Photobiomodulatory Effects of Low-Power LED Light on Cultured Human Umbilical Vein Endothelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. LED Light Irradiation Conditions
2.3. Assessment of Cellular Metabolic Activity
2.4. Morphological Evaluation by Fluorescence Staining
2.5. Statistical Analysis
2.6. Ethical Statement
3. Results
3.1. Cellular Metabolic Activity
3.2. Comparison of Confocal Laser Microscopy Images 3 Hours After LED Irradiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) in skin: Stimulating, healing, restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar] [PubMed]
- Hong, N. Photobiomodulation as a treatment for neurodegenerative disorders: Current and future trends. Biomed. Eng. Lett. 2019, 9, 359–366. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Heiskanen, V.; Hamblin, M.R. Photobiomodulation: Lasers vs. light emitting diodes? Photochem. Photobiol. Sci. 2018, 17, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.S. Photobiomodulation using light-emitting diode (LED) for treatment of retinal diseases. Clin. Ophthalmol. 2024, 18, 215–225. [Google Scholar]
- Rohringer, S.; Holnthoner, W.; Chaudary, S.; Slezak, P.; Priglinger, E.; Strassl, M.; Pill, K.; Mühleder, S.; Redl, H.; Dungel, P. The impact of wavelengths of LED light-therapy on endothelial cells. Sci. Rep. 2017, 7, 10700. [Google Scholar] [CrossRef]
- Dudley, A.C.; Griffioen, A.W. Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis 2023, 26, 313–347. [Google Scholar] [CrossRef]
- Tien, J. Tissue engineering of the microvasculature. Compr. Physiol. 2011, 9, 1155–1212. [Google Scholar] [CrossRef]
- Terena, S.M.L.; Mesquita-Ferrari, R.A.; de Siqueira, A.M.A.; Fernandes, K.P.S.; Fernandes, M.H. Photobiomodulation alters the viability of HUVECs. Lasers Med. Sci. 2021, 36, 83–90. [Google Scholar] [CrossRef]
- Góralczyk, K.; Szymańska, J.; Łukowicz, M.; Drela, E.; Kotzbach, R.; Dubiel, M.; Michalska, M.; Góralczyk, B.; Zając, A.; Rość, D. Effect of LLLT on endothelial cell culture. Lasers Med. Sci. 2015, 30, 273–278. [Google Scholar] [CrossRef]
- Szymanska, J.; Goralczyk, K.; Klawe, J.J.; Lukowicz, M.; Michalska, M.; Goralczyk, B.; Zalewski, P.; Newton, J.L.; Gryko, L.; Zajac, A.; et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J. Physiol. Pharmacol. 2013, 64, 387–391. [Google Scholar] [PubMed]
- Karu, T.I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Peng, S.; Samuel, S.B.; Zhang, S.; Wu, Y.; Wang, P.; Li, Y.F.; Liu, H. A simple and biosafe method for isolation of human umbilical vein endothelial cells. Anal. Biochem. 2016, 508, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Shimizu, R. Progress and challenges in vascular tissue engineering using self-organization/pre-designed approaches. J. Biomech. Sci. 2021, 16, 1–20. [Google Scholar] [CrossRef]
- Kocherova, I.; Bryja, A.; Mozdziak, P.; Angelova Volponi, A.; Dyszkiewicz-Konwińska, M.; Piotrowska-Kempisty, H.; Antosik, P.; Bukowska, D.; Bruska, M.; Iżycki, D.; et al. Human umbilical vein endothelial cells (HUVECs) co-culture with osteogenic cells: From molecular communication to engineering prevascularised bone grafts. J. Clin. Med. 2019, 8, 1602. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Domínguez-Pérez, M.; Mercado, I.; Villarreal-Molina, M.T.; Jacobo-Albavera, L. Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: A review. Appl. Sci. 2020, 10, 938. [Google Scholar] [CrossRef]
- Park, H.J.; Zhang, Y.; Georgescu, S.P.; Johnson, K.L.; Kong, D.; Galper, J.B. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2006, 2, 93–101. [Google Scholar] [CrossRef]
- Beetham, W.P.; Aiello, L.M.; Balodimos, M.C.; Koncz, L. Ruby-laser photocoagulation of early diabetic neovascular retinopathy: Preliminary report of a long-term controlled study. Trans. Am. Ophthalmol. Soc. 1969, 67, 39–67. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic dose response in low-level light therapy—An update. Dose Response 2011, 9, 602–618. [Google Scholar] [CrossRef]
- Steiner, R. Laser-tissue interactions. In Laser and IPL Technology in Dermatology and Aesthetic Medicine; Raulin, C., Syrus, K., Eds.; Springer: Berlin, Germany, 2011. [Google Scholar]
- Kreisler, M.; Christoffers, A.B.; Al-Haj, H.; Willershausen, B.; d’Hoedt, B. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg. Med. 2002, 30, 365–369. [Google Scholar] [CrossRef]
- Almeida-Lopes, L.; Rigau, J.; Zângaro, R.A.; Guidugli-Neto, J.; Jaeger, M.M. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg. Med. 2001, 29, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Yokomizo, S.; Roessing, M.; Morita, A.; Kopp, T.; Ogawa, E.; Katagiri, W.; Feil, S.; Huang, P.L.; Atochin, D.N.; Kashiwagi, S. Near-infrared II photobiomodulation augments nitric oxide bioavailability via phosphorylation of endothelial nitric oxide synthase. FASEB J. 2022, 36, e22490. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Huang, Z.; Ma, X.; Zong, X.; Tesic, V.; Ding, B.; Yin-Chieh, W.C.; Hui-Chao, R.L.; Zhang, Q. Photobiomodulation Inhibits Ischemia-Induced Brain Endothelial Senescence via Endothelial Nitric Oxide Synthase. Antioxidants 2024, 13, 633. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Sugita, Y.; Ogawa, A.; Ito, Y.; Suzumura, T.; Isomura, M.; Kawai, R.; Yoshida, W.; Kubo, K.; Horie, T.; et al. Effects of Intermittent Irradiation with Low-Level LED Light on Osteoblast-Like Cells Derived from Rat Bone Marrow. J. Hard Tissue Biol. 2023, 32, 67–76. [Google Scholar] [CrossRef]
- Castellano-Pellicena, I.; Uzunbajakava, N.E.; Mignon, C.; Raafs, B.; Botchkarev, V.A.; Thornton, M.J. Dose blue light restores human epidermal barrier function via activation of opsin during cutaneous wound healing? Lasers Surg. Med. 2019, 51, 370–382. [Google Scholar] [CrossRef]
- Kusumoto, J.; Takeo, M.; Hashikawa, K.; Komori, T.; Tsuji, T.; Terashi, H.; Sakakibara, S. OPN4 belongs to the photosensitive system of the human skin. Genes Cells 2020, 25, 215–225. [Google Scholar] [CrossRef]
- Kojima, D.; Mori, S.; Torii, M.; Wada, A.; Morishita, R.; Fukada, Y. UV-sensitive photoreceptor protein OPN5 in humans and mice. Proc. Natl. Acad. Sci. USA 2011, 108, E1027–E1033. [Google Scholar] [CrossRef]
- da Silva Leal, M.V.; Lima, M.O.; Nicolau, R.A.; de Carvallho, T.M.T.; de Carvalho Abreu, J.A.; Pessoa, D.R.; Arisawa, E.A.L.S. Effect of modified laser transcutaneous irradiation on pain and quality of life in patients with diabetic neuropathy. Photobiomodul. Photomed. Laser Surg. 2020, 38, 138–144. [Google Scholar] [CrossRef]
- Ailioaie, L.; Litscher, G.; Weber, M.; Ailioaie, C.; Litscher, D.; Chiran, D. Innovations and challenges by applying sublingual laser blood irradiation in juvenile idiopathic arthritis. Int. J. Photoenergy 2014, 2014, 130417. [Google Scholar] [CrossRef]
- Schapochnik, A.; Alonso, P.T.; de Souza, V.; Rodrigues, V.; Quintela, K.; da Palma Cruz, M.; Ferreira, C.M.; Cecatto, R.B.; Rodrigues, M.F.S.D.; Hamblin, M.R.; et al. Intravascular laser irradiation of blood (ILIB) used to treat lung diseases: A short critical review. Lasers Med. Sci. 2023, 38, 93. [Google Scholar] [CrossRef]
- Tomimura, S.; Silva, B.P.; Sanches, I.C.; Canal, M.; Colombo, F.C.; Conti, F.F.; De Angelis, K.; Chavantes, M.C. Hemodynamic effect of laser therapy in spontaneously hypertensive rats. Arq. Bras. Cardiol. 2014, 103, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.S.; Maifrino, L.B.M.; Alves, S.; da Costa Aguiar, A.B.; Perez, M.M.; Feder, D.; Azzalis, L.A.; Campos Junqueira, V.B.; AEonso Fonseca, F.L. The effects of transcutaneous low-level laser therapy on the skin healing process: An experimental model. Lasers Med. Sci. 2018, 33, 967–976. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.; Gomes, A.O.; da Silva, T.; da Silva, F.C.; Gomes, A.O.; Viana, A.O.; Leal Gonçalves, M.L.; Destro Rodrigues, M.F.; Tempestini Horliana, A.C.; de Fátima, D.T.; et al. Effect of photobiomodulation treatment in the sublingual, radial artery region, and along the spinal column in individuals with multiple sclerosis: Protocol for a randomized, controlled, double-blind, clinical trial. Medicine 2018, 97, e0627. [Google Scholar] [CrossRef] [PubMed]
HuMedia-EG2 Reagents for Cell Proliferation | |
---|---|
| 500 mL |
| 1 mL (3.00 M) |
| 1 mL (0.36 M) |
| 10 mL (100% V/V) |
| 0.5 mL (1.34 mg/mL) |
| 0.5 mL (10 mg/mL) |
| 0.5 mL (gentamicin: 50 mg/mL; amphotericin B: 50 µg/mL) |
| 0.5 mL (10 µg/mL) |
| 0.5 mL (5 µg/mL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, I.; Suzumura, T.; Sugita, Y.; Doi, S.; Komori, A.; Ueno, Y.; Ito, Y.; Kato, S.; Yoshida, W.; Kawai, R.; et al. Photobiomodulatory Effects of Low-Power LED Light on Cultured Human Umbilical Vein Endothelial Cells. J. Clin. Med. 2025, 14, 3959. https://doi.org/10.3390/jcm14113959
Kato I, Suzumura T, Sugita Y, Doi S, Komori A, Ueno Y, Ito Y, Kato S, Yoshida W, Kawai R, et al. Photobiomodulatory Effects of Low-Power LED Light on Cultured Human Umbilical Vein Endothelial Cells. Journal of Clinical Medicine. 2025; 14(11):3959. https://doi.org/10.3390/jcm14113959
Chicago/Turabian StyleKato, Ikuro, Toshikatsu Suzumura, Yoshihiko Sugita, Satoshi Doi, Atsuo Komori, Yukinori Ueno, Yuki Ito, Seeta Kato, Waka Yoshida, Ryoko Kawai, and et al. 2025. "Photobiomodulatory Effects of Low-Power LED Light on Cultured Human Umbilical Vein Endothelial Cells" Journal of Clinical Medicine 14, no. 11: 3959. https://doi.org/10.3390/jcm14113959
APA StyleKato, I., Suzumura, T., Sugita, Y., Doi, S., Komori, A., Ueno, Y., Ito, Y., Kato, S., Yoshida, W., Kawai, R., Kubo, K., & Maeda, H. (2025). Photobiomodulatory Effects of Low-Power LED Light on Cultured Human Umbilical Vein Endothelial Cells. Journal of Clinical Medicine, 14(11), 3959. https://doi.org/10.3390/jcm14113959