
PROMISE: Prognostic Radiomic Outcome Measurement in Acute Subdural Hematoma Evacuation Post-Craniotomy
by Alexandru Guranda, Antonia Richter, Johannes Wach, Erdem Güresir and Martin Vychopen
Brain Sci. 2025, 15(1), 58; https://doi.org/10.3390/brainsci15010058 - 10 Jan 2025
Cited by 1 | Viewed by 1227
Abstract
Background/Objectives: Traumatic acute subdural hematoma (aSDH) often requires surgical intervention, such as craniotomy, to relieve mass lesions and pressure. The extent of hematoma evacuation significantly impacts patient outcomes. This study utilizes 3D Slicer software to analyse post-craniotomy hematoma volume changes and evaluate their [...] Read more.
Background/Objectives: Traumatic acute subdural hematoma (aSDH) often requires surgical intervention, such as craniotomy, to relieve mass lesions and pressure. The extent of hematoma evacuation significantly impacts patient outcomes. This study utilizes 3D Slicer software to analyse post-craniotomy hematoma volume changes and evaluate their prognostic significance in aSDH patients. Methods: Among 178 adult patients diagnosed with aSDH from January 2015 to December 2022, 64 underwent hematoma evacuation via craniotomy. Initial scans were performed within 24 h of trauma, followed by routine postoperative scans to assess residual hematoma. We conducted radiomic analysis of preoperative and postoperative volumes, surface area, Feret diameter, sphericity, flatness, and elongation. Clinical parameters, including SOFA score, APACHE score, pupillary response, comorbidities, age, anticoagulation status, and preoperative haematocrit and haemoglobin levels, were also evaluated. Results: Changes in Δ surface area significantly correlated with 30-day outcomes (p = 0.03) and showed moderate predictive accuracy (AUC = 0.65). Patients with a Δ surface area > 30,090 mm2 experienced poorer outcomes (OR = 6.66, p = 0.02). Significant features included preoperative surface area (p = 0.009), Feret diameter (p = 0.0012). In multivariate analysis, only the Feret diameter remained significant (p = 0.01). Conclusions: Postoperative Δ surface area is, among other variables, a strong predictor of 30-day outcomes, while in multivariate analysis, preoperative Feret diameter remains the only independent predictor. Radiomic analysis with 3D Slicer may enhance prognostic accuracy and inform tailored therapeutic strategies. Full article
(This article belongs to the Section Neurosurgery and Neuroanatomy)
Show Figures

Figure 1

27 pages, 14919 KiB  
Article
Marine Microplastic Classification by Hyperspectral Imaging: Case Studies from the Mediterranean Sea, the Strait of Gibraltar, the Western Atlantic Ocean and the Bay of Biscay
by Roberta Palmieri, Silvia Serranti, Giuseppe Capobianco, Andres Cózar, Elisa Martí and Giuseppe Bonifazi
Appl. Sci. 2024, 14(20), 9310; https://doi.org/10.3390/app14209310 - 12 Oct 2024
Cited by 1 | Viewed by 2176
Abstract
In this work, a comprehensive characterization of microplastic samples collected from unique geographical locations, including the Mediterranean Sea, Strait of Gibraltar, Western Atlantic Ocean and Bay of Biscay utilizing advanced hyperspectral imaging (HSI) techniques working in the short-wave infrared range (1000–2500 nm) is [...] Read more.
In this work, a comprehensive characterization of microplastic samples collected from unique geographical locations, including the Mediterranean Sea, Strait of Gibraltar, Western Atlantic Ocean and Bay of Biscay utilizing advanced hyperspectral imaging (HSI) techniques working in the short-wave infrared range (1000–2500 nm) is presented. More in detail, an ad hoc hierarchical classification approach was developed and applied to optimize the identification of polymers. Morphological and morphometrical attributes of microplastic particles were simultaneously measured by digital image processing. Results showed that the collected microplastics are mainly composed, in decreasing order of abundance, by polyethylene (PE), polypropylene (PP), polystyrene (PS) and expanded polystyrene (EPS), in agreement with the literature data related to marine microplastics. The investigated microplastics belong to the fragments (86.8%), lines (9.2%) and films (4.0%) categories. Rigid (thick-walled) fragments were found at all sampling sites, while film-type microplastics and lines were absent in some samples from the Mediterranean Sea and the Western Atlantic Ocean. Rigid fragments and lines are mainly made of PE, whereas PP is the most common polymer for the film category. Average Feret diameter of microplastic fragments decreases from EPS (3–4 mm) to PE (2–3 mm) and PP (1–2 mm). The setup strategies illustrate that the HSI-based approach enables the classification of the polymers constituting microplastic particles and, at the same time, to measure and classify them by shape. Such multiple characterization of microplastic samples at the individual level is proposed as a useful tool to explore the environmental selection of microplastic features (i.e., composition, category, size, shape) and to advance the understanding of the role of weathering, hydrodynamic and other phenomena in their transport and fragmentation. Full article
Show Figures

Figure 1

13 pages, 845 KiB  
Article
Measuring Geographic Atrophy Area Using Column-Based Machine Learning Software on Spectral-Domain Optical Coherence Tomography versus Fundus Auto Fluorescence
by Or Shmueli, Adi Szeskin, Ilan Benhamou, Leo Joskowicz, Yahel Shwartz and Jaime Levy
Bioengineering 2024, 11(8), 849; https://doi.org/10.3390/bioengineering11080849 - 19 Aug 2024
Viewed by 1206
Abstract
Background: The purpose of this study was to compare geographic atrophy (GA) area semi-automatic measurement using fundus autofluorescence (FAF) versus optical coherence tomography (OCT) annotation with the cRORA (complete retinal pigment epithelium and outer retinal atrophy) criteria. Methods: GA findings on FAF and [...] Read more.
Background: The purpose of this study was to compare geographic atrophy (GA) area semi-automatic measurement using fundus autofluorescence (FAF) versus optical coherence tomography (OCT) annotation with the cRORA (complete retinal pigment epithelium and outer retinal atrophy) criteria. Methods: GA findings on FAF and OCT were semi-automatically annotated at a single time point in 36 pairs of FAF and OCT scans obtained from 36 eyes in 24 patients with dry age-related macular degeneration (AMD). The GA area, focality, perimeter, circularity, minimum and maximum Feret diameter, and minimum distance from the center were compared between FAF and OCT annotations. Results: The total GA area measured on OCT was 4.74 ± 3.80 mm2. In contrast, the total GA measured on FAF was 13.47 ± 8.64 mm2 (p < 0.0001), with a mean difference of 8.72 ± 6.35 mm2. Multivariate regression analysis revealed a significant correlation between the difference in area between OCT and FAF and the total baseline lesion perimeter and maximal lesion diameter measured on OCT (adjusted r2: 0.52; p < 0.0001) and the total baseline lesion area measured on FAF (adjusted r2: 0.83; p < 0.0001). Conclusions: We report that the GA area measured on FAF differs significantly from the GA area measured on OCT. Further research is warranted in order to determine the clinical relevance of these findings. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Ophthalmology)
Show Figures

Graphical abstract

9 pages, 924 KiB  
Brief Report
6′-Sialyllactose Enhances Exercise Performance via Increased Muscle Mass and Strength
by Eun-Jung Park, Li-La Kim, Jie-Oh Lee, Hay-Young Lee, Yong-An Kim and Hi-Roe Go
Nutrients 2024, 16(16), 2600; https://doi.org/10.3390/nu16162600 - 7 Aug 2024
Cited by 2 | Viewed by 3143
Abstract
Sialyllactose (SL) is a functional human milk oligosaccharide essential for immune support, brain development, intestinal maturation, and antiviral defense. However, despite its established health benefits, the effect of SL on exercise performance and muscle mass in mice remains unknown. Here, we aimed to [...] Read more.
Sialyllactose (SL) is a functional human milk oligosaccharide essential for immune support, brain development, intestinal maturation, and antiviral defense. However, despite its established health benefits, the effect of SL on exercise performance and muscle mass in mice remains unknown. Here, we aimed to investigate, for the first time, the effects of 6′-SL on muscle functions. Seven-week-old male C57BL/6J mice were administered 100 mg/kg 6′-SL for 12 weeks, after which exhaustive treadmill performance was conducted. Moreover, muscle strength was examined by grip strength, and muscle phenotype characteristics such as muscle mass, muscle fiber size, and muscle protein expression were also examined. The administration of 6′-SL significantly improved exhaustive treadmill performance metrics, including distance and exhaustion time. Grip strength was also increased by 6′-SL administration. Additionally, 6′-SL increased muscle mass in both the gastrocnemius (GAS) and soleus. 6′-SL administration led to an increase in the minimum Feret’s diameter and the protein expression of total myosin heavy chain in the GAS muscle. In conclusion, 6′-SL administration in vivo led to increased running distance and time by increasing muscle mass and strength. These findings collectively indicate that 6′-SL is a potential agent for improving muscle health and exercise performance. Full article
(This article belongs to the Special Issue Sports Nutrition in Endurance Performance)
Show Figures

Graphical abstract

16 pages, 2787 KiB  
Article
CryoEM Workflow Acceleration with Feret Signatures
by Pierre Nottelet, Peter Van Blerkom, Xiao-Ping Xu, Dorit Hanein and Niels Volkmann
Int. J. Mol. Sci. 2024, 25(14), 7593; https://doi.org/10.3390/ijms25147593 - 11 Jul 2024
Cited by 1 | Viewed by 1568
Abstract
Common challenges in cryogenic electron microscopy, such as orientation bias, conformational diversity, and 3D misclassification, complicate single particle analysis and lead to significant resource expenditure. We previously introduced an in silico method using the maximum Feret diameter distribution, the Feret signature, to characterize [...] Read more.
Common challenges in cryogenic electron microscopy, such as orientation bias, conformational diversity, and 3D misclassification, complicate single particle analysis and lead to significant resource expenditure. We previously introduced an in silico method using the maximum Feret diameter distribution, the Feret signature, to characterize sample heterogeneity of disc-shaped samples. Here, we expanded the Feret signature methodology to identify preferred orientations of samples containing arbitrary shapes with only about 1000 particles required. This method enables real-time adjustments of data acquisition parameters for optimizing data collection strategies or aiding in decisions to discontinue ineffective imaging sessions. Beyond detecting preferred orientations, the Feret signature approach can serve as an early-warning system for inconsistencies in classification during initial image processing steps, a capability that allows for strategic adjustments in data processing. These features establish the Feret signature as a valuable auxiliary tool in the context of single particle analysis, significantly accelerating the structure determination process. Full article
Show Figures

Figure 1

9 pages, 1243 KiB  
Article
Quantitative Analysis of Different Foveal Avascular Zone Metrics in Healthy and Diabetic Subjects
by Ouafa Sijilmassi
Diabetology 2024, 5(3), 246-254; https://doi.org/10.3390/diabetology5030019 - 30 Jun 2024
Cited by 2 | Viewed by 1641
Abstract
The primary aim of this study was to assess the size and shape of the Foveal Avascular Zone (FAZ) in patients with type 2 diabetes mellitus compared to healthy subjects. The study used 80 OCTA images from the FAZID dataset. The FAZ size [...] Read more.
The primary aim of this study was to assess the size and shape of the Foveal Avascular Zone (FAZ) in patients with type 2 diabetes mellitus compared to healthy subjects. The study used 80 OCTA images from the FAZID dataset. The FAZ size was measured by its area, perimeter, and maximum/minimum Feret diameters. The shape was assessed using the axial ratio, circularity, roundness, and solidity. These metrics were calculated automatically using Matlab® R2020b. Statistical analysis was performed using SPSS statistical software version 28.0, with a p-value of less than 0.01 considered significant. The results showed that the FAZ area was significantly larger in diabetic eyes (mean = 0.50 mm2) compared to control eyes (mean = 0.37 mm2), with a p-value of less than 0.01. Both the maximum and minimum diameters of the FAZ were also significantly larger in diabetic groups compared to the control group. Parameters associated with FAZ’s shape were significantly smaller in the diabetic groups than in the control group, except for the axial ratio. The main finding of this study is that diabetic eyes without clinically detectable diabetic retinopathy exhibit morphological changes and irregularities at the FAZ border. Full article
Show Figures

Figure 1

12 pages, 3396 KiB  
Article
Analysis on the Morphology and Interface of the Phosphate Coating Prepared on X39Cr13 and S355J2 Steels
by Monika Gwoździk, Mirosław Bramowicz and Sławomir Kulesza
Materials 2024, 17(12), 2805; https://doi.org/10.3390/ma17122805 - 8 Jun 2024
Cited by 2 | Viewed by 1873
Abstract
The article presents the results of the characterization of the geometric structure of the surface of unalloyed structural steel and alloyed (martensitic) steel subjected to chemical processing. Prior to phosphating, the samples were heat-treated. Both the surfaces and the cross-sections of the samples [...] Read more.
The article presents the results of the characterization of the geometric structure of the surface of unalloyed structural steel and alloyed (martensitic) steel subjected to chemical processing. Prior to phosphating, the samples were heat-treated. Both the surfaces and the cross-sections of the samples were investigated. Detailed studies were made using scanning electron microscopy (SEM), XRD, metallographic microscopy, chemical composition analysis and fractal analysis. The characteristics of the surface geometry involved such parameters as circularity, roundness, solidity, Feret’s diameter, watershed diameter, fractal dimensions and corner frequencies, which were calculated by numerical processing of SEM images. Full article
Show Figures

Figure 1

17 pages, 4021 KiB  
Article
Amelioration of Morphological Pathology in Cardiac, Respiratory, and Skeletal Muscles Following Intraosseous Administration of Human Dystrophin Expressing Chimeric (DEC) Cells in Duchenne Muscular Dystrophy Model
by Maria Siemionow, Katarzyna Budzynska, Kristina Zalants, Paulina Langa, Sonia Brodowska, Krzysztof Siemionow and Ahlke Heydemann
Biomedicines 2024, 12(3), 586; https://doi.org/10.3390/biomedicines12030586 - 6 Mar 2024
Cited by 5 | Viewed by 2581
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutation in the dystrophin gene. Currently there is no cure for DMD. We introduced a novel human Dystrophin Expressing Chimeric (DEC) cell therapy of myoblast origin and confirmed the safety and efficacy of [...] Read more.
Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutation in the dystrophin gene. Currently there is no cure for DMD. We introduced a novel human Dystrophin Expressing Chimeric (DEC) cell therapy of myoblast origin and confirmed the safety and efficacy of DEC in the mdx mouse models of DMD. In this study, we assessed histological and morphological changes in the cardiac, diaphragm, and gastrocnemius muscles of the mdx/scid mice after the transplantation of human DEC therapy via the systemic-intraosseous route. The efficacy of different DEC doses was evaluated at 90 days (0.5 × 106 and 1 × 106 DEC cells) and 180 days (1 × 106 and 5 × 106 DEC cells) after administration. The evaluation of Hematoxylin & Eosin (H&E)-stained sectional slices of cardiac, diaphragm, and gastrocnemius muscles included assessment of muscle fiber size by minimal Feret’s diameter method using ImageJ software. The overall improvement in muscle morphology was observed in DMD-affected target muscles in both studies, as evidenced by a shift in fiber size distribution toward the wild type (WT) phenotype and by an increase in the mean Feret’s diameter compared to the vehicle-injected controls. These findings confirm the long-term efficacy of human DEC therapy in the improvement of overall morphological pathology in the muscles affected by DMD and introduce DEC as a novel therapeutic approach for DMD patients. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of Muscular Dystrophy)
Show Figures

Figure 1

14 pages, 1460 KiB  
Article
Response of Bread Wheat Cultivars to Terminal Water Stress and Cytokinin Application from a Grain Phenotyping Perspective
by Afshin Zamani, Yahya Emam and Mohsen Edalat
Agronomy 2024, 14(1), 182; https://doi.org/10.3390/agronomy14010182 - 15 Jan 2024
Cited by 3 | Viewed by 1592
Abstract
A better understanding of the responsiveness of grain phenotypic indices to terminal water stress (TWS) in wheat might help explain grain weight variations and determine which grain traits are most affected. A two-year field experiment (2020–2021 and 2021–2022) was conducted to identify how [...] Read more.
A better understanding of the responsiveness of grain phenotypic indices to terminal water stress (TWS) in wheat might help explain grain weight variations and determine which grain traits are most affected. A two-year field experiment (2020–2021 and 2021–2022) was conducted to identify how TWS and exogenous cytokinin application might affect grain weight and grain dimensions in three bread wheat cultivars using high-throughput digital image phenotyping. The results showed that the effects of growing seasons, irrigation, and cultivars were significant on grain weight and phenotypic indices. In our study, TWS significantly reduced thousand grain weight (24.62%, 14.65%) and grain development in the width directions MinFeret, i.e., minimum caliper diameter (10.70%, 6.64%) and Minor, i.e., the minor axes of the best fitted ellipses to the grains (10.91%, 6.65%), or synthesized indices including Area/Perim. (9.01%, 5.42%), Area × Circ. (17.30%, 10.13%), Minor/Solid. (10.26%, 6.32%), MinFeret/Solid. (10.01%, 6.11%), Area × Solid (13.94%, 7.96%), Perim. × Circ. (9.07%, 5.42%), A1 (29.99%, 17.09%), and A2 (30.20%, 17.27%) in each growing season, respectively. Regardless of the factors causing these variations, a sustained relationship was found between thousand grain weight and phenotypic indices, with significant positive correlations. The stronger positive correlation between thousand grain weight and grain width indices (r ≥ 0.965) showed important implications for grain development and filling. The Torabi cultivar performed better than the Sirvan and Pishgam in both growing season conditions. In addition, the technical advantages of developing phenotyping approaches, the present study could contribute to a better physiological evaluation of wheat cultivars in multivariate environments. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

14 pages, 5038 KiB  
Article
Microstructural Changes in Vanilla planifolia Beans after Using High-Hydrostatic-Pressure Treatment in the Curing Process
by Katia D. Rivero-Angeles, Génesis V. Buitimea-Cantúa, Gloria Dávila-Ortiz, Edgar O. López-Villegas, Jorge Welti-Chanes, Zamantha Escobedo-Avellaneda and Darío I. Téllez-Medina
Foods 2024, 13(2), 177; https://doi.org/10.3390/foods13020177 - 5 Jan 2024
Cited by 2 | Viewed by 2122
Abstract
During vanilla bean curing, the cell arrangement derived from the killing technique applied to start bean ripening is essential to obtain the characteristic aroma and flavor of vanilla. Hence, killing is an important step to release the enzymes and compounds required for vanillin [...] Read more.
During vanilla bean curing, the cell arrangement derived from the killing technique applied to start bean ripening is essential to obtain the characteristic aroma and flavor of vanilla. Hence, killing is an important step to release the enzymes and compounds required for vanillin production. In this work, high hydrostatic pressure (HHP) at 100–400 MPa for 5 min, using water at 7 °C as the pressure-transmitting medium, was applied as the killing method, and its effect on the microstructural changes in vanilla beans during different curing cycles (C0–C20) was evaluated and compared with that observed after scalding by using water at 100 °C for 8 s. Microstructural changes in the cross-sectioned beans were analyzed using a stereomicroscope (SM), confocal laser scanning microscopy (CLSM), and environmental scanning electron microscopy (ESEM). The vanilla beans were cross-sectioned and three main sectors were analyzed: the total, annular, and core. The morphometric descriptors, namely, area, Feret’s diameter, and circularity, were quantified via digital image analysis (DIA), from which a shrinkage ratio was calculated. The results show that the total area in the beans presented a maximum decrease in the C16 of curing. The core area was most affected by the HHP treatment, mainly at 400 MPa, rather than scalding. CSLM observations revealed the autofluorescence of the compounds inside the beans. In conclusion, the use of microscopy techniques and DIA allowed us to determine the microstructural changes in the HHP-treated pods, which were found to be more numerous than those found in the scalded beans. Full article
Show Figures

Figure 1

Back to TopTop