Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = Fenton-like catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1784 KiB  
Review
Advanced Technologies for Wastewater Treatment: Graphene-Based Catalysts
by Justine Elgoyhen and Radmila Tomovska
Molecules 2025, 30(16), 3405; https://doi.org/10.3390/molecules30163405 - 18 Aug 2025
Viewed by 234
Abstract
This short review provides a focused overview of recent advances in catalytic systems for water purification, with particular attention to photocatalysis, Fenton-like processes, and biocatalysis. While not intended as a comprehensive survey, this review is grounded primarily in recent work from our research [...] Read more.
This short review provides a focused overview of recent advances in catalytic systems for water purification, with particular attention to photocatalysis, Fenton-like processes, and biocatalysis. While not intended as a comprehensive survey, this review is grounded primarily in recent work from our research group, supported by comparisons with relevant studies from the broader literature. Emphasis is placed on the role of graphene-based materials, particularly aerogels, hydrogels, and xerogels, as functional platforms for catalytic nanoparticles inclusion and enzyme immobilization. This review aims to highlight key insights, practical limitations, and emerging strategies to improve catalyst reusability, stability, and scalability for real-world water treatment applications. Full article
Show Figures

Graphical abstract

16 pages, 2103 KiB  
Article
Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst
by Lia Wang, Lan Liang, Jinglei Xu, Yanshan Wang, Beibei Yan, Guanyi Chen, Ning Li and Li’an Hou
Appl. Sci. 2025, 15(15), 8210; https://doi.org/10.3390/app15158210 - 23 Jul 2025
Viewed by 326
Abstract
Fenton oxidation can contribute to meeting effluent standards for COD in actual wastewater treatment plant effluents. However, Fenton oxidation is prone to produce iron sludge waste. The application of heterogeneous Fenton-like systems based on Fenton iron mud carbon in wastewater treatment plants is [...] Read more.
Fenton oxidation can contribute to meeting effluent standards for COD in actual wastewater treatment plant effluents. However, Fenton oxidation is prone to produce iron sludge waste. The application of heterogeneous Fenton-like systems based on Fenton iron mud carbon in wastewater treatment plants is essential for Fenton iron mud reduction and recycling. In this study, a Fenton iron mud carbon catalyst/Ferrate salts/H2O2 (FSC/Fe(VI)/H2O2) system was developed to remove chemical oxygen demand (COD) from secondary effluents at the pilot scale. The results showed that the FSC/Fe(VI)/H2O2 system exhibited excellent COD removal performance with a removal rate of 57% under slightly neutral conditions in laboratory experiments. In addition, the effluent COD was stabilized below 40 mg·L−1 for 65 days at the pilot scale. Fe(IV) and 1O2 were confirmed to be the main active species in the degradation process through electron paramagnetic resonance (EPR) and quenching experiments. C=O, O-C=O, N sites and Fe0 were responsible for the generation of Fe(IV) and 1O2 in the FSC/Fe(VI)/H2O2 system. Furthermore, the cost per ton of water treated by the pilot-scale FSC/Fe(VI)/H2O2 system was calculated to be only 0.6209 USD/t, further confirming the application potential of the FSC/Fe(VI)/H2O2 system. This study promotes the engineering application of heterogeneous Fenton-like systems for water treatment. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

16 pages, 2458 KiB  
Article
Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst
by Nazarii Danyliuk, Viktor Husak, Volodymyra Boichuk, Dorota Ziółkowska, Ivanna Danyliuk and Alexander Shyichuk
Appl. Sci. 2025, 15(15), 8195; https://doi.org/10.3390/app15158195 - 23 Jul 2025
Viewed by 324
Abstract
As a result of the catalytic decomposition of H2O2, hydroxyl radicals are produced. Hydroxyl radicals are strong oxidants and effectively inactivate bacteria, ensuring water disinfection without toxic chlorinated organic by-products. The kinetics of bacterial inactivation were studied in a [...] Read more.
As a result of the catalytic decomposition of H2O2, hydroxyl radicals are produced. Hydroxyl radicals are strong oxidants and effectively inactivate bacteria, ensuring water disinfection without toxic chlorinated organic by-products. The kinetics of bacterial inactivation were studied in a laboratory-scale flow catalytic reactor. A granular cobalt ferrite catalyst was thoroughly characterized using XRD and XRF techniques, SEM with EDS, and Raman spectroscopy. At lower H2O2 concentrations, H2O2 decomposition follows first-order reaction kinetics. At higher H2O2 concentrations, the obtained kinetics lines suggest that the reaction order increases. The kinetics of bacterial inactivation in the developed flow reactor depends largely on the initial number of bacteria. The initial bacterial concentrations in laboratory tests were within the range typical of real river water. A regression model was developed that relates the degree of bacterial inactivation to the initial number of bacteria, the initial H2O2 concentration, and the contact time of water with the catalyst. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 384
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Graphical abstract

20 pages, 3059 KiB  
Article
Optimization of Organic Content Removal from Aqueous Solutions by Fenton-Ozonation
by Paixan Febrialy Samba, Marius Sebastian Secula, Sebastien Schaefer and Benoît Cagnon
Appl. Sci. 2025, 15(13), 7370; https://doi.org/10.3390/app15137370 - 30 Jun 2025
Viewed by 363
Abstract
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of [...] Read more.
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of H2O2 as an effective and affordable technique for the treatment of organic pollutants in water. Fenton-like catalysts for the removal of 2,4-D in aqueous solutions were elaborated using catalysts synthesized by the wet impregnation method. The ACs and prepared catalysts were characterized by nitrogen adsorption–desorption isotherms at 77 K, TGA, XPS, SEM, and TEM. Their efficiency as Fenton-like catalysts was studied. In a first step, a response surface modeling method was employed in order to find the optimal parameters of the Fenton process, and then the optimal O3/H2O2 ratio was established at laboratory scale. Finally, the investigated advanced oxidation processes were carried out at pilot scale. The results show that Fenton-like catalysts obtained by the direct impregnation method enhance the degradation rate and mineralization of 2,4-D. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

20 pages, 5439 KiB  
Article
The Efficient Degradation of Oxytetracycline in Wastewater Using Fe/Mn-Modified Magnetic Oak Biochar: Pathways and Mechanistic Investigation
by Yujie Zhou, Yuzhe Fu, Xiaoxue Niu, Bohan Wu, Xinghan Liu, Fu Hao, Zichuan Ma, Hao Cai and Yuheng Liu
Magnetochemistry 2025, 11(6), 49; https://doi.org/10.3390/magnetochemistry11060049 - 6 Jun 2025
Cited by 1 | Viewed by 1219
Abstract
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal [...] Read more.
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal co-precipitation method, demonstrating an exceptional photocatalytic-Fenton degradation performance for oxytetracycline (OTC). Characterization techniques including FTIR, SEM, XRD, VSM, and N2 adsorption–desorption analysis confirmed that the Fe/Mn bimetals were successfully loaded onto the surface of biochar in the form of Fe3O4 and MnFe2O4 mixed crystals and exhibited favorable paramagnetic properties that facilitate magnetic recovery. A key innovation is the utilization of biochar’s inherent phenol/quinone structures as reactive sites and electron transfer mediators, which synergistically interact with the loaded bimetallic oxides to significantly enhance the generation of highly reactive ·OH radicals, thereby boosting catalytic activity. Even after five recycling cycles, the material exhibited minimal changes in degradation efficiency and bimetallic crystal structure, indicating its notable stability and reusability. The photocatalytic degradation experiment conducted in a Fenton-like reaction system demonstrates that, under the conditions of pH 4.0, a H2O2 concentration of 5.16 mmol/L, a catalyst dosage of 0.20 g/L, and an OTC concentration of 100 mg/L, the optimal degradation efficiency of 98.3% can be achieved. Additionally, the pseudo-first-order kinetic rate constant was determined to be 4.88 min−1. Furthermore, this study elucidated the detailed degradation mechanisms, pathways, and the influence of various ions, providing valuable theoretical insights and technical support for the degradation of antibiotics in real wastewater. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

15 pages, 3892 KiB  
Article
Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes
by Patrícia S. M. Santos, Mónica P. S. Ferreira and Armando C. Duarte
Water 2025, 17(11), 1618; https://doi.org/10.3390/w17111618 - 27 May 2025
Viewed by 766
Abstract
Rainwater needs to be recognized as a natural water source for domestic use, but finding viable processes to remove its contaminants is essential. The aim of this work was to compare the UV/H2O2 and UV/Fenton-like processes for the oxidation of [...] Read more.
Rainwater needs to be recognized as a natural water source for domestic use, but finding viable processes to remove its contaminants is essential. The aim of this work was to compare the UV/H2O2 and UV/Fenton-like processes for the oxidation of 3,5-dihydroxybenzoic acid (3,5-DHBA) in rainwater. The reactions were assessed using ultraviolet-visible (UV-Vis) and molecular fluorescence spectroscopies, and the results showed the formation of new and similar chromophoric compounds in both processes, which were subsequently degraded. At environmentally relevant concentrations of chemical oxidants, namely H2O2 at 10−4 M, the chromophoric organic compounds in solution were degraded within 24 h by the UV/H2O2 process and within 4 h by the UV/Fenton-like process. However, when the concentration of H2O2 was increased by one order of magnitude for the UV/H2O2 process (from 10−4 M to 10−3 M), oxidation rates were similar and nearly complete after 4 h for both UV/H2O2 and UV/Fenton-like processes. These findings highlight that the presence of more oxidizing agents in the oxidation system improves the synergistic effect, leading to a greater contribution of the free radical oxidation pathway, particularly through hydroxyl radicals. Thus, by increasing the concentration of H2O2 in the UV/H2O2 process to 10−3 M, it was possible to achieve a similar level of oxidation (close to 100% after 4 h, as indicated by a decrease in fluorescence intensity) as the UV/Fenton-like process at environmentally relevant concentrations (10−4 M), but using fewer chemical reactants, since UV/H2O2 process does not require Fe(III) as catalyst and oxidant. Therefore, the UV/H2O2 process can be considered a simpler and cleaner process for removing organic contaminants from rainwater. Full article
Show Figures

Figure 1

15 pages, 3051 KiB  
Article
Performance of Copper as a Catalyst for Fenton-like Processes in Highly Saline Solutions
by Xavier Orts, Jordi Arévalo, Antonio Arques, Ana M. Amat and Lucas Santos-Juanes
Molecules 2025, 30(11), 2298; https://doi.org/10.3390/molecules30112298 - 23 May 2025
Viewed by 548
Abstract
The catalytic performance of copper in Fenton-like processes was investigated under conditions of elevated chloride concentrations. Model solutions were prepared containing four target pollutants (50 mg/L each), Cu (II) at 50 mg/L, and a stoichiometric dose of hydrogen peroxide sufficient for complete oxidation [...] Read more.
The catalytic performance of copper in Fenton-like processes was investigated under conditions of elevated chloride concentrations. Model solutions were prepared containing four target pollutants (50 mg/L each), Cu (II) at 50 mg/L, and a stoichiometric dose of hydrogen peroxide sufficient for complete oxidation of the organic matter. Chloride levels ranged from low concentrations to those representative of both synthetic and natural seawater (36 g/L NaCl). An increase in chloride concentration consistently led to greater pollutant removal efficiency. The influence of pH on process performance was also assessed in saline and real seawater matrices. An optimal pH range between 6 and 7 was identified in both cases, where the reactivity of copper–chloride complexes was maximized while the formation of insoluble, catalytically inactive copper species was suppressed. Monitoring of pH, soluble copper concentration, and hydrogen peroxide consumption supported the conclusion that real seawater provides the most favorable conditions for copper–chloride catalyzed Fenton-like reactions. These results demonstrate the high potential of copper-based advanced oxidation processes in saline environments, particularly in applications where traditional methods exhibit limited efficiency. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

17 pages, 22223 KiB  
Article
Enhanced Fenton-like Catalytic Activation of Peroxymonosulfate over Macroporous LaFeO3 for Water Remediation
by Elzhana Encheva, Savina Koleva, Martin Tsvetkov and Maria Milanova
Crystals 2025, 15(5), 394; https://doi.org/10.3390/cryst15050394 - 24 Apr 2025
Cited by 1 | Viewed by 423
Abstract
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The [...] Read more.
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The macroporous LaFeO3 are tested in a Fenton-like activation of peroxymonosulfate, PMS, for oxidation of tetracycline hydrochloride, TCH, in model water solution under visible-light irradiation. The effect of parameters such as type of irradiation, temperature of the reaction, and type of the water matrixes was tested. The oxidation of the pollutant TCH is evaluated by total organic carbon and organic nitrogen measurements. The results showed the superior catalytic activity of macroporous LaFeO3 in comparison to pure LaFeO3. Rate constants between 0.036 and 0.184 min−1 at 25 °C were obtained. The activation energy for the process with the most active macroporous LaFeO3 was 33.88 kJ/mol, a value lower than for the catalytic process with PMS only, proving the positive role of the macroporous LaFeO3 for TCH degradation. Radical scavenger measurements showed that singlet oxygen, produced during the catalytic degradation process, was responsible for the performance of macroporous LaFeO3/PMS/visible light for TCH degradation. The catalysts proved to be efficient and recyclable. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

26 pages, 1365 KiB  
Review
Metal-Doped Carbon Dots as Fenton-like Catalysts and Their Applications in Pollutant Degradation and Sensing
by Weiyun Chen, Andrew S. Ball, Ivan Cole and Hong Yin
Sustainability 2025, 17(8), 3642; https://doi.org/10.3390/su17083642 - 17 Apr 2025
Cited by 3 | Viewed by 1398
Abstract
Metal-doped carbon dots (CDs) have become one of the most popular catalytic materials for Fenton-like reactions, mainly due to their low production cost, minimal toxicity, and high catalytic efficiency. Theses reactions not only provide an efficient decontamination method for the degradation of organic [...] Read more.
Metal-doped carbon dots (CDs) have become one of the most popular catalytic materials for Fenton-like reactions, mainly due to their low production cost, minimal toxicity, and high catalytic efficiency. Theses reactions not only provide an efficient decontamination method for the degradation of organic pollutants in wastewater but also demonstrate a wide range of sensing applications. Metal doping introduces new catalytically active centres, which increase the binding selectivity to the reactants and offer an additional advantage of improved catalytic degradation and sensing activity. The metal-doped CDs optimise the electronic structure of pristine CDs, thereby enhancing their catalytic properties and reaction rates. These enhancements make them an attractive option for water treatment and sensor design. The objective of this review is to provide a comprehensive overview of the current research progress in the utilisation of metal-doped CDs as Fenton-like reaction catalysts for the degradation of pollutants and sensing applications. This review examines the advantages of metal-doped carbon dots in terms of catalytic efficiency, selectivity, and application scope and discusses the potential challenges and future research directions. The aim is to promote further the sustainable application and green development of CD technology in environmental governance and analytical chemistry. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

20 pages, 13042 KiB  
Article
Biomass Cellulose-Derived Carbon Aerogel Supported Magnetite-Copper Bimetallic Heterogeneous Fenton-like Catalyst Towards the Boosting Redox Cycle of ≡Fe(III)/≡Fe(II)
by Qiang Zhao, Jiawei Yang, Jiayi Xia, Gaotian Zhao, Yida Yang, Zongwei Zhang, Jing Li, Fang Wei and Weiguo Song
Nanomaterials 2025, 15(8), 614; https://doi.org/10.3390/nano15080614 - 16 Apr 2025
Viewed by 608
Abstract
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions [...] Read more.
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions for RhB removal at an ultrahigh initial concentration of up to 1000 ppm. To be specific, Fe3O4 and Cu nanoparticles are generated in situ on a mesoporous CA support, denoted as an Fe3O4-Cu/CA catalyst. Experimentally, factors including initial dye concentration, catalyst dosage, H2O2 dosage, pH, and temperature, which significantly influence the oxidative degradation rate of RhB, are carefully studied. The RhB (1000 ppm) degradation ratio reaches 93.7% within 60 min under low catalyst and H2O2 dosage. The catalyst also shows slight metal leaching (almost 1.4% of total Fe and 4.0% of total Cu leached after a complete degradation of 25 μmol RhB under conditions of 15 mg catalyst dosage, 20 mL RhB solution (600 ppm), and 200 μL 30 wt% H2O2 dosage, at pH of 2.5, at 40 °C), good catalytic activity for degrading organic pollutants, excellent reusability, and good catalytic stability (the degradation ratio is nearly 82.95% in the 8th cycle reaction). The synergistic effect between Fe and Cu species plays a vital role in promoting the redox cycle of Fe(III)/Fe(II) and enhancing the generation of ·OH. It is suitable for ultrahigh-concentration organic pollutant degradation in practical wastewater treatment applications. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrocatalysis)
Show Figures

Graphical abstract

25 pages, 6717 KiB  
Article
Evaluation of Layered Structures Impregnated with Fe or Cu as Catalysts in a Fenton-like Process for the Removal of 17α-Ethinylestradiol in Aqueous Solution: Operational Parameters and Ecotoxicity
by Lorena Lugo, Camilo Venegas, John Díaz, Sergio Alberto Díaz-Gallo, Alejandra Barriga, Fidson-Juarismy Vesga, Sonia Moreno, Crispín Celis-Zambrano and Alejandro Pérez-Flórez
Water 2025, 17(7), 1043; https://doi.org/10.3390/w17071043 - 2 Apr 2025
Viewed by 634
Abstract
Endocrine disruptors such as 17α-ethinylestradiol pose significant ecological risks in aquatic environments. This study assessed the catalytic performance of Fe- and Cu-impregnated delaminated clays (DCs) and layered double hydroxides (LDHs) in a Fenton-like process for EE2 removal. The effects of key parameters—including hydrogen [...] Read more.
Endocrine disruptors such as 17α-ethinylestradiol pose significant ecological risks in aquatic environments. This study assessed the catalytic performance of Fe- and Cu-impregnated delaminated clays (DCs) and layered double hydroxides (LDHs) in a Fenton-like process for EE2 removal. The effects of key parameters—including hydrogen peroxide concentration, initial contaminant load, and catalyst dosage—were analyzed using HPLC-QqTOF. Delaminated clays (DCs) demonstrated higher removal efficiencies compared to layered double hydroxides (LDHs), reaching 55% with Fe and 47% with Cu, while LDHs achieved 40% and 33% for Fe and Cu, respectively. Ecotoxicity was evaluated using bioassays (L. sativa, S. capricornutum, D. magna) and the Ames test. Notably, S. capricornutum exhibited 100% inhibition at the highest tested concentration, with IC50 values of 11.2–12.4 for Cu and 31.5–32.7 for Fe. L. sativa was inhibited by Cu- and Fe-impregnated LDH/DC, with IC50 values of 71.0 (DC-Cu), 56.6 (DC-Fe), and 58.6 (LDH-Fe). D. magna exhibited 17–75% mortality when exposed to untreated EE2, while LC50 values confirmed Cu’s greater toxicity. The Ames test indicated no mutagenic effects. Integrating the Fenton-like process with complementary techniques is recommended to enhance efficiency. These findings highlight the need to optimize operational parameters for effective removal of 17α-ethinylestradiol. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

13 pages, 2744 KiB  
Article
Study of Biochar with Different Cellulose/Lignin Ratios for Organic Pollutant Removal in Water Through Fenton-like Catalysis Assisted with Adsorption
by Xinyan Yu, Wanting Xu and Lu Gan
Catalysts 2025, 15(4), 327; https://doi.org/10.3390/catal15040327 - 29 Mar 2025
Viewed by 564
Abstract
In the present study, cellulose and lignin with different weight ratios were mixed and pyrolyzed to prepare biochars for organic dye pollutant removal in water via Fenton-like catalysis. The results indicated that a higher cellulose content in a biomass precursor could result in [...] Read more.
In the present study, cellulose and lignin with different weight ratios were mixed and pyrolyzed to prepare biochars for organic dye pollutant removal in water via Fenton-like catalysis. The results indicated that a higher cellulose content in a biomass precursor could result in a lower biochar yield with a lower carbon content in the biochar. Moreover, with the increase in cellulose content, the resulting biochar had a higher graphitization degree with higher levels of crystallinity, as well as a richer porosity. When using Rhodamine B (RhB) as the dye probe, the biochar derived from a higher cellulose/lignin ratio precursor exhibited better adsorptive performance. It was further found that the biochar could act as a Fenton-like catalyst to activate peroxydisulfate (PDS) and accelerate RhB removal via a degradation route, in which single oxygen (1O2) was identified as the active species. Therefore, the biochar/PDS catalytic system exhibited prominent RhB removal stability in various water matrices with a wide pH application range. This study develops a new approach to prepare biomass-derived biochar with high organic removal capacity via Fenton-like catalysis assisted with adsorption synergy. Full article
Show Figures

Graphical abstract

28 pages, 6457 KiB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs)
by Yassine Elkahoui, Fatima-Zahra Abahdou, Majda Ben Ali, Said Alahiane, Mohamed Elhabacha, Youssef Boutarba and Souad El Hajjaji
Reactions 2025, 6(2), 23; https://doi.org/10.3390/reactions6020023 - 28 Mar 2025
Cited by 1 | Viewed by 1385
Abstract
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3 [...] Read more.
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3N4 heterojunction nanocomposite, successfully synthesized from graphitic carbon nitride (g-C3N4) and tin ferrate (SnFe2O4) and applied to the degradation of the cationic dye brilliant cresyl blue (BCB) in an aqueous solution. These two components are particularly attractive due to their low cost and ease of fabrication. Various characterization techniques, including XRD, FTIR, SEM, and TEM, were used to confirm the successful integration of SnFe2O4 and g-C3N4 phases in the synthesized catalysts. The photocatalytic and photo-Fenton-like activity of the heterojunction composites was evaluated by the degradation of brilliant cresyl blue under visible LED illumination. Compared to the pure components SnFe2O4 and g-C3N4, the SnFe2O4/g-C3N4 nanocomposite demonstrated a superior photocatalytic performance. Furthermore, the photo-Fenton-like performance of the composites is much higher than the photocatalytic performances. The significant improvement in photo-Fenton activity is attributed to the synergistic effect between SnFe2O4 and g-C3N4, as well as the efficient separation of photoexcited electron/hole pairs. The recyclability of the SnFe2O4/g-C3N4 composite toward BCB photo-Fenton like degradation was also shown. This study aimed to assess the modeling and optimization of photo-Fenton-like removal BCB using the SnFe2O4/g-C3N4 nanomaterial. The main parameters (photocatalyst dose, initial dye concentration, H2O2 volume, and reaction time) affecting this system were modeled by two approaches: a response surface methodology (RSM) based on a Box–Behnken design and artificial neural network (ANN). A comparison was made between the predictive accuracy of RSM for brilliant cresyl blue (BCB) removal and that of the artificial neural network (ANN) approach. Both methodologies provided satisfactory and comparable predictions, achieving R2 values of 0.97 for RSM and 0.99 for ANN. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

29 pages, 6092 KiB  
Review
The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(4), 987; https://doi.org/10.3390/pr13040987 - 26 Mar 2025
Cited by 10 | Viewed by 4742
Abstract
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals [...] Read more.
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals and reactive oxygen species (ROS) to mineralize complex pollutants. Homogeneous systems such as Fenton’s reagent show high degradation efficiency. However, challenges like pH sensitivity, catalyst recovery issues, sludge generation, and energy-intensive operations limit their scalability. Heterogeneous catalysts, such as TiO2-based photocatalysts and Fe3O4 composites, offer improved pH adaptability, visible-light activation, and recyclability. Emerging innovations like ultraviolet light emitting diode (UV-LED)-driven systems, plasma-assisted oxidation, and artificial intelligence (AI)-enhanced hybrid reactors demonstrate progress in energy efficiency and process optimization. Nevertheless, key challenges remain, including secondary byproduct formation, mass transfer constraints, and economic feasibility for large-scale applications. Integrating AOPs with membrane filtration or biological treatments enhances treatment synergy, while advances in materials science and computational modeling refine catalyst design and reaction mechanisms. Addressing barriers in energy use, catalyst durability, and practical adaptability requires multidisciplinary collaboration. This review highlights AOPs as pivotal solutions for water security amid growing environmental pollution, urging targeted research to bridge gaps between laboratory success and real-world implementation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

Back to TopTop